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Phonon scattering hy dislocations in metallic alloys
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The theory of phonon scattering by fluttering dislocations of Ninomiya is applied to the thermal conductivity of
copper alloys. Modifications made are the inclusion of a Peierls potential and of a restoring force on the dislocation
due to solute atmospheres around the dislocation. In addition to the reradiation of phonons, scattering by the strain
field around the dislocation and by the phonon-electron scattering are included to obtain the overall phonon
relaxation rate. This theory is applied in particular to the lattice thermal conductivity of copper-aluminum alloys.
The effects of dispersal of the atmospheres by moderate annealing is discussed. Agreement with experiment in the
vicinity of the "bow" around 2—3 K could be obtained.

I. INTRODUCTION

The lattice thermal conductivity of metallic
systems has been studied extensively through the
thermal conductivity of alloys. 's' At low tempera-
tures the principal phonon scattering mechanisms
are free electrons and; for plastically deformed
specimens, dislocations. Both scattering mech-
anisms vary as the first power of frequency, and
the corresponding thermal resistivity should vary
as 7. ', where T is the absolute temperature.
While early measurements conformed to that ex-
pectation, more recent and more detailed investi-
gations' ' have shown deviations from a T' depen-
dence of the lattice thermal conductivity at low
temperatures. This deviation appears as a re-
duction in the lattice thermal conductivity, bowing
the curve, and this bow is centered usually be-
tween 2 to 3 K. To explain it, one must invoke a
different scattering mechanism than the anhar-
monic scattering by the static strain field around
the dis1ocation, which is the basis of the earlier
theory. '

Since dislocations are mobile, they respond
dynamically to incident thermal phonons, re-
sulting at low temperatures to dislocation flutter
which can enhance scattering, especially near
resonance frequencies, so that the thermal con-
ductivity curve is depressed in the vicinity of the
corresponding temperature. This scattering
mechanism was proposed by Qranato and I Gcke'
in analogy to the forced vibration of a stretched
string with damping. Their mode1. has proven
particularly successful when appl. ied to internal
friction and ultrasonic attenuation. It has also
been applied to thermal resistance due to phonon
scattering by dislocations, particularly in the case
of alkali haides, where the observed thermal re-
sistances axe much larger than would be expected
from scattering by static dislocations. The ex-
perimental evidence has recently been reviewed
in some detail by Anderson. e

The stretched string mode1. is not complete,
since it l.eaves indeterminate parameters such as
line tension and mass. The treatment of Nino-
miya" is self-consistent and more satisfactory,
because it predicts these quantaties and also
avoids other difficulties discussed by Ninomiya.

The present treatment is based on Ninomiya's
theory, but considers additional factors needed
to treat the lattice thermal resistivity of dis1.o-
cations in alloys: (1) An appropriate weighting
of the scattering cross section over angles, (2)
the inclusion of scattering of phonons by electrons
and by the static strain fields of the dislocations,
(3) the difference between longitudinal and trans-
verse phonons in their scattering not only by the
mobile dislocations but also by the electrons, and
(4) the restoring force acting on the vibrational
dislocation not only owing to the Peierl. s potential
but also arising from solute atmospheres. The
theory is then applied to the case of Cu—10 at. %
Al and compared to the results of I inz et gl. '

II. MODEL

The problem of phonon scattering by a flutter-
ing dislocation has an intimate connection with
that of finding the eigenstates of lattice vibration
in a dislocated crystal. . Ninomiya investigated
the eigenfrequencies of a dislocated crystal in an
isotropic elastic continuum. He found that the
introduction of a dislocation into a crystal shifts
the perfect crystal's phonon band according to
Bayleigh's theorem. " %hile most modes experi-
ence an inconsequential shift, the dislocation also
causes localized waves lying below the bottom of
the band. This must be undex'stood as follows:
Each localized wave has a wave number and must
be compared to all modes of the perfect crystal
whose wave-vector components are parallel to
the dislocation axis and are equal to that wave
number. The frequencies of those modes form a
continuous ba.nd with a lower limit for each such
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wave number. If the frequency of the localized
wave lies below that band the wave is truly ortho-
gonal to all modes of the perfect crystal, and is
a localized mode. If the frequency lies in the band
the wave is not an independent mode, but gives
rise to resonant scattering of the lattice waves.

The localized waves exist for both screw and

edge dislocations. For edge dislocations the lo-
calized waves lie below the band of perfect crys-
tal modes. They are thus orthogonal to those
modes and are truly independent modes. For
screw dislocations the localized waves lie closer
to the band edge, and may even slightly overlap
the band of perfect crystal modes of the same
wave-vector component. As a result, screw dis-
locations will scatter phonons more strongly than

edge dislocations, and some modes will even be
scattered resonantly, because their wave-vector
component matches the wave number of the lo-
calized wave of the same frequency. The localized
wave is then no longer a normal mode of the sys-
tem.

The resonant scattering occurs for a transverse
phonon incident on a screw dislocation at some
oblique angle. Longitudinal waves are scattered
but cannot satisfy the conditions needed for reso-
nance.

When the dislocation lies along the z axis and

its slip plane is taken to be the xz plane, the dif-
ferential cross section derived through the Nino-
miya formalism is

do... p'C *(q„s,)C (q„s,)
dQ Sv ) O'T(k)E(uP —it) )

4

x ~ ~ 4*q„sC q„s,
C ] (C ) Pl)

"' dQ.
no& dQ

(2)

n, &q, V'T and n0+q, ~ VT are the deviations from
0

equilibrium of the phonon distribution assumed in
order to satisfy the Boltzmann equation assuming
a relaxation time.

When the differential cross section (1) is sub-
stituted into (2) with the standard assumption and
averaged over the polar scattering angle the sec-
ond term in (2) is zero. The resulting cross sec-
tion due to the first term before averaging over
the scattering angles is

where dQ = pdcr and (p, Q) are polar position co-
ordinates lying in a plane perpendicular to the
axis of the dislocation. The polarization index
for incident and scattered waves is given, respec-
tively, by s0 and s, and the velocity c of a phonon
before and after scattering depends upon polariza-
tion and is subscripted s0 or s. A specific polari-
zation (transverse or longitudinal) is denoted by

f or I Th.e denominator ~k'T(k)E(uF —ie)
~

and the
function 4 are defined and discussed in the Appen-
dix. Here k is the wave number of a localized
wave propagating along the dislocation, q is a
phonon wave vector, and p, is the shear modulus
of the material.

What is of interest in transport problems is the
total weighted cross section. The differential
cross section is first weighted by a factor which
measures the relative change in the component of
phonon velocity along the initial direction of mo-
tion and then integrated over the scattering angle,
Vlz.

~

(7„,—, +, '. ,
~

~ q '(p'(q4-k )+p (q —3k'q'+4k )+H(q' —k )[p'(q -k')+4p'(q' —k )j}8 [O'T k E uP —se ]'~ c&

where

@)
1 xfy&1

0 ify&j.

k'T(k)E(&u'- ic) =muP+k'T+Im term (4)

and c,q, = c,q, = c,q, . The P's are the direction
cosines of the Burgers vector b with the disloca-
tion axis, x indicating an edge component and z a
screw component.

As pointed out in the Appendix, the denominator
of (3) has the form

I

Here m and T are dynamical, frequency-depen-
dent, dislocation mass, and line tension, respec-
tively. When the real part is equal to zero, reso-
nant scattering occurs. However, the condition
q0~ k must be also met.

It is now evident from Figs. j. and 2 that a reso-
nance condition is satisfied for a transverse-pho-
non incident at some angle on a screw dislocation,
but is not satisfied for an edge dislocation. If
the mass curve for the edge dislocation were lower
the resonance condition could be satisfied. The
addition of a potential field in which the disloca-
tion vibrates can create just this effect, as will
be seen below.
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A dislocation vibrating in a real crystal experi-
ences a potential due to the discreteness of the
crystal, called the Peierls potential. In addition,
if the material is an alloy, solute atoms tend to

q = q /60
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FIG. l. &lot of mscmt and (k c&/z2)TS versus kmc~&/~~

for a transverse-phonon incident on a screw dislocation.
Resonance occurs where the bvo curves cross, at 80
~ 43', since this is equivalent to the condition -m~~2
+k2T~ = 0. The curves also intersect at near parallel
incidence. This intersection makes a lesser contribu-
tion to the weighted cross section and, furthermore,
implies the phase velocity along the dislocation is ap-
proximately equal to the transverse-phonon velocity.
q& is the Debye wave vector.

rearrange themselves about the dislocation, form-
ing solute or Cottrell. atmospheres; this results
in yet another potential field for the dislocation.
The addition of these two potentials will change
the equations of motion of the dislocation and thus
change its dynamical scattering properties.

In modifying Eg. (3) to accomodate these addi-
tional effects we confine oux selves to infinitesimal
vibrations of the dislocation so that only the har-
monic terms in these potentials will be consid-
ered. Then, just as in the case of a simple har-
monic oscillator, the potential per unit length of
dislocation wi1.1 be equal to one half the spring
force constant times the square of the dislocation
amplitude. Here the spring force constant is a
measure of the "strength" of the interaction. For
the Peiexls potential we shall designate this
strength by I' and for the Cottrell atmosphere by
E. The addition of these potentials into the equa-
tion of motion has the effect of replacing O'T(O)
in the denominator of (3) by

O'T(O) -O'T, (O)+ P, (screw), (5a)

—Bls(&dps+ &dr - (d ) + O Ts+1 -
~ (6a)

O'T(O) -O'Ts(O)+Ps+X (edge) . (5b)

The quantities P~, &z, and E will be discussed
later. The atmosphere term has been omitted for
screw di.slocations. In alloys where the strain
field of the solute can be regarded as having
spherical symmetry, there is no interaction be-
tween it and the strain field of a screw disloca-
tion. There is, however, a strong interaction
between the dilatational. stx'ain of an edge disloca-
tion and the solute.

We now return to Ecl. (3) to calculate the scat-
tering cross section. For computational purposes
we make the following approximations fox edge
and screw dislocations, respectively (see Appen-
dix):

0 0.5 l.o0.0
KK C

QJ

FIG. 2. Plotting m&c~& and (k2c2&/(d2) T& against
42c~&/(d~ for a transverse-phonon incident on an edge
dislocation does not show a resonance condition, The
bvo curves do not cross and the condition -m@M + k T~
~ 0 cannot be met. It is evident, however, that a lower-
ing of the mass curve would result in r'esonance as il-
lustrated by mzc2&. The introduction of a Cottrell atmos-
phere or the Peierls potential produces this effect. q~
is the Debye wave vector.

yg (uf~s- uP) +ORT+si ', (6b)$ PS

where q is 5 and 2.5 for transverse and longi-
tudinal waves, respectively, and we have defined
the H~ ~ by m~~a ~=I' and K, respectively. The
values of the m's and T's axe suitable avexages
chosen in accordance with the particulax' system
and will be discussed shortly.

Now consider (6a) for the edge dislocation. The
mass term may be factoxed as

—ms(l —Q /4P)QJ = —m'& Eo
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IV. PEIERLS POTENTIAL

Qwing to lattice discreteness and the periodicity
of a real crystal, a dislocation will experience a
periodic variation in its misfit energy as function
of position x in the slip plane. For simplicity
let W(x), the potential energy per unit length of
dislocation due to the misfit, vary sinusoidally
with the period of the lattice parameter b. It may
then be expressed as

W(x)=W, +W, (x).

Wo is some reference energy, W (x) is

TV 2p 'r

W (x)=e 1 —cos—x
~P )

and W„ is the Peierls potential.
When the dislocation vibrates with infinitesimal

amplitude (11) may be expanded keeping only the
harmonic term so that

=w'
W~(x) =

bm
W~x'. (12)

The strength of the potential P in Eq. (4) can be
identified with

2r'P=
2 F~. (13)

Associated with W(x) is a periodic stress a(x)
given by

defining m~, where 0'= ~~~+ ~~. The effective
mass m~ is frequency dependent and for v &0,
m~&mE thus lowering the mass curve as shown in
Fig. 2 and introducing a frequency-dependent res-
onance condition. This is similarly the case for a
screw dislocation.

If dislocations are randomly oriented the cross
section must be averaged over all possibl. e inci-
dent phonon directions, and since the 0 dependence
is almost entirely in the denominator of the cross
section this can be approximated as

76 P'b' ,[(Cs(q„s,)), l'
E y 0 81 qs E

( )
44''b' ~(c's(qoi 0)&a~ g ) (8b)81 8T2Q' S

The numerical factors of 76/81 and 44/81 arise
from an averaging over the scattering angles 8,
and P, . Also I(~) is an integral of form

dx
f(~) =

(
s 6)2+y3 ~

where x = b/q„b = (mc', /T) (1- 0'/ uP), and y = mc', /
gT.

1dW(x)
b dx

The maximum stress is called Peierls stress
0'~ and is

1
Op=- W~.

(14)

(15)

It is a phenomenological parameter and the poten-
tial strength can be related to it by using (13) and
(15)

P = 27TO'~ ~ (16)

V. COTTRELL ATMOSPHERE

When a dislocation is at rest, solute atoms mi-
grate to and distribute themselves around it to
form a Cottrell atmosphere. Because of cylindri-
cal symmetry this distribution may be convenient-.
ly described in terms of the polar coordinates
(p, P). As the dislocation is displaced, in the x
direction, it experiences a potential per unit
length V(x) due to the presence of the solute at-
mosphere. Since the dislocation oscillates with
a frequency much higher than the jump frequency
of the solutes the atmosphere is considered to be
stationary. Thus with respect to the new position
of the dislocation the distribution of the solutes
may be described in terms of the coordinates
(p', Q'). The transformation between the two sets
of coordinates is p' =p- g.

The potential energy per unit length is given by

~R
t

2&

~(x) = [~(p 4) c]U. (p' 4"-)pdpde. (18)
~r ~0

0

Here c(p, g) is the distribution of solutes about
the dislocation and co the average concentration
of solutes in the crystal. The interaction energy
between a solute and the dislocation is U„,(p', P').

In order to evaluate (18) the functional form of
U„, and c(p, P), which in turn depends on U„„
must be known. There are two contributions to
the interaction energy: the size effect and the
bulk modulus effect.

First consider the size effect. By inserting an
impurity of different size than the atoms of the
matrix, a local strain field is created which in-

Thus with the use of (16) and using the expres-
sion for mass given in the Appendix, the resonant
frequency due to the Peierls potential becomes

Pg 8' c~~G

m,. b2M,. p,
'

where j=E or S (edge or screw dislocations), and
M is a dimensionaless quantity containing the fre-
quency dependence of m,. which is defined in the
Appendix.
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teraets with the stxain field of the dislocation.
The interaction energy is

1+4'/38" 1+4@,/38, ' (20)

U(p, Q) = I'be
p

5g is the external change in volume due to the in-
sertion of the solute, and in a continuum approxi-
mation is given by ~3

It is evident that the size effect sets the lower li-
mit on ro. When the entire integrand is considered
those terms which include the modulus effect are
x elatively small and may well be neglected. %6
chose x0=2b. Based on a relation between dis-
location density and its stxain field cutoff given by
Kocks and Seattergood, "the outer cutoff is taken
as R= 50xo.

We now expand (23) and substitute this along
(19) and (22) into (18). Transforming coordinate
variables we obtain

where the subscripts m and s refex to matrix and
solute and the quantities p Rnd B Rx'6 the Rtomic
volume Rnd bulk modules, respectively. The fac-
tor I' in (19) is

V(x)—
coI' 6v "a t" pdpsinmgdg

which takes the form

(24)

Sg 1 vj' (21) {25)

whex'e v is the Poisson ratio.
The modulus effect arises because solutes have

different bonding pxoperties with matrix atoms than
matrix atoms have with themselves. In a contin-
uum model the solute and matrix atoms are as-
cribed different elastic moduli as though they were
elastic balls of diffex'ent materials. Consequently,
the solute atoms relax the strain field of the dis-
location differently than the matrix atoms. If the
volume of the strained solute is taken to be ap-
proximately equal to that of the matrix atom it
replaces, the interaction energy between it and an

edge dlsloeatlon ls

from which one finds the x'esonance frequency

X 2vc,l"bv'c,' {8'-r,)
ph~M~ &gT

(2V)

for x«x . The first term is just the average
binding energy of the dislocation to the solute at-
mosphex6. The second term is the restoring po-
tential due to the harmonic appxoximation. Hence
the coefficient K in (Sb) becomes

U'(p, p) =-—,'V 8,1' sin'Q/p', (22)
VI. NUMERICAL, EVAI.UATION OF RESONANCE

FREQUENCIES

c(p, P) =coexp[-(U+ U')/ksTj, (23)

where k~ is the Boltzmann constant and T the ab-
solute temperature. The potential energy per
unit l.ength may now be calculated with the aid of
(19), (22), and (23).

The potentials are singul, ar at p =0, since con-
tinuum theory fails at the dislocation core. %hen
evaluating V(x) the core region must be excluded.
This can be done simply by choosing an inner cut-
off radius, r, for p. If r, is large enough, c(p, P)
may be expanded in a power series Rnd only first-
order terms need be considered. In order to justi-
fy retaining only fix st-oxder terms xo must be
chosen such that it has a value laxger than pU and
{p'U')"~ simultaneously. For Cu —10 at. 'ro Al this
reduces numerically to

~, &1'bv/ksT=1. 95b size effect,

~, & (I'e„B,/2k T)"a=0.596b modulus effect

where 8,= (8„8,)/8 8,-is the fractional change
in the elastic constant.

The concentration of sot.ute atoms around an
edge dislocation is thus

In ordex to numerically evaluate resonance fre-
quencies a value of dynamical dislocation mass as
defined in the Appendix, m(co) = (p.b'/4wc', )M(e),
must be obtained. Thermal, conductivity experi-
ments on Cu—10 at. % Al indicate that resonance
scattering occurs between 2 and 3 K. This cox'-
responds to a dominant phonon frequency of about
~~th of the Debye frequency.

From Figs. 3. and 2 it can be seen that resonance
occurs at a different angle of incidence for each
frequency. Fox paraDel incidence the mass be-
comes infinite. To circumvent this difficulty the
angular range is arbitrarily cut off at b'c', /v'
=0.9 and then averaged over the range. The same
procedure is adopted fox' the dynamical line ten-
sion.

The value of the resonance fx'equency due to the
Peierls potential, depends on the ratio of o~/p
as seen from Eq. (17). As reported by Seeger
et ~E.' this ratio has the value of 4.0x 10 for
polycrystalline copper. This value is approxi-
mately 200 times larger than observed by Young"
in a single crystal of pux'e copper. A possible
explanation for the discx'epancy is that Young may



F. L. MADARASZ AWD P. G. KLKMKHS

5.62 6.39 longitudinal

and those due to the solute atmospheres (27) are

+~ = 5.52 transverse

6.6V longitudinal

all in units of 10" (rad/sec)2.

VII. THERMAL CONDUCTIVITY

For the isotropie Debye continuum- the lattice
thermal conductivity is given by

~='~(-'z '" "" '(-)..
6v Ee), 0 (e*- 1)'

where x=ke/k~T, e is the Debye temperature,
and v, is the relaxation time.

The px'edoxniQRnt scattering mechanisms at low
temperatures are phonon-electron scattering and
both the resonant and the anharmonic scattering
of phonons by dislocations. At these temperatures
umklapp-processes are very weak and may be
neglected. Normal processes may also be dis-
regarded since none of the scattering mechanisms
being considered are strongly dependent on fre-
quency. Thus the total relaxation rate 1/T is equal
to the sum of the relaxation rates for the indivi-
dual scattering processes.

The phonon-electron relaxation time varies in
direct proportion to the wavelength' and may be
written as

(28)

r„=E, /q,
0

for each polarization. The parameter of E is in-
versely proportional to the square of the phonon-
electron coupling parameter, which is difficult to
calculate from first principles. However, it can
be deduced from thermal conductivity data. At
low temperature the value of (28) which corres-
ponds to a well annea, led sample where only pho-
non-electron interactions are important becoxnes'6

(29)

K = 7.18ks&u2oT'E/6m'e',

where E=+, E, . Comparing this to the low-tem-
perature lattice thermal conductivities of well

(30)

have observed the stress needed in oxder to trans-
late a kink over the Peierls barrier. At any rate,
Seeger et al. measured some type of locking mech-
anism in polycrystalline copper, and if it is Qot
the Peierls potential it may be interpreted as an
effective Peier1. s potential for the present purpose.

Using Eg. (17) and the above information the re-
sonance frequencies due to Peierls potential are

edge screw

4.58 5.14 transverse

'rs = ~Nu cs &s(» so)~ (32)

As in the case of anharmonie scattering the as-
sumption of twice as many edge than screws dis-
locations require

os(&u, so) = —', os(&@,s,) + —,
' o~(v, so),

where os and o~ are given by Eg. (8).
Using the above relaxation times in (28), theo-

retical values of lattice thexmal conductivity were
calculated. These values, shown in Fig. 3 a.s solid
lines, have been plotted for three dislocation den-
sities. The dashed curves are the experimental
curves of I inz et gl. ' Their lowest temperature
VRlues wex'e omitted sjnce thRt dRtR 1s Qow con-
sidered in doubt (private communication). A rea-
sonably good fit between experimental data and
theory is obtained when a dislocation density of
N~=4. 0x 10'~ cm 2 is used in the calculations.

If the effects of the solute atmosphere are re-.
moved by annealing the sample so as to disperse
the atmospheres but leave the bare dislocations, ' "
the resonant frequency of the dislocation is
lowered. This decrease in x'esonant frequency
which shifts the bow is shown by the dashed curve
in Fig. 4. %ith the elimination of the atmospheres
comes a slight increase in the magnitude of E
since the strain field scattexing is no longer en-
hanced by the solutes. The Qet effect is that the

anneal. ed dilute copper alloys E is found to be
1.12 x 10 ' sec/cm. Since longitudinal waves suf-
fer most of the scattering it will be assumed 95'fo

of the thermal conductivity is due to the transverse
modes, hence, E, =E/21 and E, =(10/21)E.

For anhax'monic dislocation scattering, two re-
laxation times must be considered, one fox scat-
tering by an edge dislocation and the other by a
screw dislocation. They are

Ts=4z/{13Nsb (u'D),

7'~ =z/(2N~b uPD),

where z = v/vD and Nz and N~ are the densities
of edge and screw dislocations. The total density
is then N~. =Nz+P~. Dislocations of edge charac-
ter are predominant. " Thus we assume there are
twice as many edge as screw dislocations, as
would be the case of a Burgers vector which is
randomly oxiented with respect to the dislocation
line, "Ns= (&)N~ and Ns = (3)N~.

Since the solute atoms around dislocations are
themselves capRbl. e of scattering phonoQS lt will
be further assumed that the static strain field
scattering is enhanced by a factor of 2, in rough
accord with observation. '

Finally the relaxation time for the resonance
mechanism i.s
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FIG. 3. Lattice thermal conductivity versus temperature. The solid lines are theoretical curves. As indicated, they
are shown as a function of dislocation density, N&. The dotted lines are experimental curves, Linz et al. For N&
=4 & 10 cm" the theoretical curve is a close fit to the deformed specimen experimental curve.

thermal conductivity curves with and without at-
mospheres overlap each other in the vicinity of the
bow.

This crossing phenomenon is consistent with the
experimental results of Friedmann' for Cu—7
at. %%uOGe . Hi sdata indicate s acrossoverat about
3.4 K which. appears to be close to the value shown
in Fig. 4. Unfortunately Friedmann's data do not
extend to low enough temperatures to see the se-
cond crossover point which the present theory pre-

diets. The trend of his data indicates that this
may occur; but it was, in any case, not expected
at that time.

The present paper has applied Ninomiya's theory
of the scattering of phonons by mobile dislocations
to the case of metallic alloys, with particular
reference to copper alloys, for which extensive
experimental data exists. If the other scattering
mechanisms are taken into account, such as the
anharmonic effect of the strain field and the large
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FIG. 4. This figure illustrates the effect on the lattice thermal conductivity of a deformed specimen produced by re-
moving from the theory the potential due to the Cottrell atmospheres. Experimentally this corresponds to a deforma-
tion and then an annealing of the sample. The solid curve was calculated with atmospheres and the dashed curve with-
out atmospheres. Both curves were calculated for a dislocation density of %&=4 & 10 ~ cm . The straight line "an-
nealed" curve was calculated with just phonon-electron interactions.

background of phonon-electron interactions, it
appears that the theory can adequately describe
the scattering of phonons by dislocations.

To be fully successful, the theory would also
have to describe the thermal resistance due to
dlslocatlons ln 1nsulatorsq particularly alkali hR-
lides. The large body of experimental data has
recently been reviewed by Anderson. ' There is

no doubt that strain-field scattering alone is in-
adequate to explain the observed thermal resis-
tivities. It is not clear whether Ninomiya's theory,
suitably modified for pinning of dislocations at
nodes and other special sites, can adequately de-
scribe the data, for the consequences of that theo-
ry have not yet been fully explored. One difficulty
is that in a resonance theory the conductivity de-
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pends not on the strength of the scattering, but on
the mean free path of those phonons which are not
strongly scattered by the dislocations. In the case
of alloys, this problem is not as critical, owing
to the background interaction between phonons and

electrons, and also owing to the higher densities
of dislocations which makes strain-field scattering
significant.

VIII. SUMMARY

Using the theory of Ninomiya for phonon-dis-
location interactions it was found that the intro-
duction of the Peierls potential and a Cottrell
atmosphere will shift the localized modes of dis-
locations. This shift gives rise to resonance scat-
tering by edge dislocations whereas before the in-
troduction of these potentials only screw disloca-
tions could scatter resonantly. The resonance
scattering by a screw di.slocation requires a trans-
verse wave incident obliquely on it. The intro-
duction of the additional potentials makes the
resonance condition depend on frequency rather
than direction of incidence.

Resonance frequencies were cal, culated for both
the Peierl. s potential and a Cottrell atmosphere.
At low temperatures the dislocation ft.utters with
infinitesimal amplitudes and only the harmonic
terms in these potential. wer'e considered in the
calculation of the resonance frequenci. es.

The introduction of dislocation reduces the
magnitude of the lattice thermal conductivity. In
general its T' temperature dependence at low

temperatures may be explained by the scattering
of thermal. phonons by the static strain field sur-
rounding the disl. ocation. There is, however, in
the 2-3 K range, a drastic change in the slope of
the E versus T plot as reported by Linz et pl. ,

'
Leaver and Charsley, ~ and Vorhaus and Anderson'
for Cu—10 at. /0 Al. The theory of resonance scat-
tering gives rise to an interaction between domin-
ant phonons and fluttering dislocations in this
temperature interval which is substantially strong-
er than the anharmonic mechanism. The result
is a bow in the K, curve. Here the dynamic model
of phonon scattering seems not only to be a rea-
sonable one but is in good agreement with experi-
ment.
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There arise two quantities in the formalism of
Ninomiya which are used in the differential. cross
section of Eq. (1). ln order to make things more
transparent we present some of the details of
these quantities in this Appendix.

The first of these quantities is

e(q„s,) =-i[(C b)(q n)+(b q )(e ~ n)]. (A1)

In brief @ contains the information of how a par-
ticul. ar wave q of polarization & interacts with a
dislocation of character b which oscillates in a
slip plane defined by a unit normal vector n.

The second quantity is quite lengthy and the full
expression may be found in the Appendix of Nino-
mya's paper. " It suffices here to give an ab-
breviated form

Thus we may write

O'T(k)E{cu'- ie) =-muP+O'T+lm term,

which is analogous to a force vibrating string with
damping. %'hen the real part of this expression is
zero resonance occurs.

Finally, it should be noted that'the coefficient
of oP in the imaginary term carries units of mass
per unit length. For each frequency it has the
value of some fraction of the dynamical mass. It
then turns out to be extremely convenient for
computational reasons to write it as im/qco', where
1/q is the appropriate fraction.

, p.b2 . , pb2+k' t((o)+in(u' g((u) .
4g 4m

(A2)

Here T(P) is an instantaneous dislocation bne ten-
sion calculated for just one particular mode of vi-
bration. M(w), t(e), and g(a) are functions of the
frequency of vibration ~ and are dimensionless.

When M and t are combined with the other fac-
tors to make up to coefficients of ~2 and k2 in

(A2) the results are identified as dynamical mass
and dynamical line tension since these coefficients
are frequency dependent, and carry the proper
units. These dynamical quantities are

pb2 1
rn{~)=- —,M(cu),

4m c',

Q2
T(ro) = t(&u) .
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