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Refraction of a surface yolariton by an interface
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(Received 29 September 1980)

By means of a normal-mode analysis, transmission and reflection coeAicients have been calculated for a surface
polariton crossing a plane boundary at normal incidence from one surface-active medium to another. The energy
radiated into the vacuum above the two surface-active media has also been calculated.

I. INTRODUCTION

In recent years considerable interest has arisen
in the study of surface polaritons. ' These-are
electromagnetic waves that propagate along the
surface of a dielectric medium and whose ampli-
tudes decay exponentially with increasing distance
from the surface. The recent studies have fo-
cused primarily on surface polaritons with fre-
quencies in the infrared, where a variety of reson-
ances in the dielectric (or magnetic) response of
the substrate can lead to the satisfaction of the
conditions required for sux face-polar iton propaga-
tion.

In the recent studies of these waves much at-
tention has been given to methods of generating
them and to the study of their dispersion relation.
Their attenuation has been studied both experi-
mentally' and theoretically, ' and recently the non-
linear interactions of surface polaritons have been
studied theoretically' and experimentally. '

One can now envision optical circuits impressed
on surfaces over which surface polaritons propa-
gate, rather similar in natuxe to those employed
in the field of integrated optics. To assess the
effectiveness of such a cix cuit a study of one basic
phenomenon is required. This is the refraction of
a surface polariton by an intex'face encountered by
it.

In this paper we study this phenomenon for an
elementary geometry exhibiting it (Fig. 1). The
surface lies in the x,x, plane. The region 0& x,
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FIG. 1. The structure studied I this paper.

& do is vacuum. The region x, & 0, -d & x, (0 is
occupied by a surface-active dielectric medium
characterized by a real scalar, frequency-depen-
dent dielectric constant e,(~); the region x, &0,
—d& x, & 0 is occupied by a second, surface-active
dielectric medium, characterized by a real dielec-
tric constant q, (&o). (A surface-active medium is
one that supports surface-polariton propagation,
when it is in contact with vacuum, in the frequency
range of interest. ) The planes x, = d, and x, = -d
axe metallized, which serves to ground the tang-
ential components of the electric fields at these
surfaces

The structure depicted in Fig. 1 supports sur-
face-polariton propagation for both x, & 0 and

x~ & 0. A surface wave incident on the interface at
the plane x, = 0 from the left will be partially re-
flected from the interface, and there will be a
transmitted surface wave as well.

The problem we consider here is that of calcu-
lating the amplitudes of the reflected and trans-
mitted surface waves, and from them the trans-
mission and reflection coefficients when the in-
cident surface polariton propagates normally to the
interface at the plane x, =0, i.e. , along the x, axis.
The case of non-normal incidence will be consid-
ered in a separate publication. The problem is
complicated by the fact that the depth attenuation
constants of a surface polariton in the region x, & 0
differ from those of a surface polariton in the re-
gion x~ & 0. Consequently, the boundary conditions
on the electromagnetic fields at the interface xa
= 0 cannot be satisfied by matching surface waves
alone across this interface. It is necessary to ad-
mix radiative waves into the solutions in the two
regions x, &0 and x, &0 as well. This shows that
when the incident surface palariton strikes the
interface it loses a portion of its energy to w'aves
radiated away from the interface into the vacuum.
Consequently, the sum of the energies in the re-
flected and transmitted surface waves is less than
the energy in the incident surface polariton. In
this paper, we calculate the reflection and trans-
mission coefficients of the surface polariton, and
the radiative losses, by expanding the electromag-
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netic fields in the structure of Pig. 1 in terms of
the normal modes of the structure for each of the

regions xg &0 and xj ~0+
A word is in order here concerning our use of

the confined geometry depicted in Fig. 1 for ob-
taining the transmission and reflection coefficients
for a surface polaxi. ton. In earlier work on this
problem' we used a semi-infinite system that is
obtained from the one shown in Fig. 1 by removing
the upper metallized boundary at g, =d,. The norm-
al-mode expansion used was the one introduced by
Shevchenko' and used in a context similar to that
of the present work by Mahmoud and Heal. ' How-
ever, it proved impossible by that approach to ob-
tain the- kind of numerical accuracy, in particular
for the conservation of energy, that we have been
able to achieve in the present woxk. In Sec. III we
pxesent some results that suggest that our results
for the transmission and reflection coefficient are
not very sensitive to our use of a finite value of
ff04

II. NORMAL-MODE ANALYSIS

W'e start by obtaining the electromagnetic modes
of the two-layer stxucture consisting of vacuum
in the region 0&x, &do, a dielectric film char-
acterized by a real, isotropic, frequency-depen-
dent dielectric constant «(&u) in the region -d &xs
&0, with the surfaces x, =do and x, = -d metallized.
%'e seek solutions of Maxwell's equations in the
form of p-polarized waves given by

Hm{xlxg! (0) = (

coshno{do —x~)

(2.4a)
coslln(d + x~) e+"x, -d & xs &0

(2.4b)

n, (P (o} tanhn(P (o}d
n(P(o} tanhn, (P (o)d,

{2.6)

The solutions of this equation are discx etc and are
labeled by a double index (i)m, where f = I, 2 in-
dicates which dielectric constant «, (~) or «, (a&) ap-
pears in Eg. (2.6), and m labels the solutions for
a given «(&o}. The solutions of Eti. (2.6) are com-
plex in general,

p= p, +ip, ,

where

(2.Va)

In Egs. (2.2)-(2.4) c is the speed of light, and the
functions n0(Pu&) and n(Pro) are defined by

~2 '1 112

n, (pa&)=! p'-, !,Ren, &0, Imn, &0

(2.6a)

(g2 )1/2
n(p(o)=! p'-«((o) —,!,Ren&0, Imn&0.

(2 6b)

For a given value of the frequency v, the al-
lowed values of P for which the modes (2.2) -(2.4)
are defined are the solutions of the dispexsion re-
lation

E(x, t}=[x,E,(x, x,!~)+x,E,(x, x,!~)te '"', (2.la) P, &0, P, &0, (2. Ib)

II(k, t)=x, H, {x,x, !~)e '"', (2.Ib)

'keno sinhno(do —x~}
coshngo

E,(x,x,! co) =(
ten slnhn(d+x~) lg„

co«((o) coshnd

0&x, & do
(2.2a}

-d &x3&0

(2.2b)

cP coshno(d, —x,)

E,(x,x, ! (q) = & (2.8a)
cP coslln(d + x~)

(o«((o) coshnd
(2.3b)

where g„g„f,are unit vectors in the 1,2, 3 direc-
tions, respectively. The solutions for E,(x,x,!lu},

E,(x,x, !v), and H~(x,xJ &o) that satisfy the retluire-
ments that E,(%, t) and H2(%, f) be continuous across
the plane x, =0, and that El(%, t) vanish at x~ = d,

d t,=-d,

for a wave that propagates in the +x, direction
or decays exponentially with increasing g,.

Modes are ordered in the order of decreasing P,
until P, =0, then according to increasing P,. The
value of P co'rresponding to the surface polariton
is real, and we denote it by P,.

Thus, we label the normal modes {2.2)-{2.4) by
a double index (i)m, corresponding to the value of
p= p«& for which they are evaluated. Modes for
x, &0 are denoted by, e.g. , "'E' '( x,x! &o}; modes
for x, &0 are denoted by, e.g. , "'E' '(x,x, ! (o).
Modes for which P is replaced by -P, correspon-
ding to reflected waves, are denoted by a bar over
the corresponding symbols for the field compon-
ents.

%e can now write the components of the electro-
magnetic field in each of the regions g, &0 and g,
&0 as expansions in the corresponding normal
modes.

For x, &0:

Am, f) = [aP,'(x,x, ( ~)+x,a, (x,x,!~)]e-l-~,
(2.8a)
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(2.8b) "'E'0'(Ox
( (d)+0 "&E'0'(Ox

( (())+ g R "'E(~)(Ox
( (())

~'(x x I
~)="'E"'(xx(~)+~((&E(o)(x x(~) =f "'E,'"(Ox, ((d)+ g T„"'E,' '(Ox, ((()). (2.12b)

(2.9a)+ Z. ")E,'» x,x, ~,
m (&0»

h,'(x,x, ((o}="'E,"'(x,x, (
&o)+~(&)E(o)(x,xJ (o)

The time-averaged power flow in the x, direction
per unit width of the structure in Fig. I in the x2
direction for a given mode can be expressed as

(x)E3(m) &x"3 (2.9b) ~ =z'+a'
1

where

(2.13}

&,'(x,x, ( cv) = "'H,"'(x,x, ( (o)+ ~ "'I7,"'(x,x, ( (d)

(2.9c)

H'(»t) =AC(x&x. l ~)e '"'
(2.1oa)

(2.1Ob)

+ Z ")F7(, ) x,x, ~.
ttt00» '

For x, &0."

E'(&, t) = [xP', (x,x, ( ~)+ x,&',(x,x (~)]e- "'

40
P', = ——Re (fx,E,(x,x, ( (d)H,*(x,x, ( co)8~

c'P 1
I O'F(d I coshQ0d0I

(
s&nh(QO+ G() )d() slnh(o(0 —Qq+)(f~

Q0+ Q0 Q0 —Q0

0

dx.E.(x x.l ~}H.*(x,x.I ~)

(2.14a)

&'~&(x,x, ( (d) = f "'E,"'(x,x, ( &o)

(s)sh(a+a")S s)sh(a —a' )S
)X)

o. + n~ + (2.14b)

m(&0)

(2)E( et) (2.11b)

+ T (2)H(, )x,x, (d . (2.11c}

"&H"&(Ox (()&)+r(&)H(o)(ox l(d}+ Q 8 "'H(~'(Ox, (~)

=t "&H',"(Ox,((0)+ g T "'H,' '(Ox, (~), (212a)

The coefficients z and t are. the amplitudes of the
reflected and transmitted surface polariton, re-
spectively; 8 and T are the amplitudes of the
mth reflected and transmitted modes other than

the surface polariton. These include purely 1adi-
ative vacuum modes (real p) and modes that decay
exponentially with increasing l x, ( (complex or
pure imaginary p).

These coefficients are determined from the
boundary conditions at the interface g~ =0. The two
independent boundary condltlons ln the px'esent
problem are the continuity of H2(%, t) and E,(1f, t)
across this surface. The equations expressing
these conditions are

These expressions are nonzero only for those
modes for which P is real. The quantity P,' is the
power flow in the vacuuQl, while P, ls the power
flow in the dielectxic medium. Note that because
«(u&) is negative at the frequency of a surface po-
lariton the power flow in the dielectric medium is
in the direction opposite to the direction of prop-
agation of the surfa. ee wave.

The transmission and ref lectloIl coefflclents for
the surface polariton were obtained from these
results by normalizing the power flow per unit
width in the transmitted and reflected surface
polaritons by that for the incident surface polari-
ton. The energy carried by the vacuum modes will
be normalized in the same way.

III. NUMERICAL RESULTS

In the present work the two distances d, and d
were chosen to be equal. The surface-polariton
reflection-tx'ansm ission px oblem was investigated
by satisfying the electromagnetic boundary con-
ditions at a discrete number of points along the
interface between the two media. A total ef 52
equally spaced points were used, 26 along the vac-
uum portion of the interface and 26 on the bound-
ary between the polariton active media. The
tangential-fields E, and H2 were made continuous
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at each of these points by using a superposition of
104 normal modes of the system, i.e., the ampli-
tudes and phases of the modes were adjusted to
enforce these continuity conditions. In the present
case we chose 52 modes from each side of the
boundary. This led to reasonable results since
the mode spacing (as a function of P) depends
primarily on the height dimension d, and varies
only weakly with the magnitude of g(&u), i.e., the
P's of the final modes in both media were of com-
parable value.

The model chosen to parametrize &(&o) was that
of a free-electron gas. [The results, however,
are valid for any model that produces the same
values of g((u). ] Thus &(a))=1- (o',/&o', where (o,
is the plasma frequency and v is the surface-po-
lariton frequency chosen sothat z(&o) &I, which is
the range of existence for surface polaritons at the
boundary between a semi-infinite dielectric medi-
um and a semi-infinite vacuum. In the calculations
we varied the ratio &o~/&o by fixing ~ (= c)= 1 and
changing co&. The height dimension was chosen to
be the same in all media and was varied from 0.5
to 4.5 in units of 2wc/v, and v~ was varied from
1.5 to 4.8, corresponding to g = -1.25 and -22.04,
respectively. Not all combinations of the above
parameters'could be studied for reasons of numer-
ical nonsatisfaction of energy conservation, as will
be discussed later.

The normal modes used were solutions of the
dispersion relation, Eq. (2.6). Three types of
modes were found that were characterized by real
values of P, imaginary P, and complex P. For
all values of d there always occurxed at least one
propagating mode solution (real P). The lowest-
order solution was characterized by fields that de-
cay exponentially away from the vacuum-polariton
active medium boundary. It degenerates into a
surface polaritori at the boundary between two
semi-infinite media in the limit d-~ [as can be
seen from Eq. (2.6)]. The values of P (as functions
of a&~/~) for this lowest-order mode always lie
above their values for d -. An example of this,
for d'=1, is shown in Fig. 2. Differences between
the values of P for finite values of d and for d —~
occur when the field in the vacuum would have had
an appreciable value of x, =d had it not been
"shorted out" by the metal plane. At d=4. 0 the
two curves become indistinguishable on the scale
of Fig. 2. As d increases from zero, successively
moxe modes that have a propagating nature in the
vacuum (real wave vector) and are evanescent in
the polariton active medium emerge. Owing to the
presence of the "shorting" planes at x, =ed, these
vacuum modes appear as standing waves and the
net energy transported by them is along the ax~
directions. For the thickness range n -0.2s dS n

2.2

2.0

I.O
I.O 2.0 5.0 4.0

cu lw

FIG. 2. The propagation constant g for the surface
polariton as a function of m&/m for tm'o different values
of the half-width d (=d 0) of the structure in Fig. l.

+0.8 where n is a natural number (n &1), there
are n vacuum modes for each value of &o,/&o. In
our case, up to four such modes, i.e., a total of
five propagating modes, including the polariton,
occurred. The remaining (majority of the) modes
used in the boundary condition problem were non-
propagating and decayed in an exponential fashion
(along x,) away from the boundary into each medi-
um,

The procedure of matching the boundary condi-
tions always ensures that they are satisfied at
each of the discrete set of points. It, however,
does not guarantee that they are also satisfied
elsewhere. The criterion used to check the validi-
ty of the solutions was energy conservation, i.e.,
the total energy that appears in the reflected and
transmitted propagating modes (real p) must equal
the incident surface-polariton energy. In our cal-
culations, the solutions were deemed acceptable
when the ratio of the former energy to the latter
was within 1.000+0.005; in the best eases the dis-
cx'epancy was as small as + 0.000 01. Convergence
of the solutions (in terms of energy conservation)
deteriorated both with increasing d and increasing
difference between the ~~/&o characteristic of the
two media. The discrepancy from full enex gy con-
servation places an uppex limit on the accuracy of
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the numerical results for the mode energies, etc.
Actually, we found the accuracy and reproducibili-
ty (with small changes in the number of subdivision
points) of the mode energies to be much better than
indicated by this limit when aB of the results were
scaled to complete energy conservation. For ex-
ample, if for a particular case the conservation
coefficient was 0.999, then the accuracy of all of
the mode energies could be improved by dividing
them all by 0.999 and hence scaling to unity the
energy conservation. This feature was verified
by varying. the number of subdivision points, &o~/~,
and d. Energy conservation proved to be very
sensitive to the completeness of the set of the first
52 modes used for a given material; if a mode
was missing, especially from the first 15-20
modes, large deviations from unity were obtained.
There also occurred a small number of cases
where two (in a set of 52) modes were almost de-
generate and energy conservation could not be ob-
tained to t:he desired accuracy.

Tile 1Rl'gest 1'Rllge of cilRIlge ill e((d) (Rnd (d&/(0)

between adjacent media was investigated for d = 1.0.
The numerical results are summarized in Figs. 3
and 4. (Note that we quote energy rather than
amplitude coefficients since the energy normaliza-
tion varies dramatically from mode to mode. )
Perhaps the most surprising aspect of the numeri-
cal results in the large fraction of the incident en-
ergy that is transmitted through the boundary, i.e.,
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FIG. 3. Energy transmission coefficients for surface
yolaritons and vacuum modes for d = 1.0.

FIG. 4. Energy reflection coefficients for surface
polaritons and vacuum modes for d =1.0. {a) v&/~
= 1.5 cop/cu {variable); {b) mp/~ {variable) ~p/cu = 1.5.
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the total fraction of energy transmitted in the foxm
of propagating modes traveling along g~. For the
extreme case of a surface polariton propagating
fI'om R medium with & = -1.25 to R medium with g
= -22.04 (i.e., from a medium with v~/&u = 1.5 to a
medium with &u~/~= 4.8), the total transmission and
reflection coefficients were 0.904 and 0.096, re-
spectively. In nox mal plane-wave optics, which
involves R single I'eflected Rnd R single tlRnsmitted
wave~ fox' Rn equlvRlent chRnge ln g one would ex-
pect transmission and reflection coefficients of
-0.6 Rnd -0.4, respectively. On considering just
the surface-polaxiton part of the txansmitted Rnd

reflected enex'gies, we obtain coefficients of -0.58
and -0.0V: The tx ansmission coefficient here is
in more reasonable agreement with the plane-wave
analog. For a sux face polariton, the bulk of the
energy is usually carried in the vacuum portion of
the mode, and no discontinuity in matex'ial propex-
ties is encountered by this component of the mode.
On the other hand, different modes are character-
ized by different spatial distributions on both sides
of the boundary. Nevertheless, this lack of discon-
tinuity in matex'ial properties in the region where
most of the mode energy is present may be the
deciding factor that produces the large trans-
mission and small reflection coefficients.

Another sRBent feature obtained fox a boundaxy
between two specific media is that the surface-
polax iton transmission coefficient is independent
of the direction of the incident surface polariton.
This is clearly evident in Fig. 3 for d=1.0. This
was also verlf led numerically for R number of
combinations of the parameters with d in the range
between 0.5 and 4.0. Qn the other hand, no simi-
1Rx' col relRtlon %'Rs found fox' the SQx'fRce-polRx'lton

reflection coefficient for the range of paxameters
investigated, i.e., the xeflection coefficient de-
pendent upon the direction of incidence. ~8 do
note that the reflection coefficient is comparable
in magnitode to the energy carried by the vacuum
modes, which are very few in number in our cal-
culations. Hence, the px'esent calculations may
well have been performed for values of d too small
to show a general x'esult for the surface-polariton
reflection coefficient. As another example of di-
rectional anisotropy, we found that, when the sur-
face polariton was incident towards a medium of
smaller &o~/&o, the total transmitted energy was
larger than for incidence onto media chax acteriled
by larger (dg(0.

Some of the other trends exhibited in Figs. 3 and

4 are not unexpected. As the change in g between
adjacent media increases, the total reflected en-
ergy increases and conversely the total transmit-
ted energy decreases. Furthermore, the fraction
of the transmitted energy which appears as vacuum
modes increases relative to the surface polariton
transmitted energy.

The variation in the various energy coefficients
with incx'easing 4 is shown in Figs. 5 and 6 for
surface polaritons incident onto a medium char-
acterized by (ega=2. 'l from a medium with aug&o
= 1.8. The total energy (surface polariton+ vacuum
modes) reflected by and transmitted through the
boundary changes little with increasing d (Figs. 5
and 8), with the exception of small regions of d
(hd-0. 2) characteristic of the appearance of a
new propagating vacuum mode. A gradual de-
crease in the total transmitted energy with in-
cx'8Rslng number of vacuum modes 18 dlscex'nlble
(and likewise a corresponding increase in the re-

l.00, p- ~ ~

cy 0.96—
UJ

0.94
CO ~

0.92
LU

0.90
c{; LI

088
LLI

~ 0.86-
0.84

0.5 2.0 3.0 4.0

FIG. 5. Total energy transmission coefficient as a function of the half-%idth d (=d p) of the structure in Fig. 1 for a
surface polariton incident on a medium for which u&/u = 2.7 from a medium for which m&/w = 1.8.
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FIG. 6. Total energy reflection coefficient as a function of the half-width d (= d 0) of the structure in Fig. 1 for a
surface polariton incident on a medium for which ~&/cu = 2.7 from a medium for vrhich u&/u'= l.8.

flected energy). Previous calculations on the re-
flection of Rayleigh waves at the end of a plate
indicated that the reflection coefficient became in-
dependent of d after the number of propagating
modes exceeded -10.' Because of the similarity
between the Rayleigh wave and surface-polariton
problems, we would expect similar results in the
present case. Hence the values for the total trans-
mitted and reflected energies for d &3.0 probably
provide reasonable estimates for the reflection-
transmission problem for an interface between
two semi-infinite media. This hypothesis is borne
out effectively by the small changes in these ener-

gy coefficients, with increasing d.
The thickness dependence of just the surface-

polariton transmission and reflection coefficients
is shown in Figs. 7 and 8. As noted previously for
the total energy coefficients, large variations in
the surface-polariton reflection and transmission
coefficients occurred in the vicinity of the emerg-
ence of new vacuum modes in the solution fields.
However, for large d both coefficients are approx-
imately independent of d, so that the limiting val-
ues of 0.90 for the transmission coefficient and
0.05 for the reflection coefficient shouM provide
a reasonable estimate for the case of two semi-
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FIG. V. The dependence of the surface-poiariton transmission coefficient on the thickness of the hajf-width d (=d 0)
of the structure in Fig. 1 for a surface polariton incident on a medium for which ~&/co=2. 7 from a medium for which
(dp/M = 1.8.
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FIG. 8. The dependence of the surface-polariton reflection coefficient on the thickness of the half-width d (=go) of
the structure in Fig. 1 for a surface polariton incident on a medium for which ~&/~ = 2.7 from a medium for which
(dp/M = 1.8.

infinite media.
It is difficult to draw any definitive conclusion

about the vacuum modes since our criterion for
energy conservation did not allow investigation of
cases with more than four such modes on each
side of the boundary. Since both the total and sur-
face-polax iton reflected and transmitted energies
are approximately independent of increases in d
(for d &3.0), the energy that is converted into vac-
uum modes also becomes constant. The directions

(for a limited number of discrete modes) into
which the energy is radiated into the vacuum are
shown in Figs. 9 and 10. Plotted there is the pow-
er generated along the direction of the total wave
vector for one component of the standing waves
that constitute the normal modes. In general, as
in the case of the reflection of Haylelgh waves,
very little energy is radiated into directions al-
most parallel to the media surfaces. Also evident
from those diagrams is the large difference in the

d=4.0 d=4.0
I
I

I

I

4J /4J = 2.7 40 /(d=l. s m /m=l. e /(d= P. .7

FIG. 9. The directions into which energy is radiated into the vacuum, for a limited number of vacuum modes. Plotted
is the power generated along the direction of the total wave vector for one component of the standing waves that con-
stitute the normal modes.
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x40
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I

x2

M& /40=2. 7

FIG. 10. The same as in Fig. 9.

energy radiated. into the '*transmitted" versus "re-
flected" directions. Although the results are cer-
tainly too apax se to be definitive, the power radi-
ated seems to increase with angles away from the
surfaces, again in agreement with the reflection of
Rayleigh waves. In that case, the power radiated
parallel to the interface (-90') from the media
surfaces also falls to zero. In the present results
there were no modes in approximately this direc-
tion and so this feature could not be tested. For
the case in which the incident surface polaritons
approach the boundary from opposite directions,
the transmitted and reflected xadiation patterns
are similar in structure, but differ in the total
pollex' x'RdiRted.

Some additional general remarks about the use-
fulness of this discrete element approach to sur-
face mode reflection and transmission problems
might prove useful. In general, analytical solu-
tiona when available are always preferable. The
problem with the present numerical approach is
that it is difficult to identify the trends unambig-
Uously' There 18 RlwRys the chRnce thRt the x'e-
aulta may be representative only of the range of

parameters studied. Furthermore, the ability of
a discrete number of modes to reproduce R contin-
uous fielddistribution a,ccurately depends on how
much the field changes in amplitude and phase be-
tween successive points along the boundary. In
principle, the number of subdivisions (and super-
imposed normal modes) may be increased until the
calculated fields are identical to the required fieM
distribution to arbitrary accuracy. In practice
th18 method x'elles on solving a aet of 2' llneRx'

equat1on8 where R 18 the Qumbex' of suM1vlslona
used. This involves storing a matrix of 2nx 2n

coefficients and invex'ting it numerically. Hence
the maximum number of points used is limited
by a combination of the cox e memory atora, ge
available and the expense and accuracy (for large
n) of inverting a complex 2n x 2n matrix. In our
case, this compromise led to a 104 x 104 matrix.
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