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Interyretation of differential reflectance studies of metal surfaces
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Formulas are derived which relate differential surface power absorption spectra for s- and p-polarized light to
differential reflectance data, frequency by frequency. The formulas, which are exact for jellium, do not involve the
use of Fresnel equations or any theoretically calculated parameters.

Because they contain information on the excita-
tion spectra of surfaces, differential optical re-
flectance measurements are potentially a power-
ful means for understanding the structure of sur-
faces in general, and constitute one of the main
hopes for characterizing solid-liquid and solid-
high-density-gas interfaces. ' It is clear, and this
point has of course been made before, ' that the
quantity of interest for surface characterization
is the surface power absorption spectrum and not
simply the reflectance, since the latter represents
a complicated mixture of absorptive and reactive
effects, from both bulk and surface. However, un-
til now it has not been shown how to derive sur-
face absorption spectra from reflectance mea-
surements, without the use of a classical three-
phase model. For s-polarized light impinging on
a flat surface, the classical picture e does give an
essentially correct description of surface optical
properties because E", the electric field normal
to the surface, vanishes identically while the
tangentical field E" is almost constant. 4 How-
ever, when F t 0 the classical picture gives an
unphysical description of the electromagnetic
field in the immediate vicinity of a surface, and
thus should not be used to analyze absorption
spectra with the hope of characterizing the atomic
layers that comprise it.' There are several
reasons why the classical picture breaks down
when E'10:

(1) It is discontinuous —typically in a classical
calculation the dielectric function a is taken to
jump discontinuously at each interface. The con-
tinuity of the normal displacement D then im-
plies that E' jumps discontinuously in inverse
proportion to e . One is then faced with two dif-
ficulties in interpreting surface optical data.
First, where is the discontinuity surface relative
to the atoms? And second, why should a calcula-
tion of electron excitation by a discontinuous field
give a meaningful description of the actual physics?

(2) It is local —microscopically the relation
between total electric field and induced cur-

rent is given by a nonlocal conductivity tensor,
a(r, r';up), &u being the frequency. The conductiv-

ity is only effectively local when the field varies
slowly on an atomic scale. This is not true of E
near a surface. ' D' varies slowly, not E

(3) It is incomplete —above the plasma frequency
the matching conditions dex'ived from Maxwell's
equations do not suffice to determine the fields.
An "additional boundary condition" (ABC) is re-
quired before the theory is well defined. '

These problems have been addressed in several
papers over the last five years. It has been shown,
for jellium at least, how to calculate electromag-
netic fields both below and above the plasma, fre-
quency using a nonlocal description of. surface di-
electric response. ' (Sample results are shown in
Fig. 1.) The microscopic response theory has
been shown to explain both the great enhancement
of photoemission seen from Al below the plasma
frequency and its frequency dependence, while the
classical theory fails to account for either. ' Exact
microscopic formulas for surface reflectance
have been derived for both s - and P-polarized light
incident on flat jellium. These formulas show
that for p-polarized light the surface response
function is essentially an inverse dielectric func-
tion" while for s polarization it is directly the
surface contribution to E that matters.

Despite these advances in the microscopic the-
ory of surface dielectric response, an answer to
one fundamental question has not been given: How
shall one use P-polarization surface reflectance
data to characterize surfaces?" More
specifically, for example, what good does it do to
know that the surface response function for p-polar-
ized light is related to an inverse dielectric func-
tion? The present paper is an attempt to answer
this question by showing for metals how the de
sired quantity, ' the surface power absorption
spectrum, can be derived from surface

reflect-

ancee data without the introduction of a classical
three-phase model. The results are stated in
terms of simple formulas relating power absorp-
tion to exact surface response functions. The
latter can be derived from angle-of-incidence-
dependent differential reflectance measurements,
as has been discussed before. ' An interesting
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face. Thus for long wavelength (or small wave
vectors, q=—00/c), one finds
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Here q« is the tangential conponent of the incident
beam wave vector q, z (&o) is the bulk q-0 dielec-
tric function~ a111 E (&tq q11 ~ 01) ls 'tile classical
E just inside the surface. The dieleetxic ten-
sor z "(z,z';q«, ~) is nonlocal, i.e. , is not pro-
portional to 6 (z -z' ), and is related to the con-
ductivity by

s "(z z'~q0, 01)=&(z -z')+ o "(z,z';q„, (o). (3)
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Fro. l. Beal (solid lines) and imaginary (dashed lines)
parts of fE (s)/E ' (ins)-1Jf f1-~(~)f for a jellium sur-
face of electron gas radius v~=2, for various frequen-
cies. Notice the peak in the imaginary part of the fields
for ~ & ~&, the plasma frequency. As explained in the

text, the area under this peak is directly related to the
total surface photoelectric excitation cross section.
Above u&, the corresponding statement is more compli-
cated because the photoexcited plasmons obscure the
surface photoemission peak. The method used to obtain
these results is discussed at length in Bef. 8.

Off-diagonal components of e or o can be ignored
fox' q ]f

~ 0.
Equation (2) immediately shows that E*(z;q„

-0, 1d) is relatedto J e "(z,z') 'dz', where'*'(z, z')
is thought of Rs R Matrix. Thus Rs R number
of authors have noted, "' the z component of the
field in the surface region is governed by a res-
ponse function which is related to "an inverse
dielectric function. " The significance of this re-
sult for the surface power absorption can be seen
readily.

The power absorption of a solid per unit area
is given by"

I — 488e K+8 q ~'j 8'q

"spin-off' of the discussion is an interpretation of
the peak in Im[E'(z)/E'(inside) j found (see Fig.
I) in the neighborhood of the jellium surface when

The area. under this peak is directly pro-
portional to total surface photoexcitation cross
section. A theory which does not px oduce this
peak does not include surface photoexcitation. A

theory which attributes such a peak to small
"surface dielectric constant" represents the sur-
face photoeffect wrongly, in that the effect is the
result of a sharp gradient in the dielectric func-
tion, ' not its near vanishing. "

In what follows, I show qualitatively, then more
precisely, how the microscopic theory yields for-
mulas for. surface power absorption for s- and P-
polarized light. The important result of eax'lier,
detailed investigations'~ is that the microscopic
theory simply generalizes the classical condi-
tions that E" and D~ are constant across a sur-

dZdZ He E+ 8 g Qp eO'g g 'q

E(z';q„, 00)].

The parallel component of E is constant across the
surface. Thus its contribution to P is directly
proportional to the real part of the (z-integrated)
conductivity or the imaginary part of the dielectric
function. In contrast, E is related to the in-
verse dielectric function, e '(z, z'). Thus the
contribution of E to the power absorption is
roughly proportional to lz 'I'Ime or Ime '. This
result bodes ill for the objective of characteriz-
ing surface structure by correlating an absorp-
tion spectrum with an optical joint density of
states (OJDOS) since the peaks of such an OJDOS,
which correspond to peaks in Img, may well give
rise to minima of Ime '." On the other hand, we
are not at liberty to alter the physics of the sur-
face dielectric response to suit our convenience.
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The relevance of a. quantity of the nature of
Ime ' to the powex' absorption associa, ted with &
means nothing othex' than that when e is resonant,
the normal sux'face fleM 18 col1 espondlngly di-
minished, and thus the power absox ption which
is proportional to the field square times the
OJDOS is antiresonant,

I now make this argument precise, obtaining
exact results for surface power absorption by a
{jeHiumlike) metaL In a differential reflectance
measurement, one wishes to determine the sur-
face contribution to dP/du, the derivative of the
power absorption with respect to an experimen-
tally accessible parameter u which affects sur-
face properties, such as the electric field in
metalbc electroreflectance, ' or the coverage of
some adsorbate. In general, there will also be
a "bulk" contribution to dP/du equal to the u de-
rivative of the transmitted electric field intensity
times the unmodulated bulk power absorption.
The bulk component of dP/du is of Uttle intrinsic
interest and one wishes to eliminate it specifically
from consideration. This can be accomplished by
breaking the z integral of Eq. (4) into integrals
over a ~ ~ and a ~ ~, where ~ is an axbitrary
"cutoff" value of a, mell inside the surface but
much less so than a light wavelength. (The solid

is assumed to occupy the right half-space. ) In
the region z ~ &, E'(z) is of the form

+& (z) -Tcioig+ QTgp @to! + io ig

where q,'. is the normal component of the classical
"inside" wave vector, T differs from the classi-
cal transmission amplitude by terms of O(q), and

P„and k are the amplitude and wave vector of the
bulk plasmon which is photoexcited if (d& &u& (see
Fig. 1). E~ and T depend on q„and m of course.
This dependence has been suppressed for clarity.

The bulk contribution to dP/du is the term which
is proportional to dl Tl /du. This latter quantity
is of O(q) in the long-wavelength limit, but the
bulk contribution to dP/du is of O(1) because

00
1

dz exp(- 2z Imq,') =
g 2 re,' '

which is manifestly of O(q ') .
The remaining contributions to dP/du from

s ~ Z together with all the contributions from
~ ~ Z constitute the interesting surface power
absorption spectrum. I or long-wavelength light,
making use of the rotational invariance oi o
(z, z';0, &(i), Eq. (4) implies that
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where here and henceforth dP/dg is defined as the
surface comjonent only of the differential power
absorption. In Eq. (7), E '"" is the classics. l value
of the tangential electric field and 8&"(out) is the
classical outside value of the normal component.
b(z) is defined by

b(z) =E'(z)/E'~~(out) . (8)

It is the z component of E(z) normalized to its
classical value just outside the surface. Note
that the integrals of Eq. (7) converge because the
u derivatives localize the integrands neax the
sux'face.

It is immediately apparent that the contribution
of E" to dP/du is simpler than that of E . The
latter can, howevex', be made tractable by proving
an "optical theorem, " i.e. , a theoxem relating
a "total cx'oss section" to a "forward scattering
amplitude. " According to Eqs. (2) and (3), b(z)
sat ls fle 8

b(z) =1 dz'(y "(z z')b(z')
(d

[This equation thus says nothing other than D'(z)
=const. j Equation (9) immediately yields

Reb+(z) Jl dz'g "(z,z')b(z') = —Im[b*(z)j,

(10)

which when substituted into Eq. (7) gives

—=!llE" "l' d dz —Reo*(., z )

+ lE""{out)l' — (fz —Imb*(z) (ll)4g & du

The relation between the surface power absorption
and the reflectance for P-polarized light follows
from this x'esult.

Before proceeding, however, it is wox'th con-
81del 1ng the meaning of the nuxnex'1cal results
for b(z), shown in Fig. 1, in the light of Eq. (11).
Notice that for &op&(~, b(z) has a real part that
looks x'oughly like a smoothed vex'sion of tIle step-
function behavior that b(z) would show classically,
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and an imaginary pax't peaked at the surface.
Equation (11) tells us what this imaginary part
means. The area under it corresponds to the
surface power absorption associated with E .
In the jellium model underlying the calculation,
the on/y loss mechanism is surface photoelectric
excitation, and that is therefore what Im8(z)
represents. Any "model h(z)" that does not mani-
fest such a peak does not take propex' account of
the sux'face photoelectric effect. Note that there
is llel'e a question of self-consistency. Imk(z)
both causes and is the result of surface photo-
em1s sion.

I turn now to the question of determining dP/ds
by x'eflectance measurements. It is conveQlent
to define two surface response functions, f((»v)
and d~(&u), for electric vectors parallel and per-
pendiculax to the surface. These response func-
tions have the dimensions of length and accor-
dingly may be thought of as "optical surface
positions. "' They are given by

d„((g) =-Z —— —
[I dz " (fz'(r (z, z') (l2)

(o «((o) —1 J „

+ 6[8 — —b 8 ~

z «(~)

The cutoff Z is defined as above. (f~(&u) is well
defined because ((l(z) - I as z - -~ [cf. Eqs. (8)
and (9)], and

b - [1/«(~) ][I +p((o) exp(ik~ -0')z J

as z-+~ [cf. Eq. (5)]. d„(u&) is Z independent
because

4gi dz'o ""(z—~, z') =«(~) -1 .
CO

These definitions of surface response functions
are equivalent to those which have been used in
Befs. 5 and 6, as is shown in the Appendix below,
as long as one remains below the plasma fx'e-
quency. For &u

~ ru», Eq. (13) rema. ins perfectly
adeqIuate while a surface response function based
on an "« '(z, z')" is not obviously so. "

It is straightforward to express (IP/(f»( in terms
of d((f»)/(fu and d(d»)/du. Equation {12)yields

(18)

while Eq. {13)implies that

f dz —$(z) = —[d~((g) J.
(I «{(0)—1 (f

du «((o) du

Thus

»" +['Im[[1-e((al) —[»„(v[])cd

+
~

E""(out) ~» I —[d,(~)] I .I-«((u) (I

«((u) du

(IV)
This expression may be written in terms of the
incident flux E= c~ E'-~'/8)) for s- and P-polarized
light. Fox' 8 polarization one has

y~(s)
=q&

(
I+) "'"(']«{(o)—sin'8 )y»(a)), (18)

where

I'

&»{&)= Im
I
[1 «{(u)J ~„(f»((o)]l . (19)

8 is the angle of incidence, and s "~~ is the clas-
sical, 8 -polar ization reflection amplitude. Fox'

P polarization one ha.s
dP'~' I +~ '~'" '
d»( «{(u)

x( [«(&g) - sin»8]y»(&u) + sin'8 y~(&o)], (20)

where

&,(~)-=iml[1 -«(&u)]«*((o) ~ [(f,(&o)] I (21)

and r '" is the classical amplitude for P-polari-
zed light.

Equations (18)-(21)are the main results of
this paper. They give dP/du for s- and P-polar-
ized incident light in terms of «(~), d((f»)/d»(,
and (f((f~)/du. These quantities can be obtained
directly from reflectance measurements, as I
now review.

An exact (for jellium) theory of the surface con-
tributions to reflectance' gives the following re-
sults for the complex reflection amplitudes fox

s - and P -polar ized light

(22)

Here @~=@cos~. Thus the differential reflection
coefficients for and P polarization are given
byl6

dA"' d
ft (») ) d 4q) d [Im(f[[((lo) ]
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+ dd(&) —d(((&) ~i

du q d " e '((d1) -cot'&j '

The differential ref lectRnce for s polarizat3on
directly determines lmd[d«(&u)]/du. The 8 de-
pendence of dR «1/du can then be used to determine
the real and imaginary parts of d[d~(&) -d«(&u)1/
du. ' One still needs the real part of d(d„)/du to
compute the power absorption, however. This is
a familiar problem in the cia.ssical analysis of
reflectance data. It can be solved entirely within
the context of s -pol.arization measurements. That
is, He[d(d«}!du] can be obtained by measuring a
differential phase change on reflection, via Eq.
(22}~ or by carrying out R KI'Rnlel's-KI'onlg
analysis. using the measured Im[d{d«)/du]. "

Once one has performed the analysis just de-
scribed, substitution of the measured values of
d(d~)/du and d(d„)/du into Eqs. (19) and (21) yieMs
dP '/du and dP~'/du. Thus the differential
power spectxum is obtained from reflectance data.
without the use of Fresnel formulas or any the-
oretically calculated parameter.

In view' of the success of the jeQium pictux'e
iD desex'ibiDg sux'fRce photoeIQissioD from Al,
this metal would be an excellent choice for a test
of the formulas dex'ived here. Such a test Inight
involve the measuxement of the change in loss
spectrum with adsorption under UHV conditions,
using electrons and by monitoring reflectance
changes. It is not obvious how successful the
application of the jeQium-surface results will be
in the case of non-free-electron metals, such as
Ag and Au for which many electrox'eflectance
IQeasurements hRve been x'eported. Certainly,
the azimuthal anisotropy reported for Ag{110)
(Ref. 18) is beyond the ability of the jeiiium model
to describe. In the results of Kotz and Kolb
(KK)," it is seen that the electroreflectance of Ag
is very different fox s and P polari. zation, for ~

sufficiently far from O'. This is in accord with

Eqs. (24) and (25). At the plasma frequency [where
c '((d) =0], KK observe a dramatic dip in the p-
polar ization electrox'eflectance. That an anomaly
shouM be observed at this frequency is in agxee-
ment with Eq. (25), because s '(&o), in the de-
DGIQlnator of the secoDd term of this equRtion
becomes quite large at the plasma frequency [for
Ag, e(«'(&u«)-0. 2 (Ref. 20}]. However, according
to Eqs. (24) and (25), if e (&0)= 0, the electro-
reflectance for 8 and p polarization shouM be
nearly equaL KK's results do not obey this be-
haviox. One ~onders whether this i.s because
(d/du) fim[dd(&g&) -d„(~&)]) is particularly large,
or whether a, failure of the jellium model to de-

scribe Ag is at fault. Experimental tests of the
jellium theory and extension of the theory to
include non-fx'ee -electx'OD behavior %gould ob-
viously be desirable in answering this question.
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APPENMX

Substltutlon of Eqs. (A2) Rlld (3) 111to Eq, (Al) Rnd

introduction of the cutoff Z on the s integral then
yields

~ g
48 cf8 Q' 8 yz —6 (d

(d e ~00

Comparing Eqs. (AS) and (12), we see that

(A4)

For A„one has the definiti. on

which has meaning for ~g~ ." %e proceed via
Eqs. (3) and (9) which imply that

h (s) =- Jt dz'e '(z, z') . (A6)

gg gg (AV)

or, using Eq. (A2),

0 P O0 I
dz[b(s) —1]+ ' ds $(s)- . (AB)

~((o)

To show the relation of this expression to that fox

dl((d), Eq. (13), we first check that d, (&u} is Z
independent. Thus

The purpose of this appendix is to show the
relation between d„((d} and d, (&o) and the cor-
responding surface response functions A„and A,
defined in Refs. 5 and 6. A„ is defined by

d = J( dd( dl! d *(E,d ( -d !(d})

where for a vacuum-metal inter face in the neigh-
borhood of z =0
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&((o)
~( )-)P ~( )) (A9)

we set it e(equal to zero in Eq. (13), and thus find
that

which is the desired resu1t. Since Z is arbitrary, (A10)
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