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The variational method of Stollhoff and Fulde is applied to a model Hamiltonian describing

the d band of a transition metal to obtain the correlated ground state. The model used includes

the Coulomb and exchange intra-atomic energies and is rotationally symmetric in orbital and

spin space. The calculated cohesion energy has a minimum for a. half-filled d band, which is

connected with gradual localization of a magnetic moment in the presence of the Hund's-rule

exchange interaction. At the same time the charge fluctuations are strongly suppressed and spin

fluctuations enhanced. We have found a corrected Stoner criterion which gives a ferromagnetic

ground state for realistic values of the model parameters for 3d metals, and is in agreement with

the exact result of Kanamori at very low electron and hole concentrations.

I. INTRODUCTION

The dual nature of transition metals, which show
both localized as well as itinerant properties, has been
studied for many years. It is well known that the
low-temperature specific heat, the susceptibility, and
the transport properties are best understood within a

band picture for partially filled d bands. On the other
hand, it has been argued that such magnetic proper-
ties as hyperfine fields, the high-temperature Curie-
like susceptibility, or existence of spin waves above
the Curie temperature, indicate a more localized na-

ture of the d electrons. "
Early treatments of correlations in transition metals

dealt for simplicity with a one-band Hubbard
model. This model was very intensely studied over
the last 16 years, but very few definite results were
obtained (for a review see Ref. 5). The ground state
was rigorously shown to be ferromagnetic for cubic
lattices with almost one electron per atom and for in-

finite correlations. It is therefore expected that a
ferromagnetic ground state should exist for large
enough correlations, and for riot too low band filling,
as also obtained in the spectral-density method. ' But
the model, as a one-band model, seems unrealistic
for transition metals. The same holds true for the
doubly degenerate Hubbard model, which is useful
for the understanding of some transition-metal com-
pounds.

The second and complementary method, the spin-
density-functional formalism, is very useful in quan-
titative explanation of the ground-state properties of
not only nontransition, but also transition metals.
However, it does not allow us to get more insight
into the nature of electronic states in transition met-
als, and does not help us to understand how the local

moments and magnetic properties do form in pres-
ence of the electron-electron interaction.

A model of a d band with its degeneracy fully in-

cluded, which is more realistic for transition metals
than the one-band or doubly degenerate Hubbard
models, was considered by Friedel and Sayers who
studied the role of d-d correlations in the cohesion
energy and stability of a ferromagnetic state. ' Re-
cent perturbation expansion of this model for the cu-
bic lattices shows that the density of one-particle
states is drastically changed in the presence of corre-
lations for realistic values of the Coulomb interaction
U and the bandwidth K" In this paper we want to
study in more detail the model of Friedel and
Sayers, ' which we solve in Sec. II with the help of a
variationa) ansatz, analogous to that of Stollhoff and
Fulde. ""The variational ground state obtained in
such a way allows for going beyond lowest-order per-
turbation theory in the calculation of the cohesion
energy in Sec. III. Further, we give evidence for grad-
ual localization of d electrons with increasing corre-
lations and show how the Stoner criterion is changed
(Sec. IV). The paper is summarized in Sec. V.

II. LOCAL APPROACH TO CORRELATIONS
IN A TRANSITION METAL

As Friedel and Sayers, ' we restrict ourselves to a
simplified picture of the d one-electron band, where
all five d orbitals with different orbital moments
(1 = 2 to —2) are assumed equally populated at each
energy. The total energy band is assumed symmetri-
cal with respect to the atomic energy and rectangular,
with the density of states for o--spin electrons in ith
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is completely symmetric in both spin and orbital sub-
spaces. a; (a; ) are creation (annihilation) opera-
tors of a o-spin electron at orbital i (i = 1, . . . , 5),
and site m (m = I, 2, . . . , W). n; is a particle
number operator (n; =a'; a; ), and
S;= (S+,S„;,S*;) is a spin operator, the components
of which are related to electron operators in a usual
way: Snn = Qnt(tanrit, Sgn( = Q 'tannt' nn 2 (nnnl —nnnt).

Let us calculate first charge and spin fluctuations,
defined as

This density of states exhibits particle-hole symmetry,
so in what follows we may limit ourselves to the less
than or half-filled band case. Although a constant
density of states may seem to be a rather crude
approximation, it is not so as far as the influence of
lcorrelations is considered. '

Correlation between electrons is described by
intra-atomic Coulomb and exchange interactions, i.e.,
by the most important local part. In fact, it is known
for molecules that intra-atomic correlations are
responsible for most of the correlation energy, ""so
this assumption shoulld also be reasonable for a tran-
sition metal. The Coulomb interactions are charac-
terized by the energy Uo when two electrons with op-
posite spins occupy the same d orbital, and U if they
sit at the same site in two different orbitals while J is
the exchange interaction (for electrons on different
orbitals). These three energy parameters ( Uo, U, J )

are not independent. The orbital symmetry of the
model Hamiltonian requires that Uo= U+ J, as has

'
been discussed by Parmenter for the impurity prob-
lem, "and by Cyrot and Lyon-Caen in the degenerate
Hubbard model. '

The model Hamiltonian used here for transition
metals

respectively, ~here

n = Xn, , S' = XS', , (2.5)

(2.6)

and relatively small spin fluctuations

zr ' (S' ) = 'n (1 ——'n )— (2.7)

where n is the average number of electrons per site.
In the opposite, atomic limit (t „=0), the d shell is
built according to Hund's rule, as the exchange in-
teraction J is positive (J )0). The energy per site is
then

|0, if n «1
(2.g)

, n(n —1—)(U—J), if 1 ( n «5
There is no fluctuation in charge, and fluctuations in
the z th spin component are just those of a free ion

S'""-'=
2S2S+I ( s

(2.9)

where S = —n and n ~ 5. Thus we see that the actu-1

2

al values of charge and sprn fluctuations contain in-

formation about degree of electron localization.
Unfortunately, an essential shortcoming of the

Hartree-Fock approximation (HFA) is that it gives
the band-limit values of charge and spin fluctuations
Eqs. (2.6) and (2.7), independently of the values of
U and J. Here we construct a more appropriate
ground state of the Hamiltonian Eq. (2,2) by the lo-
cal approach to correlations, which appeared to be
very successful in the calculation of molecules. ""
The basic idea is that in the presence of correlations
we expect that probabilities of such configurations of
electrons in a solid, which have more correlation en-
ergy than the average for the actual filling, are re-
duced. Thus we propose the following ansatz for the
correlated ground state ~%c)

I'pc) = ff (I 21.0.) IC'HFA) (2.10)

where ~4&HFA) is the HFA ground state, and any
operator O„can take one of the following three
forms

for exactly solvable limiting cases of the Hamiltonian
Eq. (2.2). In the band limit (U =J =0) we get max-
imum of fluctuations in the number of particles

and

/

a'(n ) = (n') —(n )'

~2(Sz ) ((Sz )2) (Sz )2

(2.3)

(2.4)

m (1)
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O, mij ~ micr
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n I
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(3)

(2.11)
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q„are variational parameters to be found from
minimization of the ground-state energy EGs, which
we normalize per one site

Eos & q c I H I q c ) 1 & & Pc I q c ) (2.12)

(. . . ) denotes the average over the HFA ground
state. The projection operator P ';"= 1 —q1n;tn;~
leads to a reduction of the probability amplitude of
finding two electrons at the orbital i and site m.

Similarly, X n; n, introduces density correla-
CPS ttlJ Q'

tions, while S; S, introduces spin correlations
between different orbitals. For convenience we de-
fine the O„operators as describing only the respec-
tive two-particle excitations, so (0„)=0. When tak-
ing into account equivalence of lattice sites, we have
essentially only three different q„'s in the variational
ground state Eq. (2.10): one (1)1) for correlations
within the same orbitals, one (1)1) for the density
correlations n; n I, and one (11,) for the spintill lF

EGs = EHFA + Ecorr

where EHFA is the HFA ground-state energy

(2.13)

EaF&= — n(l ——n) W+—n(9U——3J)1
'

1 1

2 10 20

——(nt —nt)'(U + SJ —11')
20

(2. 14)

with n = (X,. n, ), and

correlations S;S,.
In the calculation of the ground-state energy EGs

we take into account only such terms in Eq. (2.12)
which contain the operators O„acting at the same
site. This approximation is consistent with the
method discussed in the Appendix and used in deter-
mining the needed averages. In the resulting expres-
sion for EGs we keep only the terms up to second or-
der in q„, what is justified for not too strong correla-
tions. The result may be written as

3 3

2 X q„(0'"'H ) —y„,((O'k'HO'n) + (01"1O1"H )')
Ecorr

k 1

3

1+ X &k»(0'"'0'")
(2. i&)

where we have used 0'"= g,. 0'," and

0 '"' = X,&& 0 '"' for k = 2, 3. The elements
(0'"'O'"H)' do not contain such pairs of operators
O„where both operators describe correlations on the
same orbitals. The correlation energy is calculated
for an arbitrary site n1, and H = H —(H). Final
results for the matrix elements (O'"'H ),
(O'"'HO'") (0'"'0~"H )', and (0'"'0~") are
given in the Appendix. With these elements known
we minimize the total ene'rgy EGs with respect to qk

which correlation effects play a decisive role in the
binding of these systems. It is well known that the
transition metals show a remarkable minimum in

cohesion energy near of the center of 3d and, but less
distinctly, of 4d series. " Theoretical .understanding
of this fact is often based on the one-band Hubbard
model (HM). For this model the cohesion energy,
calculated with the model density of states Eq. (2.1)
in the HFA, is just given by

E,",„=—,n(l —, n). W ——n'U, —for n «1HM 1 1 1 (3.1)

QEGs =0, for k =1, 2, 3 (2.16)

what leads to a system of nonlinear equations for qk,
to be solved by iteration.

III. COHESION ENERGY OF A PARAMAGNETIC
METAL

The energy of cohesion Ec,h is defined as the
difference between the atomic-limit energy EAL and
the ground-state energy EGs." Up to now the few
existing calculations of the cohesion energy in transi-
tion metals did not give a coherent picture as to

Ecoh EAL EHFA (3.2)

with E„L and FsF~ defined as in Eqs. (2.8) and

and has a maximum at np="(1+ U/ W) ', and local
minimum at n =1, due to the Coulomb energy U.
The minimum at n =1 gets less distinct in the Gutz-
willer approximation, '8 and the Green's-function ap-
proaches including correlation effects, ' but qualita-
tively the cohesion energy preser ves its H FA
features. Local correlation at one orbital is, however,
not the only mechanism present in real solids.

The present model Hamiltonian Eq. (2.2) gives in

the HFA the cohesion energy
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(2.14). This simplest approximation already shows
the importance of the exchange interaction J in a
transition metal. In a special case J =0 the cohesion
energy E,"Oq" varies parabolically with increasing
number of particles n, as was observed by Friedel and
Sayers. ' In the presence of the exchange interaction
both the atomic energy E&L and the HFA energy
EH~& are changed. The maxima of the cohesion en-

ergy appear then at

no= 5[1—6J/( W —U+ 7J ) ]

1.0

0.8

O.I

and 10 —no, and show the strong influence of J. The
resulting E,",&" is strongly reduced in the middle of
the band and is shown for U/ W = 0.5 and J/ W = 0.1

in Fig. 1.
With the variational ansatz Eq. (2.10) the cohesion

energy is

~coh ~AL ~GS ~AL +HFA+ I&..„l

0.2

01
0 2.5 7.5 10

The correlation energy E„„„depends on the parame-
ters U and J in a complicated way and increases the
cohesion energy E„&. %e present the numerical
result in Fig. 1 for three representative values of the
Coulomb energy U/ W =0.2, 0.3, and 0.5, and for
J/U =0.2, which should be realistic for Sd, 4d, and
3d transition metals, respectively. ' For each case
there exists a local minimum in the cohesion energy,
which gets deeper with increasing interaction energy.
For U/ W = 0.5 we also show a comparison for the
HFA result (dotted line). We would like to point out
that, similar to the HFA, we obtain in the present
scheme a parabolic dependence of E„& on n in a spe-
cial case when the exchange energy is neglected
(J =0).

FIG. 1. Cohesion energy for transition metals as a func-
tion of band filling n for different values of the Coulomb
energy U/W. Dotted lines show the HFA result for
U/W =0.5. The results are obtained for J/U =0.2.

IV. ELECTRON LOCALIZATION AND THE STONER
CRITERION

Perhaps the most intriguing and outstanding prob-
lem connected with magnetism of transition metals is
the question about gradual localization of electrons.
Such a localization, according to Hund's rule, is con-
nected with building up of local moments, measured

by

(+c ISm I +c )
(qf lqf )

3 3

2 X qk(O'"'S') —X qkql((O' 'S'0'") + (O'"'0"'S')')
3

1+ X gkitk (0 '"'0 '")
(4.1)

The prime in (O'"'0'"S2)' has the same meaning as

that in Eq. (2, 15). The matrix elements needed to
calculate the local moment (S') are found in a simi-

lar scheme to that reported in the Appendix for the
correlation energy; the variational parameters qk are
known after the minimization procedure Eq. (2.16).
The so calculated magnetic moment (S') indeed in-

creases with increasing U/W from its HFA value to

the maximal atomic limit value, which may be
reached only in a completely localized state. Our

variational ground state I%'c) gives a strong enhance-

ment of (S'), especially in the region near a half-

filled band. The numerical result for U/W =0.6 and

J/U =0.2 is presented in Fig. 2. We see that in this

situation, being realistic for such transition metals as

Fe, Co, and Ni, the local moment is already more
close to being localized than itinerant.

A similar trend is seen in charge and spin fluctua-
tions, defined as in Eqs. (2.3) and (2.4), with the
averages now calculated over the correlated ground
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state. They are

o'(n ) =o'„FA(n )—

3 3 (

2Xi(i(O'" 0 ) —X i(ini (0 "'
i) —2X» i(; 0")+ 0.'"'0„'" ii —2X i(;

k 1 k, / 1 0' 0'
t (

3

1+ X „(0(k)O(())
k, / 1

(4.2)

(Sm ) ~HFA (S(a )

3 3 ( )

XTlk( '"'( *)') —g i(,lli 0 (5 ) j XII II ' 0 )+ 0 0 (5 ) i x II '

)
k ] k, /~l 0' 0'

( I )

k, l ]

(4.3)

where A =A —(A )HFA, and n = (X, npf/~) The
averages appearing in Eqs. (4.2) and (4.3) are calcu-
lated again within the same scheme as those given in

the Appendix for the correlation energy.
For 3d metals, for which we put U/W =0.6 and

J/U =0.2, charge fluctuations are almost not reduced
from their HFA values for low electron or hole con-
centrations in both paramagnetic and ferromagnetic
states [see Fig. 3(a)]. The reduction of charge fluc-
tuations is greater in the middle of the band for the
paramagnetic state. It just corresponds to increasing
correlation in hopping processes with increasing
U/ W, which eventually are of the nature of the
kinetic exchange interaction. In this region the
ground state is more close to the localized state, as

U+SJ —W &0 (4.4)

we have already seen from the cohesion energy (Fig.
1). At the same time spin fluctuations get strongly
enhanced [see Fig. 3(b)]. For 3d metals their values
become closer to the atomic-limit values than to the
band limit, represented by the HFA result.

All these results for (S'), r't( 'n), and o'(S' )
are in qualitative agreement with those of Stollhoff
and Thalmeier' who have used the canonical bands
for fcc and bcc transition metals instead of the con-
stant density of states used here.

Comparing the HFA energy of a paramagnetic state
(n I

= nl) and a completely ferromagnetic state
(nl ——n, nl ——0), one obtains the Stoner criterion for
stability of ferromagnetism

7.5

5
rvE
jcA

0
0 2.5 7.5 10

FIG. 2. Average local moment (S~~) per site in the varia-

tional ground state (VA) for U/8'=0. 6 and 1/U =0.2.
HFA and AL stand for the Hartree-Fock approximation and

the atomic-limit result.

applied to the present simplified band structure Eq.
(2.1) [the factor 5 results from the orbital symmetry
of the Hamiltonian Eq. (2.2)]. We notice that for
that simple density of states there is no dependence
of this condition on the actual filling of the band. On
the other hand, it has been shown by Kanamori, that
for a 'small band filling there should be no ferromag-
netism possible. " So, one expects that the condition
of ferromagnetism should be rather n dependent.

In the variational approximation we calculate the
energy of the ground state EGs according to Eq.
(2.13), and find its minimum with respect to the
value of the magnetic moment (S*)= —,(nl —nl)
That leads to the phase diagram presented in Fig. 4.
The Stoner criterion is drastically changed if the
correlation energy E„„„is taken into account, which
also varies with the magnetic moment (S*). From
the physical point of view, the energy of the
paramagnetic state may be reduced much more from
its HFA value due to exclusion from the ground state
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FIG. 4. Model phase diagram for transition metals for
J/U=0. 2: {A) present variational method, (B) expansion
up to q„ terms of Egpff (HFA) Stoner criterion, FERRO
and CFERRO denote weakly and completely ferromagnetic
phases.

FIG. 3. Fluctuations in (a) charge and (b) spin in the
correlated ground state Eq. (2.10) (VA) for U/8 =0.6 and

J/U =0.2. Solid lines for the paramagnetic state and broken
lines for the ferromagnetic state. HFA and AL have the

same meaning as in Fig. 2.

of those atomic configurations, which have higher
atomic energy. In the completely ferromagnetic state
there is much less room for such reduction of the
ground-state energy by the correlated hopping.

Figure 4 shows that ferromagnetism is not possible
at very low filling of the d band (by electrons or
holes), in agreement with the result of Kanamori. 2'

The critcal value of U/ W, above which the ferromag-
netic state is stable, changes slowly in the region
1.5 & n & 8.5 of band filling, and it is only by about
30% higher than that predicted by the HFA. This
holds, however, only in presence of the exchange in-
teraction J; when J is set to zero the change in the
Stoner criterion is more drastic.

In the present scheme we get a transition from
paramagnetic to completely ferromagnetic phase for
n & 3.6 and n & 6.4., while for 3.6 & n & 6.4 the
transition takes' place first with a weakly ferromagnet-
ic phase, where the moment increases gradually with
increasing U/ W, up to complete saturation. In reali-

ty, however, we expect that the antiferromagnetic
phase will form near the half-filled band.

For a comparison, we also show the result obtained
from the variational method, if the denominator in

the correlation energy E„,„Eq. (2.15) is neglected
(curves 8 in Fig. 4). Such an approximation overes-
timates the absolute value of the correlation energy
for the paramagnetic state, so we may consider the
curves B as giving the upper limit for the critical
value of U/ W with respect to the formation of the
ferromagnetic state. This agrees with the present
method (curves A in Fig. 4) very well for n ( 2 and
n & 8, while indicating that a still more accurate
treatment is needed in the center of the band.

V. CONCLUSIONS AND FINAL REMARKS

In this paper we have discussed the cohesion ener-
gy of the ground state of transition metals, starting
from a simple model of a d band, but with its degen-
eracy explicitly included. The model Hamiltonian Eq.
(2.2) has full symmetry in both spin and orbital
space. The variational solution constructed for- this
Hamiltonian shows that the cohesive energy is

strongly reduced in the center of the band for
moderate values of the interaction energies U/ Wand
i/W We find th.at the exchange energy i is respon-
sible for the minimum in cohesion energy at n = 5,
which appears essentially for any U/W ) 0, only if
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J & 0. Such a minimum, however, might not be
present in the total cohesive energy, when the s elec-
trons were also included (they give a parabolic contri-
bution, characteristic of a free band), and if U/ W
were small. The spin-orbit coupling, being of greater
importance for 4d and Sd metals, also reduces the
minimum of the cohesion energy at n = 5. ' For
these reasons, we think, there is only a shallow
minimum seen in the experimental data for 4d metals
and no minimum for 5d metals. " Of course, for a
quantitative comparison, a realistic density of states
in the d band and the changes of U/ W along the
transition-metal series should be also included. But
nevertheless, we may see already from the present
model that the moderate values of the Coulomb and
exchange integrals U/ W and J/ W give the cohesion
energy in qualitative agreement with the experimental
data.

Our analysis of the Stoner criterion also shows the
importance of the exchange interaction in transition
metals, as can be seen from the theory of Friedel and
Sayers. ' However, with the present approach one is
able to go beyond lowest-order perturbation theory,
and therefore reproduce correctly Kanamori's result in

the limit of small electron and hole concentrations.
The ferromagnetic ground state exists for any
J/U & 0, while the lowest-order perturbation theory'p

gives ferromagnetism only if J/U & 0.25 (of course,
the Coulomb interaction U/W has to be large enough
in both cases).

By means of the variational ansatz for the ground
state we have shown that the local moments do build

up in transition metals (if the Hund's-rule interaction
is present, i.e., if J & 0), and that ferromagnetism
appears in the situation where the motion of elec-
trons is already correlated and the local moments are
formed. In such a situation new interactions of the
kinetic exchange nature become important, and will

further reduce the ground-state energy, stabilizing

ferromagnetism away from and antiferromagnetism
near to the half-filled band, as has been shown for
the doubly-degenerate Hubbard model, ' Inclusion
of these interactions in the present variational
scheme seems to be possible and will be reported in
the future.

APPENDIX: CALCULATION OF THE CORRELATION
ENERGY Eq. (2.is)

where
zR ei k ~ Rnlo' k I'a.

(I —z; ) =e'"'"(I —n-„,. )

(A2)

(A3)

The most important contribution to (0"'H) in Eq.
(Al) comes from the R =0 term. If we neglect the
R W 0 terms in Eq. (A I), the considered average
may be expressed in terms of the average fillings of
ith band by electrons with cr spin n;

(0"'H ) = Un; l n; I (I —n;I ) ( I —n; I) (A4)

Such an approximation we call the R =0 approxima-
tion. Then the couplings between different sites are
neglected and the correlation energy E„„„may be
written as Eq. (2.15). The R AO terms give only
about 10% of the R =0 term for the one-dimensional
one-band Hubbard model, so we consider R =0 ap-
proximation as fully justified.

Let us define for convenience

ap = n;ln;l(1 —n; I) ( I —n;I )

at ——Xn, ' (I —n; ),
'

(AS)

(A6)

As an illustrative example, we present here the
results obtained for the expressions (O„H),
(O„HO, ), (O„O,H)', and (0„0,) needed to cal-

culate the correlation energy E„.,„„. Thereby we make
use of a method employed by Kajzar and Friedel'
and Treglia et a/. " in the perturbation expansion of
the self-energy.

Any of the considered averages, written first in the
real space, is Fourier transformed. An 8- or 12-
operator expression so obtained then produces factors
n „, or-(I —n-„, ),where n-„, = (a-„,. a-„,. ) with

a-„,. being the Fourier transform of a;, depending
on the actual order of the contracted creation and an-
nihilation operators. These factors are accompanied
by exponential functions exp(i k R), resulting from
the Fourier transformation, and the whole expression
is summed over the lattice vectors R. For instance,
for (0"'H ) we obtain

(0"'H) = U Xz;"lz;I (I —z;I) (I —z,l), (Al)
R
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Then the expressions which appear in Eq. (2.15) and
depend on the operators 0 '"' are

(O.'"H)= 5(U+ J)a, , (A13)

(0"'H )= 20 Uap+ 10(U —J )a
~

(O~t3'H)= —5(U+2J)ap+ —,
' (U —J)al

(O"'Hg"') = 5 Wap+5(U+ J)bp,

(0"'Hg "~)=20(2U —J)b3

(0 "'Hg ' ') = 5J (b3+ 2bs)

(O' 'Hg ")= 10W(2ap+al) +20Ubp

+10(U —J)bi+40(U+ J)b3

(A14)

(A15)

(A16)

(A17)

(A18)

+ 60( U —J ) (b2+ b3) + 120Ub, , (A19)

(O~ 'HO~3') = —W(al —2ap) —SUbp+ —, (U —J)bl

+ 10J(b3 —b4) + 15(U —J ) (b2 —b3)

(A20)

(g (1)g (1)H) & 0

(0"'O' 'H)'=20(2U —J)b3

(0"'0"'H ) '= 5J (b3+ 2b5)

(g"'O'"H)'=60(U —J) (b2+ b3)+120Ub3

(O."&O.~»H)'=15(U- J)(b, —b,),

(A22)

(A23)

(A24)

(A25)

(A26)

(g (1)g (1))

(g (1)g (2)) (g (1)g (3)) 0

(0 ' '0 "') = 20ap + 10a
~

(O."'O."') =- Sa + —,a, ,

(g (3)g (3)) ~~
a + 5 a

(A28)

(A29)

(A30)

(A31)

(A32)

(g '3&g "'H )
'= —( U —J ) (b2 —b3) ——, Ub3 —15Jb,

(A27)

The matrices (O~"'Hg~"), (O~"'O~"H)', and
(O'"'0'") are symmetric.

In a similar way one may express in terms of the
average fillings n; the matrix elements needed to
calculate the local moments (S') as well as the
charge and spin fluctuations a'(n ) and cr'(S' ) [see
Eqs. (4.1)—(4.3)l.

"Jb, S(U ——'J)(b—, b, )—+-'Jb, — —
2 3 3 4

+—"(U —J)(b2+b3) ——"
, Ub3 —15Jb5

(A21)

(g ~3&HO ~3&) =—Wap+ —Wa 1 + —Ub p+ —( U —J ) b 1
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