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Magnetoplasma polaritons at the interface between a semiconductor and a metallic screen. II.
The Faraday geometry
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Magnetoplasma polariton modes at the interface between a highly doped semiconductor and a metallic screen are
studied in the Faraday geometry, namely, the waves propagate along the static magnetic field in a direction parallel

to the interface. One bona fide mode is found for every value of the applied field, and it terminates at the cyclotron

frequency in the limit of very large wave vectors. The possibility of experimental detection of the predicted mode is
discussed.

I. INTRODUCTION

In a, recent article Halevi and Guerra-Vela' (I)
have studied magnetoplasma polaritons at the in-
terface between a semiconductor and a metallic
screen in the Voigt geometry; specifically, the
wave was assumed to propagate at a right angle
to the static magnetic field, itself parallel to the
interface. The present work differs from I in that
we consider wave propagation parallel to the mag-
netic field, the Faraday configuration. 'The dis-
persion relation for this case has been stated
(without proof) by Davydov and Zakharovs and ap-
plied to the low-frequency region &c «v (where tc

is the circular frequency of the vrave and v is the
collisional frequency of the electrons) in connec-
tion with the experiments of Baibakov and Datsko. '
By contrast, our main concern here is the high-
frequency or polariton region +» v. As discussed
recently by Halevi and Quinn' the existence of
bona fide low-frequency modes in the Faraday
geometry is highly questionable. On the other
hand, such modes are known to exist' ' in the high-
frequency region for a free semiconducting sur-
face. As we shall see in the present work, bona
fide polaritons also exist for a semiconductor
bounded by a highly conducting metallic screen.

In the experiments of Baibakov and Datsko' the
metallic screen was separated by an air gap from
the semiconductor surface. 'This three-media
geometry was studied quite recently by Yi, Quinn,
and Halevi. ' We also wish to quote a related work
by Hao and Uberoi' who investigated an interface
between two polar semiconductors. Depending on
the strength of the magnetic field, they found up
to four types of oscillations. Additional informa-
tion may be found in a review article by the au-
thor .io

II. THE DISPERSION RELATION

Our starting point is the wave equation of an
anisotropic dielectric medium, characterized by

a dielectric tensor c,'
1 8'

VsE -V(V ~ E)-——s ~ E=O.
c2 et'-

For a plane-wave solution this equation becomes

q'E —q(q E) —qsc ~ E=0, (2)

The determinant of this set of linear equations
must vanish and from here we find that

+ ~„[(q',e„„-q',)'+ q',~„'„]=0. (4)

Basically the same formula was derived by Wallis
et al.' for a dielectric surface bounded by vacu-
um. For a given propagation mode q (cc), this
equation has two physically acceptable solutions
for q, which we label q„and q„,. 'Therefore we
must postulate a field composed of two plane
waves,

E(y,s)= (E,e"vt" + E,e"vs')e'" '~"
Clearly, -iq„and -iq„have to be identified with
the decay constants i and e, in the semiconduc-
tor. (The decay constant in the highly conducting

where q is the wave vector in the medium (the
semiconductor) and q, = tc/c is the wave vector in
vacuum. If we choose the z axis along the static
magnetic field B, then, for a local theory, the
nonvanishing elements of c are e„„,a„, E„, E„„
and &„„. Moreover, they possess the symmetry
6„„=cyy and c„y=

We choose the y axis perpendicular to the inter-
face and assume that the wave propagates paral-
lel to B„ i.e. , q„=0. Then the vector equation
(2) reduces to the following set of equations:

(3a)

(3b)

(3c)
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screen is infinite. )
We proceed to derive the dispersion relation by

eliminating E„ from Eqs. (Sb), and (3c). Writing
out the result explicitly for the two partial waves
we have

qqtq tq„E„'t+ (qytt„„+q & -qoc„„t )E ~= 0,
k= j. , 2.

xx ~2

CO (d
W ~ (g(~2 ~2} 1

C

(1la)

(lib)

(11c)

Because all fields are screened out by the metal
bounding the semiconductor, we have, in particu-
lar, E„=E,= 0 in the metallic screen. Now these
components of the electric field are continuous at
the interface y = 0. Then by Eq. (5) we have

E„,+ E„2=0,
E +E 2=0.

(7)

(8)

Equations (6)-(8) are a set of four homogeneous
equations and their determinant must vanish. The
algebra involves canceling out a factor (q» -q»)
which is consistent with our assumption of takeo

partial waves. " The result is

t„(q,t„„-q, )+ t„„q„q„=2 2) =0

The product q»q» may be readily calculated from
Eq. (4). Eliminating q,

' we find

X/2
2= 2

q =qo 6„„+&„ E„-(„„ (10)

This formula was first given (without proof) by
Davydov and Zakharov. ' With the substitution of
the dielectric tensor elements one obtains the dis-
persion relation for polaritons at the interface
between a semiconductor and a metallic screen.

We note that, at finite frequencies, the boundary
conditions (7) and (8) are applicable only in the
limit ~& ~, where && is the plasma frequency of
the metallic screen. In practice this frequency
is finite, however much greater than the frequen-
cies which characterize the semiconductor.
'Therefore the penetration of the fields into the
metallic half-space is extremely small and Eqs.
(7) and (8) are excellent approximations.

III. POLARITON SOLUTIONS

We neglect the effect of phonons, which is legiti-
mate for frequencies which are much greater
than the longitudinal phonon frequency &~. We
also neglect damping effects (»& v), thus limit-
ing the discussion to the "high-frequency" or po-
lariton region. Then our parameters are the plas-
ma frequency ~~= (4wne2/m*t„)'~', the cyclotron
frequency ~,= eB,/m*c, and the high-frequency
(or background) dielectric constant t„. The ele-
ments of the dielectric tensor required in Eq. (10)
are

The substitution of Eqs. (11) into Eq. (10) results
in the following explicit dispersion relation:

47 (d& —(d + (d& g(d& —(d
n " c'

C

(12)

where ~a = (+2&+ cu,')'~' is the hybrid plasmon cyclo-
tron frequency. [This equation is inapplicable for
&u, = 0 because in this case t„„=t„and Eq. (10)
does not hold. ] It is evident from Eq. (12) that
propagation of electromagnetic waves at the semi-
conductor-screen interface is not possible for

This means that there are no very high-
frequency modes, as were found in the Voigt geo-
metry. ' At low frequencies (&u«&u, ) we see that

q, o= &. Thus the dispersion curve rises linearly
from the origin, a behavior corresponding to a
"fast" wave. Another important feature is that,
as &- &„q, goes to infinity as (&, —&) ' ' for
the positive sign in Eq. (12). Thus we have a res-
onance at the cyclotron frequency &,. This be-
havior is also borne out by a numerical calcula-
tion, whose results are shown in Fig. 1. The dis-
persion relations + versus q, are presented in
terms of dimensionless variables for four values
of the parameter u, /&~. Invariably, the disper
sion relation is linear at low frequencies and ter-
minates at the cyclotron frequency. It is inter-
esting that the frequency range of propagation
(0, +,) coincides with that of volume helicons.

It is imperative to investigate the behavior of
the decay constants &,= -iq» and &,= -iq» in
order to determine whether the dispersion curves
in Fig. 1 correspond to potentially observable
normal modes of the semiconductor-screen in-
terface. These decay constants are calculated
from the biquadratic equation (4), with q, given by
Eq. (12). We find that the upper parts of the dis-
persion curves in Fig. (1) (continuous lines) des-
cribe bona fide or pure interface modes, i.e. ,
their decay constants &, and , are both real and
positive and , + &,. The lower parts of the dis-
persion curves (broken lines) correspond to "gen-
eralized ~odes, "' whose decay constants are com-
plex conjugates (o', = o!,*) with positive real parts.
It turns out that the transition from generalized to
pure interface modes takes place at a point defined
by the intersection of the ~(q, ) dispersion curve
and the curve &,(~,q, ) ='&,(~,q,).'" The latter
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FIG. 1. Dispersion relations of magnetoplasma modes
at the interface between a highly doped semiconductor
and a metallic screen in the Faraday geometry. For
every value of the static magnetic field B0 there is one
mode, and it terminates at the cyclotron frequency co,.
Continuous lines indicate a bona fide interface mode
whose decay constants are both real and positive. Bro-
ken lines indicate a generalized interface mode whose
decay constants are complex conjugates.

curve forms a loop; the generalized modes are
located inside the loop and the pure modes are
outside the loop.

In Fig. 2(a) we plot the normalized decay con-
stants +j and a, as a function of the normalized
frequency for &u, /& ~= 0.5. This logarithmic plot
is restricted to the frequency region of pure in-
terface modes. At the threshold frequency e, and

a, are of the order of far-infrared wavelengths
(»100 pm). As the frequency increases a, in-
creases monotonically, while n, decreases mono-
tonically. As we approach the resonant frequency
&u„a,-~ and a, -0. We see from Eq. (5) that
in this limit

E( z) E ea(egg~ t&

Therefore, in the retardationless limit (q, ~) the
interface magnetoplasmon is represented by a
single plane-wave solution of constant amplitude.

The behavior of the decay constants for co,/~~
= 0.1 and 0.9 is similar to Fig. 2(a}. On the other
hand, for co,/sr~= 1.5 the behavior of a2 drastically
changes. As shown in Fig. 2(b}, a, goes to zero
at the plasma frequency ~~. At this frequency,
e„=0. Then from an analysis of Eq. (4) one can
readily show that a, is finite and u, = 0. For other
values of the ratio &o,/&u~ we also find" that the
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FIG. 2. The decay constants o.~ and n2 of the interface
modes shown in Fig. 1 for two values of the parameter
, /u&.. (a) 0.5, (b) 1.5. Only the frequency region of
bona fide modes is shown. Note the logarithmic scale.

IV. DISCUSSION

Effect ofpI&onons. If ur is comparable to or
smaller than the phonon frequencies ~ and u~
then the "one" in the parentheses of Eqs. (lla)
and (llc) must be replaced by (uP —~~2)/(uP —cunr).

'Thus, in addition to the pole at ~„a„„alsohas
a pole at u~. At both frequencies q, -~, so now
there are two resonant frequencies, ~~ and ~,.
We expect that the dispersion curves of Fig. j.
will split into a "phonon branch" and a "plasmon
branch" whose precise behavior mill depend on
the parameters ur, /&u~, ~r/~~, and &u~/&u~. It is
readily seen that the lower branch will preserve
the linearity (coo=q, }for low frequencies. A nu-
merical study of Eq. (4}would be required to de-
termine the frequency regions of bona fide inter-
face modes. The element &„(~)now has two ze-
ros in place of the single zero at ~~. In analogy
to Fig. 2(b) we expect that a, -0 at both of these
zeroes.

Effect of damPing As discuss. ed in I, allowance
for a finite damping frequency v will cause two

behavior shown in Fig. 2(a) is exhibited for ts, & ~~,
while the behavior in Fig. 2(b) occurs for u&, & &u~.



qualitative changes in the dispersive properties.
One occurs for very low frequencies, (d«v. It
has been shown in Ref. 4 that, in addition to a
"fast mode" (which seems to be the same as the
one studied here), Eq. (10) also gives a "slow
mode" with the dispersion

This, however, is not a bona fide mode because
it is damped out in a distance of the order of the
wavelength. The other change that we expect is a
bRckbendlng of the dispersion relRtlon Rs the x'eso-
nant frequencies &, and ~~ are approached. 'This

is known to happen in many casesxo provided t:hat

the wave vector is taken as a complex quantity
while the frequency is real. %e also expect that
e, will display minima —rather than go to zero-
at the frequencies u, and co&.

Possibility of experimental detection. We expect
that the pure interface modes predicted in the
present work might be observable by attenuated-
total-reflection (ATB) spectroscopy. 7 It seems
that the best geometry mould be sandwiching a
metallic film (any metal) between a high-index
prism and a semiconductor such as InSb." The
desirable thickness of the film would be -c/&u»

(where +,' is the plasma frequency of the metal),
i.e., a few hundred A. Otherwise, if one sand-
wi. ches the semiconductor between the prism and

the metal, the optimum thickness of the film
would strongly depend on the frequency.

The major difficulty from the experimental point
of view seems to be the complex polarization of
the magnetoplasma modes in the Faraday geome-
txy. Both for R free semiconductor surface' ' and
for a semiconductor-screen interface, the elec-
tric and magnetic fields of the wave possess lon-
gitudinal components E, and B„ transverse com-
ponents E„and B„which are parallel to the inter-
face, and transvexse components E„and B, which
are perpendicular to the interface. This amounts

to elliptical polarization in a plane which is not
parallel to the plane of incidence. As a conse-
quence p-polarized light does not seem to excite
the proper normal modes of the system. In fact
the reflected (observed) light has an s-polarized
Rs well Rs R p-polRx'ized component.

As for the generalized modes, we wish to com-
ment on a difficulty. The decay constants n and
the normal components of the wave vector q, are
related by the equation u = -~q„. In terms of real
Rnd 1maglnary pRI'ts (pl'1IIled Rnd double-primed
lettel's I'espectlvely)

II'+i&"= i(q—'+ q") = q"-iq'
'The two partial waves of a generalized mode dif-
fer only in the signs of n". Therefore, Eq. (13)
gives q'=a Ia"). This means that one of the par-
tial waves approaches the interface at an angle
tan 1(q,/I &" i ) and the other wave recedes from
the interface at the same angle with respect to
the interface normal. Thus we have the simple
picture of an incident and a reflected ray, how-
ever with one important difference: The ampli-
tudes of both rays decrease exponentially with dis-
tance from the interface, the decay constants be-
ing given by &'. lt is not at all clear that this
kind of wave can be excited in the semiconductor
by conventional ATR spectroscopy. " In fact, it
seems that a theory of excitation of magnetoplasma
modes has not yet been published. These remarks
hold equally well for a free semiconductor surface
and for a semiconductor-screen interface.
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