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Thermopower of the alkali metals at high temperatures
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An empirical calculation is presented of the thermopower of the alkali metals at the melting temperature for both
the liquid phase and the solid phase. The overall agreement between the calculated and the measured values is very
good. The first-principles Shukla-Taylor form factor is used for Na and K and an empirical form factor is used for
Li, Rb, and Cs. The energy dependence of the form factor, required for the calculation of the thermopower, is
obtained directly from the form factor itself by means of an approximate procedure based on a phase-shift
expansion. The approximation is shown to be reliable. The structure factor was obtained for both the solid and the
liquid phases by means of a scaling procedure. The scaling procedure is shown to be reliable. Finally, a qualitative
discussion is presented of various aspects of the thermopower calculation.

I. INTRODUCTION

The calculation of the thermopower Q(T) of the
alkali metals has long been regarded' ' as one of
the fundamental problems in the transport theory
of metals. The theoretical difficulties associated
with the problem are well known. ' 5 However,
there has been considerable recent progress re-
garding the high-temperature calculation. In fact,
there now exist first-principles calculations6' of
Q(T} at high temperatures that are in quantitative
agreement with experiment. As would be expected,
first-principles calculations are rather complex
and the results are thus far restricted to Na and
K.

We shall here adopt the different approach of
calculating Q(T) at high temperatures by an em-
pirical method. The input data required for' the
calculation are the measured phonon spectrum for
the structure factor and available screened elec-
tron-ion matrix elements (on-Fermi-surface
pseudopotential matrix elements) for the form fac-
tor. The energy derivative of the screened pseu-
dopotential matrix elements, a quantity required
for the calculation of Q(T), will, be obtained di-
rectly from the form factor by a modification of an
approximation proposed by Young et a/. The ap-
proximation is shown to be quite good and has the
important advantage of avoiding entirely the com-
plicated calculation' of the energy dependence of
the off-Fermi-surface screened pseudopotential
matrix elements.

Although empirical calculations, such as the one
described here, are not, of course, intended to
replace first-principles calculations, they do offer
several advantages. First, they are easy to carry
out. Indeed, we have, carried out the calculation
of Q(T) for all the alkali metals for both the solid
and liquid' phases. Very good overall agreement
with experiment is found. Second, the required
input data are readily available, usually from ex-

II. INPUT DATA FOR CALCULATION

According to standa. rd theory ti, i the high-tem-
perature thermopower is given by

Q(T) = —(v keT/3eE~) $(T),

((T)= 3 —2e(T) —-'~(T),

k I, 2(2k~, k~)S(2k„, T)
4f ~dKK ur (K k~)S(K, T) '

k f dKK S(K, T)B[g (K, k„)]/Bk

f '"~dKK'u'(K, k,)S(K, T)

(2.l)

(2.2)

(2.3)

(2.4}

where S(K,T) is the temperature-dependent angu-
lar average of the structure factor and w(K, kz) is

periment. Third, performing a calculation of
Q(T) for a series of metals within a single unified
framework permits one to analyze trends from
metal to metal within an entire chemical group and
thereby to get a "feel" for the calculation, which
is not always easily obtained from a complicated
calculation specific to each metal. Such trends
will be discussed in some detail when comparison
is made between the results for the different alkali
metals.

In Sec. II, the procedure is described for ob-
taining the input data required for the calculation
of Q(T). In particular, a scaling procedure is in-
troduced for obtaining the high-temperature
structure factor. In Sec. III, an approximate
method is proposed for obtaining the energy de-
rivative of the form factor from the form factor
itself. The results of the calculation of Q(T) at
the melting temperature are presented in Sec. IV
and comparison is made with experiment. In Sec.
V, a simplified one-parameter model is intro-
duced for the form factor. The model permits a
fairly complete qualitative discussion of the gen-
eral features of the thermopower calculation. The
summary follows in Sec. VI.
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the form factor. The kz dependence of w(K, kr}
arises from the fact that the form factor derives
from an energy-dependent, nonlocal pseudopoten-
tial operator, and thus depends not only on the mo-
mentum transfer upon scattering AK, but also on
the energy I k„(2m of the electron being scattered.
Ii should be noted that the temperature dependence
of the thermopower parameter $(T) is rather weak
because the temperature dependences of the nu-
merator and denominator of q(T) and r(T) tend to
cancel at high temperatures.

Equations (2.1)-(2.4) for Q(T) are based on the
lowest-order variational solution to the Boltzmann
equation. It has been repeatedly demonstrated
over the last decade by explicit calculation that the
lowest-order solution (relaxation-time approxima-
tion} provides a very accurate value at high tem-
peratures for both the electrical resistivity" "and
the thermal resistivity' "of the alkali metals. A
similar direct proof does not exist for Q(T}be-
cause the thermopower does not satisfy a varia-
tional principle. " Nevertheless, there is no rea-
son to doubt that the lowest-order variational cal-
culation is also very reliable for Q(T) at high tem-
peratures. The derivation of (2.1)-(2.4) also de-
pends on the assumption of a spherical Fermi sur-
face and single-plane-wave pseudo-wave-functions.
The Fermi surface is indeed very nearly spherical
for all the alkalis. 2~ However, the approximation
of single-plane-wave pseudo-wave-functions is
questionable for lithium. '

~
2 Nevertheless, in the

interest of simplicity, we adopt the single-plane-
wave model for all the alkalis.

As seen from (2.3) and (2.4), the input data
needed for the calculation of Q(T) consist of two
items, the form factor co(K, kz) and the angular-
averaged structure factor S(K, T). We shall con-
sider each of these items in turn.

A. Form factor

For two of the alkali metals (Na and K), there
are available recent accurate calculations" of the
form factor sv(EC, k~). For the other alkali metals

(Li, Hb, and Cs), we used an empirical potential.
Kaveh" has shown how to construct an accurate
empirical form factor for the alkali metals from
the electrical resistivity data. Thus, for each of
the alkali metals, the form factor we used leads to
accurate values for the electrical resistivity over
a wide temperature range for the solid phase.

The form factor is needed at the atomic volume
corresponding to the melting temperature for both
the solid and the liquid phase. Although the volume
change upon melting is fairly small, it should be
included. For Na and K, the form factor was cal-
culated 3s a function of volume, 3nd thus, one has
directly the required volume dependence. For the
other alkali metals, the volume dependence of
w(K, kr) is readily obtained by means of the proce-
dure described by Wiser and Greenfield, "the. es-
sence of which is the following. Wherever k~ or
the atomic volume ~, occur explicitly in the form
factor, one adjusts them to the required value,
i.e., to the value appropriate to the melting point
in the solid or liquid phase. Whenever the k„de-
pendence is only implicit, it is ignored. Since the
explicit k~ dependence of the form factor is easily
shown" to be much stronger than the implicit k~
dependence, this procedure shouM be more than
adequate, especially since the volume dependence
of m(K, kr} is rather small.

The accuracy of this procedure was first estab-
lished by Harrison ' for Al by explicit calculation.
We have also confirmed the accuracy of this pro-
cedure for Na and K by comparing the approximate
volume dependence of co(Ã, kr) predicted by this
procedure with that obtained by Shukla and Taylor"
from a full pseudopotential calculation. The re-
sults agree to within 0.001 Ry for all K for both
sodium and potassium. Therefore, adjusting the
form factor of the metal to the required atomic
volume is readily and accurately carried out.

The energy derivative of the form factor appear-
ing in expression (2.4) for r(T) will be obtained by
an approximate procedure which does not require
any additional input data. The procedure will be
described in the next section.

B. Structure factor

a ~ [K („(K)]'
(2.5)

Mks T „(exp[I~„(R)/ks T] —1H1 —exp[- 5&„(K)/k' T]] '

rectly from the measured interatomic force con-
stants by a Born-von Karman analysis.

An important simplification occurs in the deter-
mination of S(K, T) because we are considering

where M is the ionic mass and a&„(K) and $„(K) are
the frequency and polarization vector, respective-
ly, of the phonon of branch ~ and wave vector K.
The values of ~„(K) and g„(K}can be obtained di-

The structure factor can be obtained directly from experiment. For the liquid phase, neutron or x-ray
scattering data" directly measure S(K, T). For the solid phase, one may use the standard'2 one-phonon
approximation for the structure factor
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only high temperatures, essentially the melting
point. For all the alkali metals, the ratio BD/T
is significantly smaller than unity, where e~ is the
Debye temperature and T is the melting tempera-
ture. In Table I are listed the values" for e~, T,
and k~ at T in the liquid phase for all the alkali
metals. As the fourth row of the table shows, for
all metals the ratio BD/T is sufficiently small
that one may expand the exponentials of (2.5) to
obtain

ksT ~ [K gg(K)]'
M ~ [~„(K)]' (2.6)

TABLE I. Values for the meltirg temperature T, the
13ebye temperature e&, and the Fermi momentum k& for
the liquid phase at the meltizg temperature. The scale
factor is defined in the text. The source of the data is
given in Ref. 33.

Scale
Metal & (K) e&(K) kz(a.u.) e~/T factor

Li
Na
K
Rb
Cs

453
371
337
312
303

335
156
91
56
40

0.578
0.474
0.382
0.357
0.332

0.73
0.42
0.27
0.17
0.13

1.32
1.00
1.01
1.02
1.08

Even for Li, for which 8~/T =0.73, the expansion
is quite good. Even for B~/T„as large as O. V3,
the value of [exp(BD/T„) -1][1-exp(-9~/T )] dif-
fers from the value of (8~/T )' by only 5%. More-
over, one notes" that the phonons that are most
important for the calculation of p(T) for the alkali
metals are not the most energetic ones, h(d

=ksB~, but rather those for which &u„(K) = 0.5&v

Therefore, it is clear that the approximation (2.6)
for S(K, T„) is very good for all the alkali metals.

The next step is to exploit the fact that (u~(K)
scales fairly closely with eD for all the alkali
metals. 'This leads one to write

N(u„(K) = n„(K, K/K )ksBD, (2.7)

where n„(K,K/K ~) is a dimensionless geometri-
cal factor that depends on A, , on the direction (k)
of K, and on the fraction of the distance that K lies
from the Brillouin-zone boundary (K/K ~). The
assumption of scaling for ~, (K) lies in assuming
that n~(K, K/K ) is only weakly dependent on the
particular alkali metal under consideration. The
essence of (2.7) for the alkali metals is based on
the work of Copley and Brockhouse. " They showed
by an explicit calculation that for a pair of alkali
metals [denoted metal (1) and metal (2)], the mean
frequency ratio (~„"'/~~"') equals the ratio of the
Debye temperatures O'D"/8~" to within 3%. Copley
and Brockhouse" verified this result for each pair

of alkali metals, except for Cs, for which the ex-
perimental data for v~(K) were not available. We
shall here assume that (2.7) is also valid for Cs.

Inserting (2.7) into (2.6) yields

I'T„[K.j.(K)]'
Mk, B,' „[n„(K,K/K „)]" (2.8)

where the sum over X is taken to be independent of
the particular alkali metal. On the basis of (2.8),
a scaling procedure can be proposed for the angu-
lar-averaged structure factor S(K, T ). One notes
that by transforming the variable of integration in
the thermopower integrals (2.3) and (2.4) from K
to x =K/2k~, one obtains the same limits of integra-
tion, from 0 to 1, for all metals. Therefore, a
comparison of structure factors for different met-
als requires the angular-averaged structure factor
as a function of x, rather than as a function of K.
Thus, the factor [K $, (K)]' of (2.8), which is pro-
portional to K2= (2k~)'x', becomes proportional to
k~ for given x. One next recalls that after factor-
ing out this kz, the sum over X has been assumed
independent of the particular metal, and that the
ratio K/K is proportional to x. It then follows
that the variation of S(x, T„) from metal to metal
occurs only through the variation of k~T /MB~2.

As a result, one needs to calculate S(x, T ) in de-
tail for only one metal, which we take to be Na.
According to the scaling procedure, one obtains
S(x, T ) for the other alkali metals by multiplying
S(x, T ) for Na by the following:

(k2T./m82) .„,scale factor= (k, T /MB, )' ', (2.9)

whose value is given for the liquid phase in the
last row of 'Table I.

For both Na and K, the values for S(x, T ) have
been analyzed' in detail using the full expression
(2.5) and including the important anharmonic cor-
rection. Thus, one can compare the results for
S(x, T ) for K obtained by explicit calculation with
those obtained using the scaling procedure. We
find that for K, the scaling procedure reproduces
the values of S(x, T ) to within 5P for all but the
lowest values of x, which are unimportant anyway
for $(T). This good agreement could, of course,
have been anticipated from the work of Cop-
ley and Brockhouse. "' Since the error intro-
duced into ~„(K)by the assumption of (2.V) is
about 3% for potassium, "and since ~~(K) appears
squared in S(K, T ), one may expect that the scal-
ing procedure will introduce an error into S(x, T )
of about 5—10%.

So far, we have been discussing S(x, T„) for the
solid phase. For the liquid phase, S(x, T ) is ob-
tained, in principle, directly from a scattering ex-
periment. However, for some metals, experimen-
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tal difficulties" have led to serious discrepancies
between the various sets of available data for
S(x, T ). Therefore, we again turn to the scaling
procedure to obtainS(x, T }, again choosing Na as
the standard metal, because of the availability of
a very accurate measurement" of S(x, T„) for Na.
The RccurRcy of the scRllng procedure for liquid
alkali metals can be estimated by comparing the
measured values" for S(x, T }for K.with the re-
sults obtained with the scaling procedure. Such a
comparison shows that for K, using the scaling
procedure for the liquid phase leads to a compara-
ble error as for the solid phase.

In summary, the estimated error for S(x, T„) re-
sulting from the scaling procedure is 5-10% for
both the solid phase and the liquid phase. It should
be noted that the thermopower parameter $(T„)
contains S(x, T ) both in the numerator and in the
denominator of both the terms q(T ) and ~(T ).
Therefore, a partial cancellation of errors may be
expected.

order / and the scattering angle 8 ranges from 0'
(K=O) to 180' (K=2k~}. The phase shifts 7},(k~)
depend on the energy @~kgb'/2m of the electron being
scattered. The normalization constant —2wk2/m&0

relates the scattering amplitude to the form factor

ev(K, ky) = —(2vk /k„mQO) Q (2l + 1)q,(k~)

xP,(I -K'/2k', ) (3.2}

where we have expanded the exponential because,
for a simple metal, the assembly of ions em-
bedded in a screening charge implies weak scat-
tering. The detail. ed justification for this impor-
tant result has been given by Greene and Kohn.
A basic, consequence of the linear relationship
(3.2}between the form factor and the phase shifts
is seen by considering the zero-scattering-angle
limit K =0. The property of I egendre -polynomials
that P, (1)=1 for all I reduces (3.2) to

K(0, k y}= (27rt /k—ymA0) g(2&+ 1)n/(ky) ~

(3.3)

f{K,k ) =(2zk, )-'g (2I+I)(e""~'"~'-I)

&&P, (1 -K'/2k'),

where P, (cos8) is the Legendre polynomial of

(3.1)

The energy derivative of the form factor, by
which one means Bto(K, kz)/Bkz, occurs in the term
r{T},as given by (2.4). The calculation of ~(T) has
an uneven history, with the early calculations" of
$(T) generally omitting this term altogether be-
cause of a lack of knowledge of Bco(K, kz)/Bkz.
However, it is easy to show that the approxima-
tion of neglecting r(T) is inadequate, even for the
Simplest case of the Rlkall metals. Consider the
metal potassium. The experimental value of $(T„)
is 3.V. However from (2.2), it follows at once
that if one were to neglect the term —~r{T), then

$(T) & 3, because the term -2q(T) is negative, ac-
cording to (2.3). Thus, for K, the term —~r(T)
must make a significant positive contribution to
g(T). If this is the case for K, then there is no

reason a priori to ignore z~r(T) for a—ny alkali
metal. On the other hand, the spirit of the pre-
sent approach is to avoid all complex calculations,
such as that of the energy derivative' of sv(K, k~).
Therefoxe, we shall rely on an approximation
scheme which has the twin advantages of simplici-
ty and reasonable accuracy.

The first step in the development of the approxi-
mation scheme is to write xo{K,k~) in terms of a
scattering amplitude f(K, kz}, whose phase-shift
expansion" is given in the usual form

Use of the Friedel sum rule, which is an exact
relation satisfied by the phase shifts

g (2l + I)g,{k,}=-,'vg, {3.4)

where z is the valence of the ions, leads imme-
diately to the well known result

w(0, kz) =-z.
This exact result' for plane-wave pseudo-wave-
functions, derived here through the Friedel sum
rule, is a direct consequence of the fact that
nr(K, k„) is a linear function of the q, (kz).

It is a straightforward matter to obtain the
q, (k~) corresponding to any given ~e(K, kz) by in-
version of (3.2) through the orthogonality proper-
ties of the I.egendre polynomials

q, (k~) = —(mQj/4vt )

(3 5)

t Rky

x)l dKKw(K, k„)P,(1-K~/2k') . (3.6)

In practice, the q, (kz) decrease rapidly with in-
creasing k, and one may safely ignore the phase
shifts for which jq, (k~) (

& 0.001. This corresponds
to l & 3 for all the alkalis. Thus, (3.2) constitutes
a known expansion for m(K, kz), consisting of four
terms.

We now turn to the determination of Bw(K, kz)/
Bk~. In (3.2) there appear three sources of k~ de-
pendence for w(K, kz). There is no difficulty in
evaluating the contribution to Bye(K, k~)/Bk~ arising
from the k~ factor before the sum over / and from
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the kz in the argument of I',(1-R /2k+). The dif-
ficulty lies in the unknown kz dependence of 1l, (kz).
Here, we make the approximation suggested by the
work of Young, Meyer, and Kilby (YMK). For a
particular model potential, Meyer et ai. calcu-
lated explicitly both the phase shifts and their en-
ergy derivatives 31l,(kz)/Bk~ Y. MK (Ref. 3) noticed
that for. all the alkalis, the energy derivatives of
the phase shifts were reasonably well approxi-
mated (to about. 20/~) by the large-I expression
(Ref. 3V) 1l,(k~) ~ k~" for l & 1 and by the high-en-
ergy expression 1)o(k~) ~ k„' for I =0. Using these
two expressions leads to

k„' = (2l + 1)1l,(k~), I e 0

(3.V)

This constitutes a complete determination of the
energy derivative of the form factor and thus per-
mits an explicit calculation of r(TJ in terms of
the form factor and the structure factor.

One can test the present phase-shift calculation
of the term --,'r(T ) by comparing with the results
of the complete, many-body pseudopotential ca1.-
culation. 9 Leavens and Taylor' list in their Table
I 'tile values tlley obtained for pt'(T) for both Na
and K. As expected, the value for —2~(T ) for Na
is quite small (0.0V) and therefore of less interest
than the result for K. For K, Leavens and Taylor
find —2x(T ) = 1.V2, whereas we find the value
j..61. This close agreement is particularly satis-
fying and increases our confidence in the use of an
empirical phase-shift approach to calculate
—~a&(T ).

IV. RESULTS AND COMPARISON KITH EXPERIMENT

derivative of the thermopower for the solid phase,
B(in@~)/B(lnV), was measured by Dugdale and
Mundy for all the alkali metals. Although the
volume derivative was measured40 at 0 'C and our
calculation refers to the melting temperature, one
would not expect any significant change in the
volume derivative ovex the relatively short tem-
perature interval from 0 'C to T . In fact, )z(T)
itself varies by less than 10/q over this interval
for all alkalis.

In Fig. 1, we compaxe the experimental results
(solid circles) with our calculated results (open
circles) for $, and 4, . For each alkali metal, the
results are given for both the solid (8) phase and
the liquid (f. ) phase. In Table II, we present the
results for g~ —4, and for B(lngz)/8(lnV) for the
alkali metals. For each entry in Table II, the
calculated value is listed directly below the ex-
perimental value. Before discussing the table and
the figuxe in some detail, we note that the ovexall
agreement between the calculated and experimental
values is quite good. This illustrates once again
the power of the empirical approach.

Consider first the solid-to-liquid difference.
For all the alkali metals, the calculated values of
$~ —gi, are within 0.2 of the experimental values.
Such close agreement between theory and experi-
ment has not characterized previous studies.
Turning now to the values for $z and $~ individual-
ly, for Na, K, and Rb, there is very good agree-
ment between theory and experiment for both $~
and 4. Note in particular that the results for K,
for which the calculated value of $(T ) is greater
than 3, point to the ability of the empirical ap-
proach to calculate accurately the term —;r(T)
For I.i and Cs, the situation is somewhat less sat-
isfactory. The calculated values of both $~ and $1

In the previous two sections, the methods were
pxesented for determining the structure factor and
the form factor, including its energy dependence,
for the alkali metals. %'ith this information, one
is in a position to evaluate (2.3) and (2.4) and thus
obtain the calculated values for the thermopower
of all the alkali metals, for both the solid and the
liquid phases.

For comparison with the calculated values, we
use the recent thermopower measurements of
Kendall for both g~ and 4 for all the alkali met-
als, whexe the subscripts 8 and I. denote solid and
liquid pbase, respectively, at the melting tempex-
ature. Of particular impoxtance is the fact that
the same worker measured both $~ and $~ on the
same apparatus. Thus, one can be confident of the
reliability of the experimental values of the solid-
to-liquid difference $~ —$~. Similarly, the volume

0 Q~ ~

I I

S L
I I

S L
I l

S L
l I

S L

Rb

I

S L

FIG. 1. Values for $(T~) for the alkali metals for
the solid (8) phase and the liquid (I ) phase. The solid
circles represent the experimental values and the open
circles represent the calculated values.
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~ s —~x, expt. 2.2 0.0
calc. 2.0 0.1

0.3 1.0
0,5 1.2

86n@s) expt. 0.4 2.1 -0.4 0.4 -50
cale. 1.4 2.7 -0.5 1.0

TABLE H. Comparison behveen experimental and cal-
culated values for $s-(z, and for Beings)/egnV) for the
alkali metals.

qualitative picture whi. ch relates the calculated
results for the different alkali metals. For this
purpose, it is convenient to introduce a simpbfied
model for the form factor which, while not reli-
able for a quantitative calculation of $(T ), is very
useful for a qua, litative discussion. The model
consists of replacing the realistic form factors
that we used for our quantitative calculation by
the one-paraxneter Ashcroft model potential,
whose bare potential, in terms of x=K/2k„, is
given by

differ from experiment, by =2 for I.i and -j. for
Cs. However, note that for Cs, the diffexence in
sign between 4 and $1. is successfully reproduced
by the calculation.

%e suggest that the source of the discrepancy
for I i, and perhaps also for Cs, lies in oux use of
single-plane-wave pseudo-wave-functions. This is
certainly a satisfactory approximation for Na, K,
and Hb, fox" which the value of the form factor at
Z =2k is rather small. Defi«ao(&) = w(R, &—)/
(+z}as the normalized form factor. Then, for
Na, K, and Rb, one finds ~m(2k+)

~

( 0.1, justifying
the single-plane-wave approximation. However,
for I 1, for which w(2k+} & 0.8, a multiple-plane-
wave pseudo-@rave-function is certainly required,
and probably also for Cs, for which ~ur(2k&}

~=0.14. This point has previously been emphasized
for lithium. ~'2 lt would therefore be expected that
the single-plane-wave approximation would affect
the calculated values for (~ and (~ in about the
same way. Accordingly, one expects, and finds,
for both I.i and Cs, that (i} the calculated values of
$(T ) are always higher (more positive) than the
experimental values and (ii} the calculated differ-
ence g, —Pl, is in agreement with experiment.

%8 now turn to the volume dellvatlve of the
thermopower, given in the last column of Table D.
One sees that„with the exception of Cs, the cal.-
culated values follow the general trend of the data.
The calculated value for 8(in@~/8(lnV) is largest
for Na, is smaller for I i and Rb, and is negative
for K. The extremely large experimental value of
about 50 for Cs may possibly be related to the
large Q-band resonance for Cs, which is known4~

to be especially strong and close to the Fermi sur-
face for this heaviest of the alkali metals. There
is, of course, no possibility that our empirical
form factor can adequately describe the volume
dependence of such a resonance.

V. SIMPLIFIED MODEL

%'ithin the present framework, it is possible to
examine several general features of the thermo-
power calculation. %e are here interested in a

—we' eos(2&~R,x)
X g 0

(5.1)

In this expression for avA~ (x), each alkali metal
is characterized by two parameters, AE and the
core radius R,. We wish to reduce this charac-
terization to a single parameter. To this end, we
introduce the normalized core radius R, =A,k&.
Rewriting (5.1) in terms of R, yields

—e'R, cos(2R,x)

We now note that the dependence of se„,„'(x) on
R, is much weaker than the dependence on 8„
because 8, appears only as a multiplicative fac-
tor, whereas R, appears in the argument of the
cosine. Moreovex, R, varies" by only about
100/0 for the different alkalis. Therefore, we re-
place R, in (5.2) by its average value, (R,),„,
= 1.0 A. With this replacement, sob~ (x) depends
only on the singl. e parameter R,.

'To obtain the form factor, one must divide
m„",b'(x) by the screening function e(x). For e(x),
it is natural to use the Hartree dielectric function
cw(x). Thus~ our 81111plified expression for the
Ashcroft model form factor is

(5 2)

—e R, cos(2R,x)
(5 2)

The value for R, is chosen by setting wAIb(x) equal,
at x= 1, to the realistic form factor we used to
calculate $(T„) and p(T ). In other words, for
each alkali metal, R, is chosen so that mA~(x)
gives the correct value for w(2k~) =m(2k~, k~)/
(3&~). Thus, for each alkali metal, the form
factor is completely determined by the single pa-
rameter w(2k~). The usefulness of this simpli-
fication mill soon become apparent.

'7he scaling procedure we used to determine
the angular-averaged structure factor S(K, T„}
1eads to an important result for the calculation
of ((T„). In terms of the variable x=K/2k+, for
a given phase (solid or liquid), S(x, T ) is identical
for each alkali metal except for the scale factor
(2.9). However, the expressions for q(T„) and
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x(T ) contain S(x, T } in both the numerator and
the denominator. Therefore, the scale factor
(2.9) cancels out of g(T„) and r(T„) and hence does
not appear at all in g(T„). As a result, the same
structure factor enters the calculation of ((T„)
for all the alkali metals.

In view of the above discussion, the following
feature characterizes the calculation of g(T ) if
one makes the approximation of using the Ashcroft
model form factor in addition to the scaling pro-
cedure for the structure factor. For a given
phase, the calculated value of $(T ) depends solely
on the parameter R, or, equivalently, on sv(2k~).
Accordingly, we have calculated $(T„) as a function
of sv(2k~). The results are plotted on Fig. 2,
where the solid and dashed curves represent
g(T ) for the solid and liquid phases, respectively.
An arrow marks the value of tc(2k+) for each of
the alkali metals. Note that sv(2k+) decreases
monotonically" with atomic number, from
tc (2k+) =0.35 for Li to tc(2k~) =- 0.15 for Cs. [The
change in cu(2hz) upon melting is very small,
only about 0.005.] For comparison, the calculated
values (s and g~ for each alkali metal, as given
in Table II, are also indicated on the graph by
the solid and open circles, respectively.

The following interpretation may be attached to
the curves in Fig. 2. Qne imagines a "generali-

zed" alkali metal, characterized by a continuous
variation of the value of tc(2k+). Then, the curves
give the values for ts and gz for this generalized
alkali metal within the approximation of the
Ashcroft model form factor, Each of the five
"real" alkali metals constitutes one point on the
tc(2k+) axis.

It is natural to limit our discussion to the 'Phys-
ical" range of zv(2k~), which extends from about
+0.4 (-Li) to about —0.2 (-Cs). Within the phys-
ical range, $(T„)varies from a maximum value of
about +4 to a minimum value of about -8, with no
qualitative difference between the solid and the liq-
uid phases. Note that the calculated values of $s
and g~ for Li are not far from the lowest possible
values for a single-plane-wave generalized alkali
metal. Similarly, the calculated values of 4 and

gz for K are very close to the highest possible
values. One also sees that for Li, Na, and K, the
calculated values for both $s and $~ lie quite close
to the corresponding model curve. However, for
Bb and Cs, the model calculation is not quantita-
tively reliable.

We now consider the terms ——,'r(T„) and -2q(T }
individually. These are plotted in Fig. 3 as a
function of sv(2k+). Again, the solid and dashed
curves represent the solid and liquid phases, re-
spectively For.the term --,'x(T„), there is only

-8—
0 -8

I

- 0.4 -0.2
I

04
-0.2 o.o

l

0.2 04

FIG. Z. Model calculation for f(Tj as a function of
the normalized form factor av(2k+). The solid and dash-
ed curves denote the solid and liquid phases, respec-:
tively. The arrows indicate the value of gy(2') corre-
sponding to each of the alkali metals. The solid and
open circles indicate the calculated values for the solid
and liquid phases, respectively.

w (zkF)

FIG, 3. Model calculation for -2q(T~) and -~2(T~)
as a function of the normalized form factor sv(Pkz) for
the 801M (8) and liquM (L) phases, respectively. Since
the curve for -~2& is almost identical with the curve
for .2~+, it is not given. The arrows indicate the value
of ge{2Az) corresponding to each of the alkali metals.
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a negligible difference between the values for the
two phases and, therefore, only one curve is
plotted. As in Fig. 2, an arrow marks the value
of m(2k~) for each of the alkali metals.

The most interesting results are those for
——,'r(T ). One sees that for most of the physical
range of R(2k~), the magnitude of the contribution
of this term to $(T„) exceeds unity. Therefore,
there is no a priori justification for neglecting the
term —,'r(T—„)for any metal In. deed, the fact that

,r(T -) is quite small for both Li and Na is, in a
sense, accidental. The values for ——,'r(T ) change
sign twice within the physic@. range as a function
of so(2k~), and the two values of ~(2k~) for which
—&r(T„) vanishes just happen to occur near the
values of to(2k~) appropriate to Li and Na. There-
fore, ——,'r(T„) is small for those two alkalis.
However, for a general value of so(2k+), such as
that corresponding to K, Rb, and Cs, the values
for —2r(T„}—are considerably larger than unity and
clearly constitute a sizable contribution to $(T„}.

Consider now the values for —2q(T ). For
w(2k+) &0.1, the term —2q(T„) dominates ——,'x(T„)
and is primarily responsible for the large, nega-
tive value of $(T„) for Li. However, for w(2k~)
&0.1, the terms —2q(T ) and —2r(T„}are compa-
rable in magnitude. Therefore, $(T„) is much
larger for the other four alkalis, varying from
about —1 to about +4.

A comment is in place about the minimum exhib-
ited by —2q(T ) near R(2k~) = 0.15. One might have
thought that because q(T ) ~ ~

w(2k~) t ', according
to (2.3) the value of q(T ) would always increase
with increasing sv(2k~). However, q(T ) also con-
tains an integral in the denominator. For large
values of sv(2k~), this integral is dominated by the
integrand at K=2A;~, and becomes nearly propor-
tional to ~zv(2k+)

~

'. Therefore, for nr(2k~) &0.2,
q(T„) becomes nearly independent of su(2k+). Such
behavior is clearly apparent in Fig. 3. For the
same reasons, a minimum in -2q(T„) also occurs
for large, negative values of ao(2k+). However,
for negative ~(2k~), the minimum occurs far be-
yond the physical range of t7(2k~) and therefore
does not appear in Fig. 3.

VI. SUMMARY

In this paper, we present an empirical calcula-
tion of the high-temperature thermopower of the
alkali metals. Such empirical calculations com-
plement first-principles calculations and are par-
ticularly suitable for analyzing the general fea-
tures of the calculation. Our principal result are
the following:

(i) The empirical calculation for the high-tem-
perature thermopower yields results that are in
very good overall agreement with the experimen-
tal values at the melting temperature. This is the
case both for the solid phase and for the liquid
phase, for all the alkali metals.

(ii) A scaling procedure is proposed for deter-
mining the high-temperature structure factor,
which is applicable to both the solid phase and the
liquid phase. The estimated error of the structure
factor obtained from the scaling procedure is
shown to be less than 10%.

(iii) An approximate procedure is proposed
for obtaining the energy derivative of the form
factor from the form factor itself, by means
of a phase-shift expansion. Our results for the
thermopower integral —~r(T„) that contains the
energy derivative of the form factor are within 0.1
for K and 0.3 for Na of those obtained by Leavens
and Taylor from the complete calculation.

(iv) A simplified one-parameter model is intro-
duced, suitable for a qualitative discussion of the
thermopower calculation. General features of the
calculation are analyzed in the framework of the
model, including the variation of $(T„) from metal
to metal, the maximum and minimum possible
values for $(T„), and the importance of the role
played by the energy derivative of the form factor.
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