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The present paper reports the results of reformulation of Trammell's method in terms of an elaborate computer

program for calculation of the magnetic form factor for spin as well as orbital moment interaction with neutrons for

any given cation wave function in a crystal. This provides an opportunity for making a comparative study of the

form factors and hence magnetization density distribution of transition-metal ions in various crystal environments.

Spherical and aspherical parts of the form factors of transition-metal difluorides are calculated. The spherical form

factor shows an expansion of 10%, a contraction of 3%, and an expansion of 15%, with respect to the free-ion spin-

only curve of CoF„FeF„and NiF„respectively. A comparative study of the form factors ofX'+ ions (X'+ = Fe'+,
Co'+, Ni'+) in XF„KXF„andXO compounds is undertaken. It is found that the crystalline environment, through

the quenched orbital effect, tends to contract the magnetization density distribution with respect to the free-ion spin-

only distribution. Finally, quenching is quantitatively studied by calculating the ratio of the orbital to the total

magnetic moment of the ion and comparing it with experimental data.

I. INTRODUCTION

The determination of magnetization density dis-
tribution due to a transition-metal ion in a solid
through a study of the magnetic form factor is a
well known method in elastic neutron scattering.
Form factors are calculated considering spin and

orbital moments with wave functions of different
degrees of sophistication, e.g., crystal-field or
covalent wave functions, until the agreement with

experiment is reached. In the present work Tram-
mell's method has been reformulated in terms of
an elaborate computer program for calculation of
the magnetic form factor for any given cation wave

function in a crystal. The form factors of cations
in ¹iF» CoF» and FeF» each of which has a ru-
tile structure, have been calculated. A comple-
mentary study has also been made where the ca-
tion is the same, e.g. , Co", but is studied in vari-
ous crystal environments as in CoO, KCoF„and
CoF,. %hen compared with the experimental data
of magnetic neutron scattering, these will provide
substantial insight into the nature of magnetization
distribution in a crystal and hence its magnetic
state.

II. THE COMPUTATIONAL METHOD

The basic equation for the differential elastic
scattering cross section in Trammell formalism'
is well known:

do t' ye' "
n

where ~q) is the crystal ground-state wave func-
tion, n the lattice vector, and H the interaction
operator given by

H= e' '~&Sy+4 1& K'r& + K'r~& l» 2

where j runs over all the unpaired electrons of a
magnetic ion. K is the neutron scattering vector.

If we assume that ~q) can be written as a pro-
duct of the state vectors of individual ions, Eq. (I)
can be written as

where

& a=[&q, ~H~q, )+ &q. ~H[q, )e"""62"'"'"'
+. ..+ (q

~

H ~q ) e wi(hau+Ihbu+leu)] .

Here a„, b„, c„, and ~q„) give the position and the
wave function of the representative ion of the sub-
lattice in the crystal, h, k, l, are the indices of a
particular peak, and (d is the angle between K and

Q at K= G.. In the uniaxial spin structure, (q
~
H~q)

factors out and (q
~

H
~
q)/(q

~

H
~ q)

~ g, defines the
form factors.

Trammell' assumed a form of the wave function

~q) suitable for the rare earths and carried the
analysis to a stage where the cross sections could
be written in terms of(g, ) and'(J, ) (integrals E'
and I' 's in his language). Blume' took the crystal-
field state X', of ¹i' modified by the spin-orbit
coupling as the ground-state wave function for Ni"
and again expanded his cross section in terms of
the same integrals. Since we required the compu-
tation done for an arbitrary wave function, we did
not proceed with the analytical wave function any
further than Eq. (3). We broke down the wave
function in one-electron. spin orbitals right at this
stage and used program number 1 to obtain the
nonvanishing matrix eleme. nts in (g

~
H~ g) as well

as their coefficients:
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f» Q c» &~
I

gRPlp&

+g C"„,&ylf(K'r}lb& (u=~, x, s), (4)

where e, p, y, b could be any of the one-electron
(or one-hole) orbitals that will exist after the ap-
plication of the spin and orbital angular momentum
selection rules by the program. The expression
for any one cation will dUfer from that of another
by the combination of &pyb's and, of course, the
values of the corresponding coefficients &'s and
C~'s. Program no. 2 expands the spin matrices
& a

I

e'~'~
I p) and the orbital one s & y If (K ' r)

I
b& in

terms of spherical harmonics Y, , Condon-Short-
ley coefficients' C~(l, m;I', m'), and Watson Free-
man4 integrals &h~&= f,R'(r)h~(Kr)r'dr and ulti-
mately gives the values of the form factor for dif-
ferent peaks (h, h, l). It may be seen that the ex-
pression for f* and f"will contain only cross-term
matrix elements, i.e., + +p and y& b. Thus the

Y, 's in their expansion will not contain any Y„
term. Hence f" and f"will be completely non-
spherical. On the other hand, f' will contain both
diagonal and nondiagonal terms and hence it will
have both spherical and nonspherical parts.

As a check, we calculate the form factor of ¹i"
in NiO and compare it with the results of Blume. '
We use the same wave function as Blume except
that we work out the effect of the spin-orbit cou-
pling in detail before proceeding for the form-fac-

tor calculation and remove the triple degeneracy
of the ground state by incorporating the exchange
field. Figure 1 shows that the agreement is excel-
lent at low values of sin&/A. and at higher angles
our results come closer to the experimental data.

III. TRANSlTION-METAL DIFLUORIDES

The bulk of the present work is the use of the
above program in a detailed study of the spherical
and aspherica1. form factors of the transition-metal
diQuorides, namely, FeF» CoF» and ¹iF,. A
very brief report of this work was presented at
the Twenty-fourth Annual Conference on Magne-
tism and Magnetic Materials. '

A. Spin structure

The magnetic unit cells of the three compounds
FeF„CoF„and NiF2 (Fig. 2) have the same di-
mensions as their chemical unit cells. Each has
the rutile crystal structure with cations on a body-
centered, tetragonal lattice. Below Neel tempera-
ture, FeF, (T„=V9 K) and CoF, (TN =3V.V K) ex-
hibit a simple two-lattice antiferromagnetic order-
ing (Fig. 2) in which all spine align along the tetra-
gonal c axis. ' ¹F,(T„=V3 K) has an antiferro-
magnetic ordering along the a axis and the spins
are slightly (-0.9') tilted in the ab plane to give a
weak ferromagnetic moment along the b axis. '

B. Structure factor

1.0

With this knowledge of the spin and crystal struc-
ture of the transition-metal difluorides, we see
that the scattering cross section is stillgiven by
Eq. (3) with the more specific form of IQl~o as
follows:

0.8 I@IILII= I &&.IHI&.& -"""""'&a~IHlegI (»
where

I g,& and I p~& are the ground-state wave
functions of the corner and body-centered ions,

~ 0.6
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FIG. 1. Comparison of the form factors of Ni2+ in
NiO as calculated in the present work and in the work
of Blume.

FIG. 2. The accepted unit primitive cell for CoP2,
FeF2.
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respectively.
In each of the compounds the coordination (ortho-

rhombic D~ symmetry) about the corner and body-
centered cations differ by a rotation of v/2 about
the c axis. Hence, even though the spin structure
is uniaxial, the form factor and the structure fac-
tor cannot be easily separated out. We rearrange
(see Appendix) the terms to write the structure
factor as

IF I Ii e «&+a+&&I

IV. POLARIZATION DEPENDENCE OF SCATTERING

For a polarized incident neutron beam, repre-
sented by the polarization vector P, the scattering
cross section contains an interference term apart
from the magnetic scattering [Eq. (1)] and the nu-
clear term. This can be evaluated by using Eqs.
(10.31) and (10.37) of Marshall and Lovesey' with
the modification that the operator & there is re-
placed by the operator H of Eq. (2) of this paper.
The interference term is then given by

for h+k+l odd
Re[F„(K)F„*(K)' P,],

&dA mt rn, c'

where

(io)

for h +k + l even.
F„(K)= g e'~'~ob„,

(7)

(8)

Here F, and F, are effective form factors and are
described in terms of the matrix elements of the
interaction operator with corner-atom wave func-
tions.

If Eqs, (8) are now plugged in Eqs. (3) and (5)
and the resulting equation is compared with the
semiclassical spin-only expression of Van Laar, '
the magnetic form factor will be given by

F,
1(y, l Hl y, )l~,

For a ferromagnetic substance with identical nu-
clear and magnetic scattering sites, experiments
with neutron spin flipping can be performed as in
the spin-only case. The magnetization of the fer-
romagnet is aligned perpendicular to the scatter-
ing plane by an external magnetic field. The Bragg
intensities are then measured first with neutron
beam polarization parallel and then antiparallel to
the magnetization.

Use of Eq. (10) leads to the flipping ratio

As may be seen from the Appendix,

F, =i f„'+jf '„+zf,',
F, =xf'„+yf'„+Rf;,

I I
f0 4'X+CO fO 45-4X f0 y+

x 2 y y 2

I I
e x v e v+ x e
x 2 y y 2 y g

The symbols o and e tell whether the given form
factor exists for odd or even values of h+0+l .
P„&t&„,&t&, are the matrix elements of the Cartesian
components of the magnetic interaction operator
in the corner-state wave functions. &t,', P„',P,' are
the matrix elements of the body-centered wave
functions but are defined suitably in terms of the
corner wave functions (see Appendix). f '(K) is a
more important quantity than f'(K} as it contains
the spherical form factor within its f; term. (f;
=f +f, , where the superscripts s and n stand
for spherical and nonspherical components. )

In the case of the antiferromagnetic structure in
the rutile crystals considered here, the interfer-
ence term in the cross section is given by

da 'r
o& Re[(2b, + 45'„cos2vuh cos2vuk)d) ht

x (2F, 'P)]

for h+ 0 + l even

Re[(-4b„sin2vuh sin2muk)
ada'&

Ao') in&

x (2F, ~ P)]

for h+k+l odd.

Here subscripts c and& refer to cations and an-



2700 D. C. KHAN, S. M. KIRTANK, AND J. K. SHARMA

ions, respectively, u is the fractional lattice pa-
rameter used to locate the anions, and F, and F,
are the form factors introduced in E(I. (6).

It is evident from pages 206 and 207 of Ref. 8
that (o, k, I) or (k, o, f) reflections with k+I odd are
purely magnetic terms with no polarization effect.
A11 other reflections with h+0+l odd will be mixed
nuclear and magnetic, nuclear scattering coming
solely from the anions. Since F, is usually very
large, the polarization effect, coming from the
term F, ' P, is the strongest here. (k+0+i) even
reflections are also mixed but the magnetic (F,)
and hence the polarization effect is usually very
small.

It is important to note that by proper (though
laborious) experimental arrangement, P can be
suitably rotated in the Bragg plane to get a set of
values of F, ' P and F, ' I' by the solving of which

unique values of E,", E,", E, , E,", E,", and E, can be
obtained. Hence the form factor and the magnetiz-
ation density distribution could be well defined in
the corner and the body-center sites.

V. CALCULATION OF FORM FACTOR

A. Form factor of Co + in CoF2

The 3d' ground-state configuration' of Co" gives
rise to ~E as a ground state. Under a cubic field
this ground state splits into two orbital triplets
1"4, ~F, and an orbital singlet ~I',. 'I'4 has the

lowest energy. Except for the most detailed dis-
cussions, it is customary to neglect the effects of
the I', and F, manifolds. On the other hand, from
symmetry considerations the first excited 4P state
is important. Since the tetragonal field, rhombic
field, and spin-orbit coupling are all of the same
order of magnitude, computer diagonalization of
the Hamiltonian in ~I', is the simplest method for
a sufficiently accurate determination of the ground
state. This is a Kramers doublet. Considering
the exchange effect, the explicit form of the
ground-state wave function obtained from this is
given by"

(14)

~P,2 )= -0.2953
~
0, —'),+0.3714 [(—)1/2 ~-I, —') + (—')1/2~3, —')]

+0.7809 [(())'/'~ 1, -2)+ ( ('))'/') -3, -2)] -0.0556~ 0, 2)

+0.2278[(—)'/'~ 1, 2)+ (2)'/ ~-3, 2)]+03318[~(2)'/
~

—I, -2) +(—)'/'~3, -2)] .
The wave functions ~~~, M2) are expanded in terms of four hole functions" and the matrix elements (t),.
= (pcy+~H, ~gcy,) are calculated with the help of the computer program, where i =x,y, z. From the ex-
pression of P,. in terms of YP's, P,' and P,. are separated out by observing their response to the t trans-
formations as mentioned in the Appendix. Table I shows the values obtained therefrom of f'„, f '„, f, , f
f'„, f'„, and f; for a large number of Bragg peaks; all terms except f are nonspherical.

The spherical magnetic form factor f may be utilized for comparing the theoretical and experimental
data. The theoretical expression for this is [from E(I. (7) and the Appendix]

f (K) = (-1.02369 (Jo) -0.04318 (J2) -0.13120 (J~)

0.309 99 (go) +0.06634 (g,) +0.06649 (g4) )/(-1.333 68) .

Here the Freeman-Watson integrals (Jz)
=f R'(r)j ~(Er)r2dr, where j ~(Kr) is the spheri-
caf Bessel function. The other integrals are

((,' )=I R (rr)gr(ICr)rdr,

where

and P~( p, ) are the Legendre polynomials. Using
the Lovesey relation" between (J~) and (g~),

f, (K) = (Jg+ 0.29800 (Jg+ 0.13160 (J4) . (16)

Watson-Freeman~ values of (Jz) for Co" may now
be used to plot f against (sine)/A. (Fig. 3). The
free-ion form factor is also plotted for compari-
son. The theoretical form factor curve shows an

expansion of 10% with respect to the free-ion
curve. The total form factor f and the spherical
form factorf, (=f ) are related as

f j'(2) + (f2 j'02 j, p2)1/ 2

as may be simply deduced from

F, =xf'„+yf„'+2f;

[Eg. (9)]. A study of Table I reveals the fact that
all the nonspherical components of the form factor
are very small and hence can be neglected. There-
fore f,=f.

Erickson's' experimental data lie below even the
free-ion form factor curve and as such the experi-
mental curve will be definitely more than 10% con-
tracted with respect to our theoretical curve.
This contraction may arise either due to the rela-
tivistic effect" or due to covalence effect." %e
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TABLE I. Spherical and nonspherical form factors of Co ' in CoF2.

No. f0 fOtl fOS

1 100
2 010
3 001
4 110
5 101
6 011
7 200
8 111
9 210

10 201
11 021
12 012
13 102
14 120
15 220
16 022
17 202
18 130
19 310
20 103
21 510
22 105
23 222

0
0
0
0
0.0169

-0.0014
0

+0.0140
0
0.0272

-0.0007
-0.0028

0.0234
0
0

-0.0027
0.0404
0
0
0.0211
0
0.0114
0.0317

0
0
0
0

-0.0014
0.0169
0

+0.0140
0

-0.0007
0.0272
0.0234

-0.0028
0
0
0.0404

-0.0027
0
0

-0.0033
0

-0.0026
0.0317

0
0
0
0

-0.0014
-0.0169

0
-0.0171

0
-0.0007
-0.0272
-0.0234
-0.0028

0
0

-0.0404
-0.0027

0
0

-0.0033
0

-0.0026
-0.0425

0
0
0
0

-0.0169
-0.0014

0
-0.0171

0
-0.0272
-0.0007
-0.0028
-0.0234

0
0

-0.0027
-0.0404

0
0

-0.0211
0

-0.0114
-0.0425

0
0
0
0

—0.0001
-0.0001
+0.0017
0.0003
0.0009

-0.0021
-0.0021
-0.0001
-0.0001

0.0009
0.0086

-0.0013
-0.0013
-0.0029
-0.0029
-0.000 04
-0.0170
-0.000 01

0.0043

0
0
0
0
0
0
0

-0.0030
-0.0085

0
0
0
0

-0.0085
-0.0153

0 .

0
-0,0102
-0.0102

0
-0.0090

0
0.0029

0.9118
0.9118
0.8236
0.8286
0.7611
0.7611
0.7108
0,.7058
0.6621
0.6161
0.6161
0.4820
0.4820
0.6621
0.5370
0.4033
0.4033
0.4728
0.4728
0.2646
0,2105
0.0607
0.3196

would be inclined to discard the relativistic effect
since for the 3d orbitals the ratio of the relativistic
to the nonrelativistic mean value of r is only. 1.006
and will consequently result in a very small con-

traction of the form factor. " On the other hand,
the fact that covalency can give rise to substantial
contraction in the form factor is well established
by the work on the (CrF,}' cluster' in K NaCrF,

1.0

0.8

0.6

0.4

0.

0.2 0.4 0.6 0.8 1.0
(sin e)/A

FIG.-3. Form factor of Co + in CoF2.
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and the (MnF, )' cluster" in KMnF, . The close
proximity (2.02 A) of Co" and F ions as compared
to the nearest-neighbor Co ' ions (3.6796 A) in
CoF, strengthens the arguments in favor of cova-
lency effect. The experimental points qualitatively
indicate a characteristic forward peaking due to
ligands and the low values of f for (201) and (210)
peaks suggest an effective reduction of the cationic
form factor typical of the covalency effect. Since
the data are available only up to (sint&)/». - 0.3,
nothing can be said of the overlap effect.

B. Form factor of Fe2+ in FeF2

In FeF, each ferrous ion experience a crystal
field originating from six F ions that surround it.
The Johnston tensor approach has been used by
Balcar et aE."to calculate the scattering cross
section and by Balcar" to determine the magnetic-
moment density distribution of Fe" in FeF,. Since
the Trammel and the tensor approach are, as
demonstrated by I ovesey, "basically equivalent,

the form factor may also be derived from the ten-
sor expression of Balcar et al. for the use of ex-
pe rime ntalists.

Referring to Sec. 4.2 of Balcar et al. ,"we note
that for their particular choice of &K terms, which
one has the freedom to add to Q, (G IQ, IG)
= (G

I Q I
G). He nce

(GIQ, IG)= (4r)'/'P G (K, Q)Y (K)

where

G, (K, Q) = I'.(K'-1, Q)((~.. .&+ «..„»

for the orbital case and Go(K, Q) =y(K, Q)(J»& for
the spin case. Nonzero values of I', (K' —1, Q) and

y(K, Q) are given in their Table I. The transfor-
mation for the G, (K, Q) from the body-center wave
function IG~& to the corner wave function IG) has
been worked out by them. This, when utilized,
gives the scattering cross section as

2
G (Kt Q) YE'(K)(1+e«(&&+&+&&e(ir/2&(o-a& ) 2 (17)

t

We then expand the+ r, o in terms of the nonzero G, (K', Q)'s [i.e., I;(K', Q) and y(K', Q) of the table]. It. may
be noted that I,(K', Q), with Q- q equal to an odd integer, vanish. For Go(K', 0), K' = 0, 2, 4; for G (K', 4)
and Go(K', -4), K' =4, whereas for Go(K', 2) and Go(K', -2), K'=2, 4. G, (2, 1)=G, (2, 1) and G, (2, 1)
= G, (2, 1). Hence

[IE'(I+e«&&+&+»)+ED(1 e«0+»+») I'+ IE'(I pe'&»+&'»)+J'(1 e«&&+&+ ) I'
do mc'

~

~

0 e 0

+IE '(1+e«0&+ +")+E '(I —e~i'"+ +")I']
2 2

IF I' ll -"""'""'I' I» I +&+I odd
mc

',
I IF, I'I1+e"'"'"'I' for l&+u+l even.

mc j
(18)

'This is the same as the 'Trammell formulation
equation (6). Here

Eo=p [G,(K', 0)Yro (K)+ G,(K' 4)Yr(K')

+ Go(K', —4)Y 4 (K)],

E.' = G, (2, 1)Y',(K),

E =G, (2, 1)Y',(K),

ED=+ [Go(K', 2)Y~2 (K)+ G,(K', -2)Y, (K)],

E.'= G,(2, -1)Y',(K),

E,'= G,(2, —1)Y',(K) . (19)

'The ground-state wave function of Fe" in FeF, is
given by

0.580
I&F *& (0»»I'&+ i—(I»&+I&-»&)IM, =»

(4)0.680
(I 2& -

I
-2&) ItIf.= 2&. (20)

(1.1)(10')v 2

The form factors F, and P, can be calculated
either by the Trammell method similar to the
CoF, case or by use of the tensor formalism ex-
pressions [Eq. (19)]with the Balcar et al. , Table
I. Table II gives the spherical and nonspherical
parts of the form factor in FeF,. 'Table III com-
pares the

I F,
I

and
I
F,

I
obtained by the two meth-

ods. 'The Johnston data were obtained by hand
calculation, whereas the Trammell data were cal-
culated by the computer. 'The agreement seems to
be excellent, vindicating the correctness of our
generalized program.

It is interesting to note that here (as in CoF,
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TABLE II. Spherical and nonspherical form factors of Fe in FeF2.

No. ,
fO fO fOfl fOS

1 100
2 001
3 111
4 200
5 020
6 012
7 021
8 210
9 003

10 013
11 103
12 130
13 202
14 022
15 220
16 023
17 041
18 024
19 240
20 025
21 052
22 016
23 061

0
0
0
0
0

-0.0074
-0.0107

0
0

-0.0063
0.0063
0
0.0136

-0.0136
0

-0.0128
-0.0160
-0.0098

0
-0.0067
-0.0253
-0,0021
-0.0156

0
0
0
0
0

-0.0056
-0.0077

0
0

-0.0057
0.0057
0
0.0102

-0.0102
0

-0.0116
-0.0130
-0.0097

0
-0.0083
-0.0223
-0.0032
-0.0135

0
0

-0.0096
0
0

-0.0074
-0.0107

0
0

-0.0063
0.0063
0

-0.0136
-0.0136

0
-0.0128
-0.0160
-0.0098

0
-0.0067
-0.0253
-0.0021
-0.0156

0
0
0,0059
0
0
0.0056
0.0077
0
0
0.0057
0.0057
0
0.0102
0.0102
0
0.0116
0.0130
0.0097
0
0.0083
0.0223
0.0032
0.0135

0.0001
0.0172
0.0160
0,0015
0.0006
0.0402
0.0206

-0,0005
0.0395
0.0431
0.0431
0.0012
0,0425
0.0425

-0.0031
0.0503
0.0223
0.0417

-0.0024
0.0318
0.0418
0.0194
0.0196

0
0
0.0143
0
0
0
0
0.0218
0
0
0
0.0183
0
0
0.0306
0
0
0
0.0207
0
0
0
0

0.8920
0.8000
0.6444
0.6502
0.6444
0.4085
0.5348
0.5891
0.1930
0.1837
0.1837
0.3986
0,3226
0.3226
0.4557
0.1403
0.1948
0.0342
0.1677

-0.0039
0.0558

-0.0189
0.0340

also) the "forbidden" peaks with (h+ k+ 1) even
arise due to the difference in the ligand coordina-
tion about the two cations even when we do not
consider the presence of unpaired electron spin
on the ligand F ' ions. The effect, as expected, is
small, as may be seen from the values of f„', f'„

and f', . The important contribution to the aspheri-
cal part comes mainly from the f'," term which
may sometimes be as large as 75% of the spheri-
cal part (052 peak) and may even be much greater
than the spherical term (025).

The analytical expression for the spherical
magnetic form factor is

TABLE III. Comparison of the form factor of FeF2 by
the Trammell and Johnston method.

fp,a (K) = (J,)+ 0.030(J,) —0.164(J,) . (21)

100
001
111
200
012
210
021
003
013
103
130
202
022
220
023
041
024
240
025
052
016

0.8921
0.8172
0.6605
0.6517
0.4489
0.5886
0.5556
0.2325
0.2268
0.2268
0.3998
0.3654
0.3654
0.4526
0.1915
0.2184
0.0775
0.1653
0.0279
0.1034
0.0005

0.8926
0.8127
0.6544
0.6518
0.4344
0.5900
0.5689
0.2106
0.2071
0.2071
0.4007
0.3475
0.3475
0.4602
0.2043
0.2152
0.0550
0.1665
0.0061
0.0933
0.0219

0
0
0.0143
0
0
0.0218
0.0100
0
0
0
0.0183
0.0141
0.0141
0.0306
0.0141
0.0141
0.0141
0.0207
0.0141
0.0316
0.

0
0
0.0137
0
0.0050
0.0288
0.0060
0
0.0040
0.0040
0.0169
0.0060
0.0060
0.0295
0.0076
0.0034
0.0058
0.0189
0.0041
0.0079
0.0016

fO fe
Peak Trammell Johnston Trammell Johnston

Using the values of (Jo), (J',), and (J,) as tabula-
ted by Watson and Freeman, ' f~,2+ is plotted
against (sine)/& in Fig. 4. As is evident, there
is a uniform contraction of about 3%%uq with respect
to the free-ion curve. The available experimental
data' are meager.

4.=4,+10D (1',"),
where

(22)

C. Form factor of Ni + in NiF2

Divalent nickel" has eight 3d electrons and the
free ion has a ground state 'E, . The sevenfold
orbital degeneracy is removed in part by a cubic
field, resulting in a low-lying orbital singlet and

two higher triplet states. The orbital singlet is
threefold degenerate in spin quantum number.
This degeneracy is removed by the application of
exchange field.

The ground-state wave function, after the appli-
cation of exchange field, will be"
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FIG. 4. Form factor of Fe + in FeF2.
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$0, P„P, are spin states. 1''s are spherical
harmonics. 10Dq is the energy difference between
the low-lying orbital singlet and the next triplet.

For form factor calculation the spin structure of
NiF, may be considered as the superposition of an
antiferromagnetic structure with spin along +u di-
rection and a very weak (percentage magnetic mo-
ment 1.55%) ferromagnetic structure with spin
along+b direction. " 'The form factor expression
for the ferromagnetic structure is the same as
given in the Appendix except for the fact that f'
and f' components are interchanged. The non-
spherical terms are very small and may be ne-
glected. The calculation for the antiferromagnetic
structure is more elaborate but may be brought in
the same final form as in the Appendix.

'The expression for the spherical form factor is

f„',2+(K) = (Jo)+ 0.0327(J',)+ 0.5379(J,) . (23}

Table IV gives the spherical and nonspherical
parts of the form factor in NiF, for various peaks.
It may be noted that aspherical terms are mostly
negligible in the present case. Hence the magne-
tization density has, for all practical purposes, a
spherical distribution about the lattice points.

Using the values of (J,), (J',), and (J',) as tabu-
lated by Watson and Freeman, 'f„',2, in Eq. (23}is
plotted against (sine)/A. in Fig. 5. There is a uni-
form expansion of about 15% with respect to the
free-ion curve. Experimental data, again, are
too meager to draw any conclusions.

VI. COMPARISON OF FORM FACTORS

It is evident from the preceding section that the
complete use of the present analysis can only be
made when a sufficient amount of experimental da-

TABLE IV. Spherical and nonspherical form factors of Ni ' in NiF2.

No. heal

1 100
2 001
3 110
4 101
5 200
6 ill
7 210
8 201
9 012

10 220
11 022
12 310
13 320
14 302
15 340
16 720
17 920.

0
0
0
0.000 06
0
0
0
0.000 01

-0.0003
0
0.0004
0
0
0.0002
0
0
0

0
0
0
0.0005
0

-0.000 02
0
0.000 01
0.0003
0

-0.0017
0
0
0.002
0
0
0

0
0
0

-0.0005
0
0.000 52
0
0.0005

-0.0009
0
0.0014
0
0

-0.001
0
0
0

0
0
0
0.000 28
0
0.0005
0
o.ooo5
0.0003
0
0.0006
0
0
0.0011
0
0
0

0
0
0

-0.000 35
-0.0045

0.001
0.0012

-0,0021
0.0001
0.009

-0.0011
—0.0018

0.0111
-0.0063

0.0228
-0.0169
-0.0245

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0.9157
0.8057
0.8273
0.7509
0,6992
0.6843
0.6399
0.5902
0.4520
0,5260
0.3751
0.5584
0.3849
0.2835
0.2386
0.0754
0.0494
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FIG. 5. Form factor of Ni+ in NiP2.
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ta is available. The deviation of the present data
from the experimental ones is a measure of the
covalency effect and this deviation may be utilized
to determine the covalency parameters. Once
this is known, the exchange constant and other
mRgnetlc quRntltles can be evaluated.

However, interesting observations on weakly
covalent systems may be made with the frame-
work of crystal-field theory as an approximation
by a comparative study of the form factor graphs.
To begin with, a look into the Freeman-%'Rtson
data' for the free-ion form factors shows that the
following are true: (i) In all three cases of Fe,
Co, Rnd Nl the form fRctor expRnds with lonlzRtlon.
This is due to the fact that the effective radius of
the ion decreases with ionization. (ii) Ions with
different nuclear charge (Z values) and the same
number of d electrons show an expansion of the
form factor with increase in Z value. Thi»s a
reflection of the fact that the electronic charge
tends to concentrate closer to the nucleus with the
increase of the nuclear charge. The free-ion spin-
only form factors of Fe", Co", and Ni" ions ex-
pand with increasing Z as in case (ii). However,
it has to be remembered that the number of d
electrons increases from Fe" to Ni", i.e., the
effective radius increases, whose effect is to con-
tract the form factor. That there is an overall ex-
pansion shows that the effect of nuclear attraction
on the electronic charge distribution with unpaired
spin is very dominant.

Figure 6 shows the form factors of Fe2', Co~,
and Ni~ in their difluorides. It is evident that the
trend of the form factor expanding with increasing

FIG. 6. Comparison of the form factors of transition-
metal ions in their diQuorides.

08

0,6

04

0.2

1

0.2 0,4

(sin B) l g

I

0.6
I

0.8

. FIG. 7. Comparison of the form factors of transition-
metal iona in their potassium triQuorides.

Z is maintained even when the orbital effect is in-
cluded. 'The form factors of Pe'+, Co'+, and ¹i'+
in several other compounds have been determined
by Khan and collaborators. '"" Figure 7 shows the
result of calculation for these ions in KXF, (X
= Fe", Co", Ni"). Whereas the expansion se-
quence is maintained for Fe" Rnd Co", it is inver-
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FIG. 8. Comparison of the form factors of transition-
metal ions in their oxides.

ted in the case of Co" and Ni". Figure 8 shows
the results for Xo compounds, where X= Fe",
Co", Ni". The result is halfway between the last
two cases. The Fe"-Co2' sequence is maintained.
Ni" is expanded with respect to Co" up to (sin8)l
A, -0.3, but crosses and gets below the Co" curve
beyond this, and finally for (sin8)/X-0. 58 even
falls below the Fe~ curve. The general trend of
expansion of the form factor with increasing Z is
partly due to the fact that the unquenched orbital
momentum is small compared to the spin and as
such does not affect the trends of the spin curve in
a substantial manner. However, a perusal of
Table V columnwise shows that the role of the or-
bital moment should not be underestimated. In
fact, except in the case of FeF„ the orbital mo-
ment distribution is more strongly contracted than
the spin distribution. Also, in the case of difluor-
ides, the expansion sequence of the form factor
with respect to "spin only" with increasing Z is
maintained. In the case of the potassium trifluor-

ides and oxides also the sequence is maintained
for Fe~-Co". However, it would be naive to link
it with the nuclear Coulomb effect rather than to
the number of interacting electrons. Since the in-
teractions involved are complicated and many
(Coulomb repulsion, spin-orbit, crystal field, and
exchange), it is difficult to link the fact of orbital
moment density distribution to a single parameter.
The anomalous behavior of the Ni" form factor in
the potassium trifluorides and oxides is evidently
connected to the fact that the ground state is sin-
glet and the orbital moment comes only from the
excited states.

The effect of the crystal fields is clearly
brought out by plotting the form factors of the
same ion (say, Co") in different substances. It is
seen that the crystal field also plays a dominant
role in expanding or contracting the magnetization
density distribution. 'The fluorides of the metals
(Fe~, Co'", Ni") have the rutile, the potassium
trifluorides have the perovskite, and the oxides
have the face-centered cubic structure. Figure 9
shows the form factor of Fe" in the above three
crystalline environments. It is found that in the
rutile structure there is a a%%uo contraction, where-
as in the other two there are substantial expan-
sions. Figure 10 shows the case of Co" in the
crystalline environments of the above three kinds.
It is seen that in all the cases there are substan. -.

tial expansions of the form factor. Finally, Fig.
11 depicts the form factors of Ni" in these en-

1.0

Fe in Fe0

0.8—

0.6—

0.4—

0.2—

TABLE V. Expansion or contraction of theoretical
curves with respect to free-ion curves.

I

Fe

Co '

N' 2+

FeF2
3% contraction

CoF2
10% expansion
NiF2
15% expansion

KFeF3
10% expansion
KCoF3
15k expansion
KNi F3
6k expansion

FeO
9% expansion

CoO
11% expansion
Ni0
4 expansion

I.

0.2
I

0.4
(sin e)l A

I

0.6 0.8

FIG. 9. Form factors of Fe2+ in different crystalline
environments.
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10

0.8

0.4

only Ni" has the singlet ground state in the cubic
crystalline field. Table V shows the complete list
of the orbital effect (expansion or contraction with
respect to the free-ion value) of the compounds
discussed hexein. They give us a comparative es-
timate of the partially quenched orbital moment
dlstrlbutlons ln these substRQces

y
that lsy the ef-

fect of the excited states of the free ion on the
ground state through spin-orbit coupling.

Finally, the question of quenching. is quantita-
tively studied by wrltlng the form .fRctox' expx'es-
sion as

0.2

I

0.4

(gin e)l A

0.8

vironments. Here also the general trend is ex-
pansion. The conclusion that may be drawn is
that, in general, the crystalline environments
tend to contract the magnetization density distri-
bution of the magnetic electron systems. The
case of Ni" is to be specially noticed; the magne-
tization density dlstx'lbutlon pRttex'Q 18 distinctly
different from the ixon and cobalt ion case. It
may be recalled that out of the three ions studied,

10

08

FIG. 10. Form factors of Co + in different crystalline
environments.

f— +f Iph + af orba

p. p,

Obviously, the coefficient off" ' is the fractional
orbital magnetic moment of the ion. Table VI
gives the theoretically calculated g, /p for the
compounds discussed in this section. We may

ate that this quantity is the same as (g -2)/g,
here g is the g factox of the ion in the solid. g

may be experimentally determined by resonance,
and so provides a means of comparing oux theoret-
ical data with the experimental ones. However,
resonance data are usually given in terms of the

g factor (spectroscopic splitting factor) which is
the coefflcleQt of RQ effective spin 8. This g mRy
be related to but diffex'ent from our g. Correct ex-
perimental data were available only for FeF,
(Ref. 23) where the agreement between the theoret-
ical and experimental data is seen to be very
good. Experimental data are in the form of (g
-2)/g. They are put in the parentheses below
p,,/p, values. In the case of NiF, the experimental
data correspond to Ni" in ZnF, (Ref. 24), where
CoO result corresponds to Co" in MgO (Ref. 25)
and FeO to Fe" in MgO (Ref. 26). In these cases
the agreements are not, as could be expected, so
satisfactory but are good enough to give confi-
dence on the general correctness of the calcula-
tions.

0.6
VII. CONCLUSION

In this work the authors have reformulated the
Tramrnell neutron scattering cross section in a

0.2

TABLE VI. Theoretical and experimental quenching
parameters p0/p.

I

0.4

(sine)l A

I

0.8 0.8

FIG. 11. Form factors of Ni2+ in different crystalline
environments.

Co F2
0.23

Fe F2
0.09

(0.11)
Ni F2
0,04

{0,14}

KCoFS
0.30

KFeF3
0.19
(0.07)
KNi F3
0.14

CoO
0.30
(0.53)
FeO
0.25

(0.41)
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form easily amenable to computer calculation and
have written an elaborate computer program for
calculation of the form factor 'for any given wave
function. 'Though it does not have the theoretical
elegance of the Johnston tensor approach and is
not as general as the Stassis and Deckman" for-
mulation, it is as effective as either of them for
the transition-metal compounds and for many of
the rare-earth compounds. The real impact of
the present work lies in the fact that it opens up
the possibility of simultaneously working out the
form factors of a large number of compounds and

of having a comparative study of them. A listing
of computer programs 1 and 2 will be available on
request from any one of the authors.
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APPENDIX

The structure factor in the Trammell form is given by

(0)«= I& elHI e& —e"""""'&e,lHI y.&l,

where
I &I)& and

I (t),& represent the ground-state wave functions of the corner and the body-centered ions,
respectively. The negative sign comes from the fact that the spin is inverted between the two sites. Now

I P,&
=R

I (I)& in CoF„where R is the operator for rotation by -((l2 about the e axis or the crystal c axis.
Thus,

(Q)«=l&ylHI y&+e"""""&)yl
R-'

HRly&l

= I~&@IIf I @&+y&elff, Ie&+e&el jf. l y& (~&elf-f, I 0&' ~&0 I ff. I e&'+e&y I ff. I
e&')e""""")I,

where superscript f means that the effect of this rotation on Yi(K)'s is yet to be performed. Writing the
matrix elements in a compact form,

(Q)«= I &t „+jy, +e &t, + (x(t '„yy„'+z -(t),')e"(&'""'I .

Now, P„, &t)„and P, can each be split into two parts, &t),. =&I)',. +P, , depending on their response to the t
transformations on Yi (K)'s.

(0)„~=l~(-y„'+ y„)+f(y-', + y „)+e(y-.'+ y. )+~i(y-'„y „) -Pf(y-„' -y„)+e-(y-'. y.)e"-""-"'I.
Writing i(Q„' —&I)„)= Q„' and i(f', —&t), ) = &I)'„(&t)„', Q', being real),

(g) Ig(y pie((((h+k+l))+y(y + y(e((i(h+0+ i))

+e[y+(1 e((i(h+k+l))+ y-(] + e'(i())+k+())]
I

By adding and subtracting the same terms,

(Q)„~=ll[~(y„+y',)+f(y, y„')+ey-.'(1 -e""""'")1
+ l[@e.—0! )&+(4, e+.')+eK&1+e'*"""")ll.

Setting f„'= —,'(p„+(t)'„), f„'=-,'(p, —p,'), etc. ,

(Q)„-~=I(xf„'+l)f'+ef')(1 —e'~&(+k+)))+ ()(fe+vye+ef e)(1+ e&i((+(+l))I

F (1 - e (&(+(+()) + F (1+e "(' +(" )
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