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The observation of nuclear quadrupole interactions in amorphous solids provides a unique possibility of obtaining
information about the angular distribution of local ionic coordinations, complementary to the information about
radial distributions deduced from x-ray and neutron diA'raction and from extended x-ray absorption fine structure
measurements. In the present paper the relation between ionic coordinations and the distribution of electric field

gradients {EFG) is investigated. It is shown that the distribution function P(V„,g) of the splitting parameters V„
(the electric field gradient) and y (the asymmetry parameter) in general yields zero probability both for V„=0 and

for y = 0. For solids which are isotropic on the average, the distribution function of the components V,.I, of the EFG
tensor depends only on two variables, the invariant functions of the tensor components [Det(V,, ) and XV,.'„].
Expressions for these quantities in terms of the radial coordinates of the ions causing the EFG and of the bond

angles between pairs of ions are given. For amorphous solids with random ionic coordination an analytic

approximation for the distribution function P(V„,y) is derived. This function is strongly dominated by the
distribution of ions in the first coordination shell. The results are applied to the analysis of Mossbauer spectra of
'"Gd in amorphous Gd-Ni alloys.

I. INTRODUCTION

Our knowledge of atomic coordination in amor-
phous solids is rather limited although many ex-
perimental investigations of the atomic structure
of amorphous materials have been performed. A

basic limitation is inherent in the prevailing
source of experimental information: x- ray and
neutron diffraction, since diffraction patterns
are primarily determined by radia/ pair-distribu-
tion functions. Inferences on the directional char-
acteristics of short- range atomic coordination
can be obtained only indirectly, via comparison
with specific models, and in general they lack
conclusive power. The alternative method applied
in structural investigations of amorphous solids,
EXAFS (extended x-ray absorption fine structure),
is more sensitive to details of the local atomic
coordination, but again the experimental results
are determined by the number and radial distances
of atoms in the first few coordination shells and
carry no information on their angular distribu-
tion.

Thus, experimental results obtained by these
methods are not well suited for distinguishing be-
tween structural models for amorphous metals
and alloys based eithe'r on dense random packing
of hard spheres' (DHPHS) or on models stressing

the preservation of chemical bonding require-
ments, specifically of bond angles, in local
atomic coordinations.

In-this situation the exploitation of experimental
techniques capable of yielding supplementary in-
formation on angular atomic coordinations is high-
ly desirable. One possibility is provided by the
interaction between the quadrupole moment of
atomic nuclei and the electric field gradient
(EFG) originating from the distribution of elec-
tric charges around the nuclei, the electric quad-
rupole interaction. This interaction can be ob-
served experimentally by nuclear magnetic reso-
nance, 3 by Mossbauer spectroscopy, 4 or by mea-
surements of perturbed angular correlations. ~

Although many experimental observations of
quadrupole interactions in amorphous solids have
been reported, ~ ' mostly by NMR or Mossbauer
spectroscopy, the results have been analyzed with
respect to their significance for structural in-
formation only to a limited extent. ' '

Several studies have been devoted to the closely
related problem of the distribution of crystal-field
splittings in amorphous alloys. ' ' Apart from
different shielding factors, the EFG caused by
charges outside the own electronic shell of the
probe nucleus is identical to the crystal field of
second order acting on the electrons located at
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this nucleus. According to the random anisotropy
model, '5 which is quite successful in describing
the magnetic properties of amorphous alloys con-
taining rare-earth ions, the crystal field of second
order along with exchange interactions plays a
dominant role in determining these magnetic
properties. In this context Cochxane et aE. '3 have
investigated the distribution of level splittings of
an electronic state with total angular momentum
4 =1 due to the charge distribution derived from
a DBPHS model. Their results are quite similar
to those obtained in analogous calculations for
the nuclear quadrupole interaction, '8 as may be
expected in view of the above-mentioned equiva-
lence between the two problems. The possibility
of obtaining direct experimental information on
the crystal-field distribution in amorphous solids
via measurements of the quadrupole interaction
is another source of interest for investigations of
this kind.

In all cases referred to the experimental data
were compared with distributions of energy levels
or splitting parameters derived from computer
simulations of the amorphous structure in the
framework of DHPHS models. A general investi-
gation of the relation between ionic coordination
and level distribution has not yet been attempted.
The present paper is devoted to this subject. In
Sec. 0 we expound the basic definitions and rela-
tions needed. Then we demonstrate that the task
is simplified if we assume the material under
study to be isotropic on the average. The assump-
tion of overall isotropy is appropriate in princi-
ple~6 for several types of amorphous solids:
amorphous metals and aQoys, tetrahedrally co-
ordinated semiconcluctors, and fox most oxide
glasses. In Sec, III we concentrate on amorphous
solids with randomly arranged iona, deriving @n

analytic approximation for the distx'ibution function
of the splitting parameters for this case. The re-
sults obtained in Sec. III are then applied to the
analysis of ~55Qd Mossbauer spectra of amorphous
Gd-Ni alloys in Sec. IV.

In our calculations we make use of two essential
approximations:

(i) ln our considerations of random amorphous
structures we treat the ions as hard spheres.
This approach has generally yielded good approxi-
mations for statistical aspects of amorphous
metallic solids and simple liquids such as radial
pair-distribution functions and particularly in the
evaluation of excluded volume effects. '~ Since
these aspects are of primary importance in the
present work, we may expect the hard-sphere
approach to yield reasonable results.

(ii) Calculations of the EFG are carried out in a
point-charge model. This approach often yields

wrong values for the EFG, especially in metallic
solids where the conduction electrons strongly
contribute to the EFG.' The empirical correla-
tion between experimental EFG values and those
calculated in the point, charge model which has
been established for a large number of metallic
solids, '9 however, shows that the response of the
conduction electrons to the potential due to the
skeleton of ionic charges leads to a contribution
which is approximately proportional to the EFG
generated by the ionic charges. Insofar as this
proportionality holcls the essential x'esult d8rived
in the present work, the functional form of the
distribution functions, is not affected. Only the
numerical values of the parameters appeaxing in

the distribution functions will be different from
the results obtained by point charge calculations.

Vfe have completely disregarded contributions of
the local valence electrons to the EFG. In prac-
tical applications the possible existence of such
contributions has to be considered carefully as
they may dominate the observed quadrupole
splitting, particularly in the case of rare-earth
ions,

In our work we have profited from the fact that
our problem is a special case of the broader sub-
ject of random matrices which has been investi-
gated thoroughly in connection with the statistical
theory of nuclear energy levels. 20 There the in-
terest has focused on Nx N matrices with large N,
whereas we have to deal with 3 x 3 matrices with
the additional restriction of zero trace. Never-
theless some of the genexal results can be applied
in our case.

II. REI.A'i'ION BETWEEN IONIC COORDINATION
AND EFG MSTRIBUTION

A. The EFG tensor

The term in the hyperfi. ne Hamiltonian due to
the nuclear quadrupole interaction (Hefs. 3, 4,
and 21), Ho =Q:V, is the product of two tensor
quantities: the nuclear quadrupole moment tensor Q
which is a measure for the deviation of the nuclear
charge distribution from spherical shape and the
EFG tensor 7.

The components V;~ of the EFG tensor caused by
an assembly of discrete charges q„(with Cartesian
coordinates x,'"', polar coordinates x„, e„,P„) at a
nucleus (whose position defines the origin of the
coordinate system) are defined by

This 3 x 3 tensor is symmetric (V„.= V~,) and has
zero trace Q, V;, =0). Thus, it is determined by
five independent quantities which can be expressed
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in terms of the spherical harmonics Y'2 (8„,Q„)
(m=0, +1,+2) of order 2:

~.~2 ~n (2)

The quantities V, are complex, and the calcula-
tions are carried through more conveniently in

terms of real equivalents U:

U, = V', = g q„(3 cos'8„—1)r„-',

U, = —(V2+ V2') = v'3 g q„sin8„cos8„cosg„r,~,

U&
——. —(V22—V22) = -,' v'3 q„sin28„sin2$„r„3,

i 2

—(V2+ V2') =-,' v'3 q„sin28„cos'p„r„~.
4 q2

U2=. —(V2 —V2') = $3 q„sin8„cos8„sing„r„~,i42

(3)

(i) Derivation of the distribution function

P„(UO, U„U2, U), U4) [abbreviated notation:
P, ( . U .. )] of the quantities U from the dis-
tribution of the structural parameters (q„;r„,8„,g„)
using Eqs. (3). We see no possibility of expressing
the relation between P„( U„) and the dis-
tribution of the structural parameters in general
terms. The following sections will deal with this
relation for specific structural models.

(ii) From the distribution function P„(~ ~ U„~ ~ ~ )
obtained in step (i) the function P(V„,q) must be
derived. The inverse of Eq. (4) expresses the
quantities U as functions of V„,g, and of the
Euler angles (o, P, y) when the explicit form" of
the transformation matrix R(n, P, y) is substi-
tuted.

Adapting a furmula derived by Porter and
Rosenzweig'3 in establishing the relation between
the distribution function of the eigenvalues of a
real symmetric matrix and the distribution func-
tion of the matrix elements we obtain for the
functional determinant the expression

The tensor components V;~ are linear combina-
tions of the quantities U .

By a suitable choice of the coordinate system,
that is, by some rotation defined by the Euler
angles (u, P, y), the tensor V can be diagonalized.
Formally, this operation is expressed in. terms
of a unite, ry matrix H(n, P, y):

V'=R(o, P, y)V%-'(o, P, y). (4)

8. The distribution function P( V„,q): General results

The basic distribution determining the physical
quantities of interest is the spatial distribution of
the ionic charges q„. Any structural model of an

amorphous solid entails a distribution function of
the charges q„and of their coordinates (r„, 8„,Q„).

Qur task is then to establish the connection be
tween the structural model and the distribution
function P(V„,q). This can be divided into two

steps.

The splitting of nuclear energy levels depends
only on two parameters related to the components
of the diagonalized tensor P~, not on the Euler
angles (o, P, y). The splitting parameters are
usually chosen4 as VD and the asymmetry pa-
rameter r) = (V~, —V~„)/V~ with the convention

so that 0( vy(1. In the
following we will omit the superscript D and write

V„ for V~ as no ambiguity can arise. The spec-
trum of energy levels of nuclei in amorphous
solids is described by the distribution P(V„, i))
of the splitting parameters.

uV4 (1- '/9) (5)

Thus, the general solution for the second part of
the problem is

P(V„,q) = 2V„q(1 —q2/9)

x dg d dy sin ~ ~ ~ U ~ ~ ~

This result shows general features worth noticing.
(a) T e distribution of V„ in general exhibits a

"hole" around V„=O with zero probability for V„
=0 and very small probabilities for small values
of V„unless the distribution function P„( .U„.)
has a strong singularity for V„=O. The physical
significance of this result is the vanishingly small
probability for highly symmetric configurations—
unless the structure strongly favors symmetric
configurations such that the function P„( U . )
diverges like V,,4 for V„-0. The mathematical
origin lies in the form of the relationship between
the parameters U and the set of parameters
(V„,q;n, P, y): V„plays the role of a radial
variable in the five-dimensional space of the pa-
rameters U„. This feature of P(V„,q) is remi-
niscent of the hole in the distribution of molecular
fields in a spin glass. 24

(b) Similarly, the case of axial symmetry,
q=0, or equivalently V„„=V,„, in general has
zero probability. The dependence of the function
P(V„, ri) upon q may have significant consequences
for the magnetic properties" as well as for the
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electronic specific heat"6 of amorphous rare-
earth alloys.

0 ~ D'/S'= (1 —8')'/(I + n'/3)'-1 (9)

C. The isotropic solid

For an amorphous solid which is isotropic on
the average, the function P„( ~ ~ ~ U ) must be
independent of the choice of coordinates. Conse-
quently, P„( U ) depends exclusively upon
invariant functions of the tensor components V;~.
For symmetric 3& 3 tensors in general there
exist three independent invariants2': the trace,
the sum of squares of the tensor components, and
the determinant. Since for the EFG tensor the
trace is zero, the arguments of the distribution
function are the remaining two invariants. We
define

This restriction is accounted for by introducing
the step function e(S3 —D2) in the distribution
function. Thus, for an isotropic solid we can re-
place P„( ~ U„.)II dU by e(S'- D')
~ F(D, S)dDdS

The transformation of the distribution function
to the V„.g representation is simplified since
P„( ~ ~ U„)does not depend upon the Euler
angles. Thus, the integrations over (o, p, y) yield
a constant factor, and Eq. (6) is replaced by

P(V„,q) =6 V4 q(1 —q'/9) F(V'„(1- q'),

V„(1+rl /3)). (10)

and

3
2 Q y2 Q U2 y2 (I yq2/3)

=1 0'=1 m=o

D= 4 Det(V)

= Uo+2 UD(Uf+ U2 —2U3 —2U4)

+2 v'3 U4(U( —Ul)+3v'3 U(U2US,

y3 (1 2) (8)

The problem denoted as step (i) in the preceding
section is now the derivation of the function F(D, S)
from the distribution of structural parameters.
By substitution of Eqs. (3) into Eqs. (7) and (8) the
quantities P and S can be expressed in terms of
the radial coordinates r; of the ionic charges and
of the bond angles e,~ between pairs of ions which
are defined by

cose;, = cos8; cos8~+ sin8, sin8~ cos(g, —Q~)

The expressions for S and D in terms of V„and g
show that these two quantities are not completely
independent-a consequence of the vanishing trace:

I

2S=g,"', (3cos'e„-l)+g] 3 [,
&~~ j

in the following way:

(12)

D=3 ~ . . . [9cose;, cose;, cose„-3(cos e,, +cos e,„- cos e,„)+2]~~% ~a 2 2 . 2

J&a r't rara

+-', g 0'0 C. 9'l
3

( 3

(13)

According to these equations, the function G(S)
= fF(D, S)dD is related to the angular pair-dis-
tribution function g(8&2): If g is expressed as
function of cos'e, 2, then G(S) is obtained from
this function by NI(N~ 1)/2 folding -operations
if the total number of ions is Nl. The dependence
of F(D, S) upon D, on the other hand, involves
triple correlations. Thus, experimental investi-
gations of the EFG distribution in isotropic amor-
phous solids yield information about these angular
correlations.

The reduced dimension of the parameter space
in which the distribution function is defined ob-
viously simplifies the task of finding the connec-
tion between a structural model and the correspon-
ding EFG distribution. On the other hand, Eqs.
(12) and (13) at first sight appear more compli-
cated than the original equations (3) which have

I

the attractive feature of being additive in the con-
tributions of individual ions. However, these ex-
pressions for S and & probably are quite useful for
calculations of the EFG distribution caused by the
relatively small number of ions in close vicinity to
the probe ion. Thus, for the case of three ions
distributed at random in a coordination shell of a
given radius ~, an exact derivation of F(D, S) can
be given, including an exact treatment of the ex-
cluded volume (for hard spheres). Since the EFG
distribution caused by only three ions is of limited
practical interest, we defer the presentation of
this calculation to the Appendix. An extension of
our approach to N, & 3 may be possible, and al-
ready the case NI =4 could be applied to investi-
gations of tetrahedrally coordinated amorphous
semiconductors.
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III. AMORPHOUS SOLIDS WITH RANDOM ATOMIC
ARRANGEMENTS: AN ANALYTIC

APPROXIMATION FOR I (Vzz, q)

A. Working definition of a random amorphous solid

Structural models for amorphous metals and

alloys with random atomic arrangements are
generally based on computer simulations. An

analytic expression for the distribution function

P(V„,q) cannot be derived from these models. On

the other hand, approaches which are appropriate
for random dilute systems such as gases and

dilute alloys are not applicable to our problem
where the distribution of fields originates from
densely packed ionic charges.

For the derivation of P(V„,q} we have employed
a working definition of structural randomness
which enables us to overcome these difficulties.
%e consider the surroundings of the ion containing
the probe nucleus as composed of spherical co-
ordination shells, and we define structural ran-
domness by

(i) random (i.e., uniform except for the excluded
volume associated with each ion) distribution of
ionic angular positions in any shell, and

(ii) absence of any correlations between the dis-
tributions of ionic charges in different shells.

The results of our general considerations were
tested by comparison with the EFG distribution
obtained from computer-generated ensembles of
spherical shells occupied at random by ionic
charges. The results of these computer experi-
ments were employed in particular for an empiri-
cal determination of the influence of excluded
volumes on the distribution function P(V„,q).
Most of the computer experiments were carried
out following the assumption of spherical shells
in the most restrictive sense: The center of all
ions was assumed to lie on the surface of a sphere
with radius r, (the shell radius). Random distribu-
tions of ionic angular positions in a shell were ob-
tained by drawing pairs of numbers, interpreted
as polar coordinates (cos8, Q) in some arbitrary
fixed coordinate frame, with help of a random
number generator. The ions were treated as hard
spheres of radius r„and in the construction of a
shell a new ionic position was accepted only if no
overlap occured with any of the ions whose posi-
tions had been drawn before. Ensembles of shells
were constructed with shell radius r, in the range
from 2r~ (corresponding to the first coordination
shell) up to 8r,. The number of ions occupying a
shell was either restrained to have some constant
value NI, or alternatively a distribution of oc-

cupation numbers N, was obtained by a predeter-
mined number of attempts at finding a new ionic
position in a given shell.

The extension of the validity of our results to
random ionic arrangements which are not re-
strained by the partition into spherical shells was
tested in computer experiments in which the
radial distance of the ions from the probe nucleus
was treated as a random variable along with the
angular coordinates, up to a range of radii ex-
tending from 2~, to 6r,.

B. The EFG distribution originating from ions in a single
spherical shell

The contribution of shells with large radius (r, &&rlj

Let us initially consider the distribution of the
quantities U caused by a constant number N, of
ions, all with the same charge q, in a single
spherical shell with large radius r, »r, . Dis-
tribution functions arising from ions in a single
shell are marked by a superscript (s). A density
parameter p is defined by the relation"

The value of the ratio r, /rl is assumed to be
large enough that large values for N~ are obtained
even for p «1. Then excluded-volume effects can
be neglected, and the angular coordinates (cos8„,
Q„) of all ions can be treated as independent ran-
dom variables. According to E4ls. (3) for all m

the quantities U are sums of terms each of which
depends upon the position of one ion only: U

=g„,u (n). Along with (cos8„,Q„) the values of
the individual terms u (n) are distributed in the
finite range —q/rs ~ u„(n}~ /qr

4 Furth. ermore,
for all m the average value of each term is zero,
and its variance is o'[u„(n)j =q2/(Gr4). Thus, the
conditions for application of the central limit
theorem are fulfilled, and for sufficiently large
N~ the distribution functions P"(U„) become
nearly Gaussian functions:

1
(2 ) / ( p) P~ ++( ( P)1)

with

& (r„p) =N, &r'[u (n)] = —
4

independent of m.
The distributions of the quantities U obtained

from computer experiments are described very
well by Qaussians for ensembles of spherical
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shells with radius r, ~ 6&~ and containing about
30 or more ions at random angular positions.
The Gaussian form was found to hold as well for
values of the density p extending far beyond the
limit p «1 imposed above in the derivation of Eg.
(15). For this region of higher densities, the
following considerations yield an expression for
the dependence of the variance o(r„p) upon p:
For the limit p=1, the limit of a completely full
shell, o(x„p =1)=0 since for a uniform charge
distribution all U are zero. Nonuniform charge
distributions leading to nonzero values for o (r„p)
are obtained by removing ions, that is, by intro-
ducing "holes" in the shell. Thus, there is a cer-
tain analogy between holes and ions which can be
accounted for if p in Eq. (16) is replaced by
p(1 —p)' . If holes were exactly equivalent to
ions, a=0 would be the proper value for a. In

reality, however, there is a difference since in
contrast to ions, holes are not quantized entities.
They can be finely divided and distributed between
the ions. A comparison with the variances 02

=(U ) -(U )' obtained from computer experi-
ments for several values of r, and p (Fig. 1)
shows that for r, ~ 6r, the data are quite well
reproduced by the relation

with 2 & a &3. For &, & 6r, the computer results
for o (r„p) increase faster with decreasing r,
than predicted by Eq. (17). There, of course, we
are leaving the region of shell radii for which the
central limit theorem is applicable since for r,
&6r, even in the case of a completely filled shell
N, is not a very large number.

The joint distribution function P'„"( U )
of all quantities U„(m =0, . . . , 4) is the product
of the functions P'„"(U„) if the quantities U are
independent random variables. For large values
of N, the condition of independence is approximate-
ly fulfilled, ' and thus in this limit

P(s)(. . . U .. ) P(s)(U )

e p —Q U„j(2 )
1

(2tr) tr )

1
,&, , exp[- S/(2(tt)]. (18)

Then we obtain by Eq. (10) the distribution function
of the splitting parameters V,, and q:

2tr q p(l —p)'o'(~., P) =,~2 s I.

09-
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FIG. 1. Dependence of the variance 0 upon the density
parameter p, defined in Eq. (14) for r,/rz~4. For r,/rr
= 2, we have used the appropriate value p=NI/12 (Ref.
29). Results obtained in computer experiments for dif-
ferent values of the ratio r~/r&, either for constant val-
ues NI or for a distribution of coordination numbers NI,
are distinguished by different symbols. Continuous
curves correspond to Eq. (17}for the values of n given
in the figure.

FIG. 2. Marginal distributions Q(V«)= fo dt) P(V«, I))
aud Jt(t)) = f dV«p(V«, I)) for the Gaussian approxima-
tion, Eq. (19), for P(V«, q). The functions correspond-
ing to Eq. (19) (solid lines) are compared with the re-
sults obtained from a computer experiment for an en-
semble of shells with radius r~= 6rr, randomly occupied
by N1=30 ions.



ATOMIC' COORDINATION AND THE DISTRIBUTION OF. . . 2519

1P"'(V, n)=( „, , V'n(1 n-'/9)

x exp[- V2, (l + q2/3)/(2o2)]. (19)

In Fig. 2 the marginal distributions Q(V„)
= Id@P(V„,q) and A(q) = Id V„P(V„,q) derived
from Eq. (19) are shown in comparison with the
results of a computer experiment for an ensemble
of shells with radius r, =6m„randomly occupied
by NI 30——ions. The value substituted in Eq. (19)
for the parameter v was the computer result for
the variance of the quantities tf .

2. The contribution of nearby coordination shells

The most remarkable feature of the distribution
function P"'(V„,q) obtained for computer-gen-
erated ensembles of shells containing a small
number of ions is a pronounced asymmetry with
respect to the sign of V„(Fig. 3).

The physical origin of this asymmetry is easily

recognized: The sign of V„depends both on the
sign of the charges causing the EFG and on their
spatial arrangement. For a metallic solid we
suppose the ions to carry a positive charge. Then
the largest positive value of V„(N qr, 3 for N,
ions of zero radius) results when all ions are
clustered near a single point or else near two
points at the opposite poles of a diameter of the
shell whereas the largest negative value
(-,' N~ q-x, ') is obtained when the ions form a ring
(around the equator of the shell, say) with ap-
proximately equal interionic spacings. Apart from
the large numerical difference between the ex-
treme positive and negative values, the two con-
figurations have completely different characters,
and different probability densities for configura-
tions giving rise to positive or negative values of
V„, respectively, may be expected. This asym-
metry is strongly affected by excluded volumes.
For the case of six hard-sphere ions in the first
coordination shell (r, /r, =2), for example, the

r, /r, =2,. N, =6 rs /r& =2; Nz =8 rs I r, = 2; & p ) = 0.545 r, /r, = I2;4); &p& =0545
I I I I

rs I rf
- 2-6; & p & = 0.433

-1,6 -0.8 0 0.8 16
I

-1,2 -0.6 0 Q6 1.2 -1.6 -0.8 0 G8

Vzz (2r, ) Iq
3

- 16 -0.8 0 0,8 1.6 - 1,2 -0.6 0 0.6 1.2

O O'.2 O'.4 O'.6 o'.8 0.2 0.4 0,6 0.8 0,2 0.4 0.6 08 0.2 0.4 Q6 0.8 0.2 0.4 0.6 Q8

FIG. 3. Marginal distributions Q(V ), R(g), 8+(q) (integration only over positive V ), and R (p) (only negative V )
for ensembles of shells containing a small number lVz of ions. For (a) and (b), the values of Ni are shown above the
figure. For (c), the distribution of coordination numbers NI is shown in Fig. 5. Average densities (p) correspond to
the definition hfr =3(r,lrr) p, appropriate for r~lrr=2. (d) shows the result obtained for independent distributions of
charged ions in two shells with radii r~=2r& and r~=4rl. For (e), the radial distance of the ions was a random variable
in the range from 2rr to 6rl. The continuous curves are derived from Eq. (2l) with values for the parameters 0 and P
obtained from least-squares fits to the computer-generated data for Q(V«), R+(q), and R (g).
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largest positive value of V„ is only 3qr, 3, equal
in magnitude to the largest value for negative V„.

%hen the distribution function is expressed in
terms of the invariant functions D and S of the
tensor components, the asymmetry is reflected
in the dependence of F(D, S) upon D: The sign of
D is the same as that of V„, whereas S is an even
function of V„. Thus, we have analyzed the depen-
dence of the ratio

A (S, D) = [F(D, S) —E(- D, S)]/[E(D, S) + E(- D, S)],
derived from computer- generated distribution
functions, upon D and S in order to find an appro-

priate approximation for the asymmetry. For N~
=4 and N, = 5 the results indicate a rather com-
plex dependence of A(S, D) on both variables. For
N~~ 6, however, A(S, D) is proportional to D for
a large range of values of the variables (Fig. 4).
Furthermore, for ions in the first coordination
shell (r, /ri=2), the dependence of A upon S is
negligible. In this case we can write A(S, D)
=aD with constant a.

Apart from this asymmetry, all features of the
distribution functions shown in Fig. 3 are essen-
tially the same as those of the Gaussian approxi-
mation (Fig. 2). Thus we combine the result ob-
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FIG. 4. Analysis of the asymmetric part A(S, D) of the distribution function F(D, S), defined by A(S, D) = fP(D, S)
—F(—D, S)3/p(D, S)+F(-D,S)], obtained for ensembles containing BI=6 (left-hand side) and BI=8 (right-hand side)
iona, respectively. The upper part of the figure refers to rgb=10, the lower part to r,/r1=2. Values for S are given
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As indicated, the computer-results are well reproduced by straight lines, A(S, D) =a(S)D. Above and below, the de-
pendence of the slopes a(S) upon S is displayed.



ATOMIC COORDINATION AND THE DISTRIBUTION OF. . . 2521

tained for A. (S, D) with the Gaussian expression,
Eq. (18), for the symmetric part of the distribu-
tion function, [E(D, S) + E( D,-S)]/2, and the
contribution of nearby coordination shells con-
taining at least six ions to the EFG distribution
is approximated by

E"'(D, S)=,&2 5 (1+ pD/oa) exp[- S/(2o')].
1

x exp[- V,', (1 + rP/3)/(2o')] . (21)

In accordance with the prescription given above for
the expression in terms of D and S, we set the
second term equal to zero when

~
P V (1 —r) )/

o'
~
& 1. As shown in Figs. 3 (a) and 3 (b), Eq. (21)

with parameter values c and P derived from a
least-squares fit to the marginal distribution func-
tions Q(V„), R,(q) and R (ri) (Ref. 32) reproduces
qualitatively the features of the distribution func-
tion obtained from computer experiments for
rather small values N,. Deviations in quantitative
details decrease with increasing values N,.

According to the structural models for random-
ly coordinated amorphous solids, however, some
distribution of coordination numbers NI can be
expected. Computer experiments, in which en-
sembles of spherical shells with variable N, were
produced by the procedure outlined in Sec. IIIA
yielded distribution functions of the splitting pa-
rameters which are very well approximated by
Eq. (21). This is demonstrated in Fig. 3(c) by
the results obtained for an ensemble of shells with
the distribution of coordination numbers N, shown
in Fig. 5.

(20)

With this notation, P is a dimensionless param-
eter. Equation (20) cannot be valid for arbitrarily
large values of D since E"'(D, S) becomes nega-
tive when PD/o' &- 1. This problem could be
solved by the introduction of terms proportional
to D' and higher powers of D such that E'" (D, S)
becomes positive definite. Such terms, however,
entail the introduction of additional parameters.
We see at the moment no possibility for a rigorous
derivation. of their values. Therefore, we have
chosen the alternative approach of setting the
second term to zero for values of D outside the
range —cr /) p )- D& c /) p). For the cases of
practical interest this range is large compared to
the width of the distribution, and the fraction of
the ensembles affected by the cutoff is quite small.

Jn this approximation the distribution function
for the splitting parameters V,', and q is given by

4

P"'(V„,r))=,'~, (1 —rP/9)[1+ 48V3 (1 —q')/c ]

The values of P obtained by least-squares fits
of Eq. (21) to the computer-generated distribu-
tions depend both on the shell radius r, and on the
density p. At low densities (p ~ 0.3) which are
hardly of practical interest, positive values of P
are obtained for all values of ~„up.to P- 0.03
for p- 0.1, the lowest density considered. For
p& 0.4, however, P has negative values which
are nearly independent of the density. For the
shell radius r, =2r„corresponding to the first
coordination shell, p-- 0.02 at these densities.
With increasing r„~P

~

decreases rapidly, and
for ~,- 6r~ the experimental distribution functions
are very well approximated by the Gaussian ap-
proximation, Eq. (19), corresponding to P=O.

C. The EFG distribution for a random amorphous solid

P{Nrj

0.4, —

0,3-

0,2-

'0 5 8 10 Ny

FIG. 5. Distribution of coordination numbers N& for
the ensemble for which the results shown in Fig. 3(c)
were obtained.

Having established an approximate expression
for the distribution function P"'(V„,r)) caused by
ions randomly arranged in a single spherical shell
we are now left with the task of finding the EFG
distribution due to all ionic charges surrounding
the probe nuclei. According to proposition (ii) of
our working definition of a random amorphous
solid given in Sec. IIIA the distribution function of
the quantities U caused by the entire environment
is obtained by folding the distribution functions
P'„"( U ) arising from the spherical shells
with different radii r,.

The folding operation is easily performed by
Fourier transformation of the function
P'„"( U ) if the cutoff of the asymmetric
term proportional to D for large values of D is
neglected. In view of the approximate nature of
Eq. (21), and since the total contribution of the
region affected by the cutoff is small, this neglect
should not seriously impair the final outcome.
Similarly, in the Fourier transform of the folded
distribution function, terms involving products
P, P, ~ (different indices s„s„.. . refer to

s~ s2



2522 G. CZ JZKK et al.

different coordination shells) of second and higher
order are neglected. This is justified by the
small value of P even for the first coordination
shell and by the rapid decrease of P, to zero with
increasing shell radius r,.

The resulting approximation for the EFG dis-
tribution in a random amorphous solid-is given

by the same expression as the contribution due to
a single shell:

&(V, n) =
2

&g'2 5 (I g /9)P+ &V, ( R )/& l

x exp[- V,', (1 + rp/3)/(2a')]

with parameters
i/2

0'= .0', = 0 0'

S S

(22)

(23)

The rapid decrease of o, and of P, with t, guaran-
tees the convergence of both sums to a finite
value. Actually, the final result is strongly
dominated by the contribution of the first co-
ordination shell which amounts to more than 80%
of the final value for c, over 90% for P.

We have tested the validity of our approach by
computer experiments in which random ionic ar-
rangements in two and three shells with radii r,
=2r„4r» and 6r, were generated such that the
average density was the same in all shells. The
results show that the approximation of Eg. (22) to
the distribution functions in these cases is at least
as good as to those due to a single shell. As an
example we display in Fig. 3(d) the distribution
function obtained for two shells with radii x,
=2r, and r, =4r,. The average density was the
same as for the ensemble for which the results
are shown in Fig. 3(c). The similarity of Figs.
3(c) and 3(d) demonstrates the dominant role of
the first shell for the EFG distribution in a ran-
dom amorphous solid.

At this point the question arises to what extent
these results are influenced by the restrictions
imposed by our definition of a random amorphous

solid, in particular by the strict partition of the
ionic distribution into spherical shells. We have
tested this question empirically by computer-
generated ensembles of ionic environments in

which both angular and radial coordinates of the
ions were distributed at random. The result is
illustrated in Fig. 3(e) by the distribution function
obtained for an ensemble in which the radial posi-
tions of the ions varied at random in the range
from 2r~ to 6r~. This distribution is very well
approximated by an expression as given by Eq.
(22), but the parameter values differ considerably
from those obtained for ionic distributions of c'om-

parable densities with a partition into spherical

shells. For the unpartitioned ionic distribution,
in particular, the sign of p is inverted. As we
have pointed out in the Introduction, the param-
eter values (including the sign of P), derived here
in the framework of a point-charge calculation,
are not likely to be realistic anyway. The essen-
tial result of our work is the functional form of
the EFG distribution, and we conclude from the
outcome of these unrestricted computer experi-
ments that this result is valid beyond the restric-
tion imposed by our working definition of a random
amorphous solid.

In, our derivation of the distribution function

P(V„, g) we have assumed all ions to carry the
same charge. This assumption is appropriate for
a monoatomic amorphous material. However, the
same functional expression can be expected to ap-
proximate the EFG distribution in random amor-
phous alloys, except in the limit of high dilution.
In the expressions Eq. (3) for the parameters U„
in terms of the charges and their coordinates the
charges q„and the radial coordinates ~„occur
only in the combination (q„/r„). Thus, variations
of the charges are essentially equivalent to varia-
tions of radial distances which according to the
results of the computer experiments do not modify
the form of the distribution function.

If the concentration of one alloy component is
very low, however, the large probability of finding
only one or two ions of this component in the first
coordination shell leads to singular features in the
EFG distribution which will therefore deviate sig-
nificantly from the smooth distribution function
originating from random charge distributions at
higher densities.

The results obtained by Pust6wka et al. ' in cal-
culating the EFG distribution in random binary
crystalline alloys (bcc, fcc, and hcp lattice), that
is for the case of purely chemical disorder, fully
support these arguments. The distribution func-
tions of the splitting parameter &= V„(I+q'/3)'~'
calculated by these authors for alloy concentra-
tions c in the range 0.2 + c + 0.8 are quite similar
to those derived in the present work for the case
of structural disorder in a pure material.

IV. MOSSBAUER SPECTRA OF Gd IN
AMORPHOUS Gd-Ni ALLOYS

The assumption of a random distribution of
ionic charges underlying the derivation of the dis-
tribution function P(V„,g) in Sec. III corresponds
in its essential traits to DHPHS-type models of
amorphous metallic solids. This is demonstrated
by the similarity of the distributions shown in
Figs. 2 and 3 with those derived by computer
simulations of DHPHS structures for the EFG
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distribution' 9 and for crystal-field splittings. '3

Thus, a comparison of nuclear quadrupole
splittings observed by NMR or Mossbauer spec-
troscopy with the expression given in Eg. (22) pro-
vides an experimental test regarding the validity
of DHPHS-type structural models. Investigations
of this kind. are of particular interest for amor-
phous rare-earth alloys in view of the conse-
quences of the crystal-field distribution for the
magnetic properties of these materials.

With this objective we have analyzed Mossbauer
absorption spectra of ' Gd in amorphous Gd-Ni
alloys. For investigations of the EFG distribution
in amorphous rare-earth alloys by Mossbauer
spectroscopy, Gd is well suited as a probe since
the ground state of the Gd 4f shell is an S state
which does not contribute to the EFG. Thus, the
observed quadrupole splitting is caused entirely
by the distribution of charges outside the elec-
tronic shell localized at the probe nuclei. The
nuclear properties of '55Gd are less favorable.
The quadrupole moment of the nuclear. ground
state (Ref. 35), Q, =(1.59+0.15)x10 "cm', is
large, but for its spin I,=-', the quadrupole
splitting is completely determined by the absolute
value of the single parameter 6 = V„(1+q2/3)'~2.
The quadrupole moment of the excited state3 with

spin I, =—,', Q, =(0.14+0.02) x10 24 cm~, is small,
and the quadrupole splitting of the excited state is
mostly unresolved. Thus, in the absence of a
magnetic hyperfine field the Mossbauer spectrum
of '~ Gd is neither sensitive to the sign of V„nor
to the asymmetry parameter q.

More details about the distribution function

P(V„,g) can be deduced from Mossbauer spectra
in magnetically ordered samples. In this case,
the dependence of the nuclear energy levels upon
the direction of the magnetic hyperfine field with

respect to the principal axes of the EFG tensor
has to be accounted for. In an isotropic amorphous
material with perfect ferromagnetic alignment
these directions are distributed isotropically. In
a real amorphous ferromagnet, however, the
alignment may not be perfect, 3' and thus the iso-
tropy of the distribution is not guaranteed. This
uncertainty is removed when spectra are taken
w'ith absorbers in an applied magnetic field of
sufficient strength, provided the material is struc-
turally isotropic. For our samples at 4.2 K the

magnetization was found to be saturated in fields
above 1,.5 tesla when the direction of the field was
perpendicular to the plane of the platelike samples
as in our Mossbauer spectrometer. Thus, for
spectra taken in larger fields we can assume the
magnetic hyperfine field to have the same direc-
tion as the external magnetic fi,eld which was ap-
plied parallel to the direction of observation.

Mossbauer absorption spectra were taken of
amorphous samples of composition Gdo 2Nio 8 and

Gdo 4Nio 6, prepared by sputtering onto a sub-
strate which was cooled to 77 K. Details con-
cerning the techniques employed in taking '~~Gd

Mossbauer spectra have been described pre-
viously. s In this paper we only present results
which are related to the EFG distribution. Re-
sults of interest for the magnetic properties of
these alloys are deferred to a separate publica-
tion.

Examples for ' ~Gd Mossbauer spectra obtained
with the absorber of composition Gdo 4Nio &

are
displayed in Fig. 6, with Gdo 2Nio &

in Fig. 7. For
the spectra shown in Figs. 6(a) and 7(a) the ab-
sorber temperature was 70 K, for both samples
above the Curie temperature. For Gdo, Nip 8& T,
=(39+1) K and for Gdo 4Nio 6, T,=(63+2) K was
determined by magnetization measurements. The
information content of these spectra is very
limited, partly because of the values of nuclear
spins and quadrupole moments quoted above, but
also because of the very small absorption cross
section at this temperature. Due to their sim-
plicity, however, they were useful for confirming
the average value of V„since the value deduced
from the spectra obtained at lower temperatures
may be subject to doubt in view of the simultaneous
presence of magnetic dipole and electric quad-
rupole interactions of similar strength. Both spec-
tra. are adequately described if we assume a unique
value for V„, but a broadened width of the absorp-
tion lines I"„=0.8 mm/sec instead of the natural
width I', =0.25 mm/sec. The additional width 51'
= I'„—I, =0.55 mm/sec amounts to about 30% of
the average ground-state quadrupole splitting.
This result already indicates the presence of som~
distribution of electric field gradients. Variations
of the isomer shift presumably contribute to the
line broadening, but only a small fraction of the
observed width should arise from isomer shift
variations since the total shift between GdNi5 and
pure Gd amounts to 0.22 mm/sec. a~

As illustrated by Fig. 6(f), the assumption of a
unique value for V, does not describe the spectra
obtained at 4.2 K. In this figure we show the re-
sult for the assumptions V„&0 and q=0 only.
Similar misfits were obtained for a negative value
of V„and for a nonzero value of g. All spectra
taken at 4.2 K, however, could be fitted with an
EFG distribution as given by Eq. (22). The best
agreement with the experimental data resulted
consistently for all spectra from fits with P=O
and with a linewidth I'„=0.34 mm/sec, slightly
larger than I'0. The results of least-squares fits
with this model are shown in Figs. 6(a)-6(e) as
solid lines.
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FIG. 6. Mossbauer absorption spectra of ~5Gd in
amorphous Gd04Nit) 6. Absorber temperatures T and
values of the applied field B are given in the figure.
Solid lines in (a)—(e) were obtained from least-squares
fits with an EFG distribution given by Eq. (22) with P= 0.
The curve in (f) is the result of a least-squares fit with
the assumption of a unique value for Vgg.

The spectra obtained for Gdo 2Nio 8 at 4.2 K are
neither described by the assumption of a unique
value of V„nor by the distribution function given
in Eq. (22) [Fig. 7(e)]. This failure is under-
standable if nickel ions in these alloys carry no
or only a very small charge such that the EFQ is
determined by the distribution of Gd ions. Zero
effective charge on nickel ions will result if the

I I I I I I I
I I l I I I I I

-6 -4 -2 0 2 4
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FIG. 7. Mossbauer absorption spectra of Gd in
amorphous Gdo 2Nio 8. Solid lines in (a)-(d) were ob-
tained from least-squares fits with an EFG distribution
P(Vgg, g) = 0.71P2(V«, g)+ 0.29P3(V«, g) with distribution
functions PN&(V g, p) corresponding to Gd nuclei with Nl
=2 and Nz=3 Gd neighbors, respectively, assuming the
charge of Ni ions to be negligible. The functions
Pz (V«, g) are described in the Appendix. The curve ingg gg&

(e) is the result of a least-squares fit with the EFG dis-
tribution given by Eq. (22).

3d band is completely filled as may be expected
since x-ray induced photoelectron spectra have
shown the 3d band in amorphous alloys con-
taining 3d transition metals to be shifted well
below the Fermi energy. ~ Filling of the 3d
band implies zero magnetic moment for the
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nickel ions, in agreement both with the saturation
magnetization of our samples and with results of
'Ni Mossbauer spectra.

At the low Qd concentration of this sample, only
a smaQ number of Gd ions will be found in the
first coordination shell of the probe ions, ' and we
can not expect Eq. (22) to be a good approximation
for the EFG distribution. These spectra were
fitted successfully with a distribution function

P(V„, i)) composed of our results for two and
three ions distributed at random in the first co-
ordination shell (Figs. 8 and 9), that is P(V„,rl)

=atPt(V„, tt)+aePa(V„, ri) with at+as=l. A least-
squares fit to the spectrum shown in Fig. 7(d)
yielded the value a, =0.71 + 0.07. The spectra
shown in Figs. 7(a)-7(c) were then fitted with this
value for a2. For the other parameters, the fol-
lowing assumptions were involved in our fitting
model: different isomer shifts for ' Gd nuclei
having two or three Qd neighbors, respectively;
linewidth I'„= I'0=0.25 mm/sec.

The EFG distributions which were fitted to
these spectra are completely determined by a
single parameter. For Gd, 4Ni, 8, since we found

P=0, only the value of the parameter c remained
as an adjustable variable. The result derived

from the four spectra taken at 4.2 K [including the
Sternheimer factor (1 —y )] was c= (4.1+0.1)
x 10t~ V/cm2. Similarly, for Gdo 2Nio 8, once the
probabilities of finding two or three Qd ions, re-
spectively, in the first coordination sheQ were
determined, only one scale factor for the V„
values remained open. We used the EFG caused
by a single Gd ion in the first coordination shell,
V&, as variable scale factor. The fit result was
Vi" ' ——(1 —y„)q,ff/(2ros)'= (6.6~ 0.2) x 10"V/cm .

The ratio between these two experimental re-
sults, a / V;" ' = 0.62~ 0. 02, is close to that pre
dieted by oui calculations for the concentration
dependence of 0, as can be seen by comparison
with Fig. 1 where the contribution of the first co-
ordination shell to 0 is given in units of the single-
ion contribution. Furthermore, these results are
surprisingly close to the point-charge value V&
= 8.8 x 10i' V/cm2, calculated with the assump-
tions r~=1 7x 10. cm, (1 —y„)=80, and qos
=Se=4.8x 3.9 '

From our results we can derive an estimate for
the average crystal-field term &D&Zt acting on
rare-earth ions with nonzero orbital angular mo-
mentum in analogous alloys. The value of &D& is
directly related to the average &I V„ I&:

&D& =-:
I o. l&r'&ve &I V„I& (1- ct)/(I - y ).

Qt'I/zz j
—r1 /rs =0
——rI /rs = 0.25—-r /r =05

For the distribution function P(V„, t)) fitted to the
spectra of Gd, 4Nio

(IV„I&= », c=(8.2+0.2)x10" V/cm'.5

0.5-

2.0-

A direct comparison is possible with experimental
data for amorphous Dy-Ni aQoys. 4' The appropri-
ate parameter values for Dy are the following42'43:

nz ——- 6.35 x 10, &r 2&+, —2 x 10 7 cm . For the
ratio (1 —c2)/(1- y„) we use the value 5 x 10 3

given by Dunlap et al.44 Then we obtain &D&/&s
=6 K, in excellent agreement with the value de-
rived by RebouiQat et al. ,4i interpreting their mag-
netization data in terms of the random anisotropy
model for amorphous DyNis.

V. SUMMARY AND CONCLUSIONS

0.5-

0
0 0.2 0.4 0.6 08 y 10

FIG. 8. Marginal distribution functions Q(V~~) and

R{g) for the EFG distribution P2(Vg„g) originating from
an ensemble of spherical coordination shells which can-
tain N&= 2 charged ions with random angular positions.
The relative weight associated with the 6-function sin-
gularity at V«= qlr~ in Q(V«) is indica—ted by the length
of the vertical line at this point.

The atomic structure of an amorphous solid can
be determined most completely by combined in-
vestigat, ions employing three types of experimen-
tal methods.

(i) Neutron and/or x-ray diffraction which yields
radial pair correlation functions,

(ii) EXAFS for more specific information about
short-range atomic coordination numbers and
radial distances, and

(iii) NMR, Mossbauer spectroscopy, or per-
turbed angular correlation measurements for in-



2526 G. CZ JZKK et al.

V)

N

Q

0 2 -2
Vzz rs3 / q

0 2

0.2 0.4 0.6 O.S 0.2 0.4 0.6 0.8

FIG. 9. Marginal distribution functions Q(V ), R(q), R+(g), and A (g) for the EFG distribution P3(V«, g) originating
from an ensemble of spherical shells which contain A'1=3 charge'd ions with randoxn angular coordinates. The results
of the calculations described in the text, shown by continuous curves, are compared with computer-generated data.

formation about directional distributions of atomic
coordination.

The interpretation of results obtained by meth-
ods of type (i) and (ii) is we11 established. How-
ever, direct experimental information about di-
rectional ionic distributions can be deduced only4~
from distributions of nuclear quadrupole splittings,
observable by one of the methods of the third type.
Until now, inve tigations of the relation between

this distribution and the underlying spatial ar-
rangement of ionic charges have been rather
rudimentary. In the present paper we describe a
first systematic attack at this problem.

For the case of random ionic arrangements,
exemplified by DRPHS-type structural models of
amorphous metals and alloys, we have derived
an approximate formula for the distribution func-
tion P(V„,q) which determines the distribution of
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nuclear energy levels. The. derivation has been
based on two approximations: a hard- sphere
model for the ions and point-charge calculations
of the EFQ. We have presented arguments in

support of our approach, showing that the short-
comings of the second approximation do not
seriously impair the essential result of our work
which is the form of the distribution function
x'ather than numerical values of parameters ap-
pearing in this function.

The distribution function P(V„,q) is strong&y
dominated by the contribution of the first coordina-
tion shell. It is characterized by a deep hole in
the distribution of V,, around the value V„=O and

by zero probability for @=0. In general, the
probability distribution is not symmetric with re-
spect to the sign of V„, i.e., P(- V„,q)oP(V, „l)7
Consequently, the average value of V,', in general
ls dlffex'ent floIIl zex'o. In other wordsy ther8 't8 a
rather quell defined quadrupole splitting of nuc1ear
energy levels in random amorphous solids, and
the interaction &vill usually have a preferred sign

For a more general class of amorphous solids,
characterized by overall isotropy, the task of
finding the distribution function which in general
depends upon five independent variables which
determine the EFQ teD801 18 simplified, The coD-
dition of overall isotropy implies that the distribu-
tion function depends upon two variables only, the
invariant functions 8 and D of the tensor com-
ponents. Expressions for these invariants in
terms of the radial distances of the ionic charges
causing the EFQ and of the bond angles between
pairs of i.ons, again in the framework of a point-
charge model, are given. These expressions for
8 and B may be useful for an exact derivation of
the EFG distribution caused by the small number

NI of ions in the first coordination shell of the
probe nuclei. For Nz ——3 we have carried through

this derivation. This case is not yet of practical
interest, but if our approach could be extended to
%1=4, an immediate application to investigations
of tetrahedrally coordinated semiconductors would
be possible.

We have applied the distribution function P(V„,q)
which we have derived for solids with random
lonlc arrangement to the RDRlysls of Qd Moss-
bauer spectra of amorphous Qd-Ni alloys. Al-
though all experimental spectxa could be repro-
duced in this way, we can not yet claim to have
proven that the atomic structure of these alloys
really is random. Firstly, this mould require the
exclusion of all conceivable models involving some
short-range ordering, and secondly, we have not
yet undertaken a systematic study in combination
with the other expex'imental methods. This will
be necessary in order to complete the informa-

tion about the atomic structure of the materials
as we have outlined above. However, we could
definitely show the experimental data to be com-
patible with the assumption of a random atomic
arrangement.

A cleRx' plctux'6 of the dlx'ectlonR1 distribution of
ionic coordinations can be derived only from the
distribution of both splitting parameters V„and
q. This i- turn can be determined only for nuclei
with spin I& ~. Therefore, the nuclei most, fre-
quently employed in investigations of amorphous
materials by Mossbauer spectroscopy, 5'Fe and
'"Sn, are not suited for this kind of study as in

both cR868 the DucleRl tx'Rnsltion occux'8 between
levels with spins and —,'. Some good candidates
would be "Qe "Ru "'Sb '"I '"Qd and '"Np

The results obtained from our investigation do
have implications for problem areas beyond oux'

specific subject, the relation between atomic
structure of amorphous materials and the EFQ
distr ibution.

(i) The distribution of second-order crystal-
fieM splittings is described by the same functions
as that of nuclear quadrupole splittings. Our re-
sults apply directly to this problem which is im-
portant for the magnetic properties of amorphous
rare- earth alloys.

(ii) The distribution function of magnetic dipolar
fields in amorphous magnets46 is closely related to
the EFQ distribution since the dipole fleM due to
an ion carrying a magnetic moment is the product
of the source moment with a tensor which has the
same dependence upon the spatial coordinates of
the 8ource ion Rs the EFQ tensor.

(iii) For the EFG distribution experienced in-
stantaneously by nuclei in liquid metals the ap-
proximation derived for random ionic arrange-
ments is applicable. ID liquids of course, the EFQ
is rapidly changing with time, giving rise to nu-
clear quadrupole relaxation. In theoretical esti-
mates of the fluctuation rate, mostly based on the
fundamental work by Sholl47 it has been assumed
that the time-average of the EFQ is zero. Sholl
has argued that '. ..the average field gradient
... is zero since the average charge distribut;ion
about, a given nucleus has spherical symmetry. "47

Although thex'6 18 Qo doubt coDcel'Ding the second
part of Sholl'8 statement, his argument is not
necessarily coxrect: The EFQ is a functional of
the charge density, and Sholl's argument would
hold only if this operation and that of forming the
average were interchangeable. This is not true
in general. Since the time average and the con-
figurational avexage of V„should have the same
value, we conclude from the nonzero values of
(V„) „f obtained in our study that (V„), , in

liquids may have a finite, nonzero value. ID
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monoatomic liquids, this average value presum-
ably is very small, but in liquid alloys of elements
whose ions carry different charges, a measurable
average EFQ may result.
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APPENDIX: THE EFG DISTRIBUTION CAUSED
BY TWO OR THREE IONS IN A SPHERICAL

SHELL

For a small number N~ of ions in a spherical
coordination shell, the distribution function
E(D, S) for a given distribution of bond angles
e;z can be derived on the basis of Eqs. (12) and

(13) (Sec. IIC). If all ions carry the same charge,
q, =q, and if all radial distances have the same
value, r, =r„Eqs. (12) and (13) can be simpli-
fied '

ys ——y&y2+ (1 —y&) (1 —y2) cosg (A4).

must be fulfilled. Here, Q is the azimuthal angle
at the apex defined by the ion with label "1"in the
spherical triangle formed by the three ions. This
angle can be considered as the third independent
variable along with y& and y, . A random charge
distribution is defined as a uniform distribution in
this three-dimensional parameter space:

1
4(y fp y2, $)dy&dy2dg =—dy&dy2dP . (A5)

With help of Eq. (A4) this can be converted. to an
expression in terms of y&, y2 g3.

@(ys~ y2~ ye)dy&dy~dys

1 2 2 2=—(1—y f y2 y3+ 2y&y2y3) dy&dy2dy3.

ables (apart from the irrelevant orientation of the
entire shell given by the Euler angles o, p, y), the
three bond angles e», 8,3, and e23. We use again
an abbreviated notation: y&

——cosef2 g2 cosef3,
3= ose23 However, for given &t a"d &2~ the

third variable ys is not completely free since the
relation

S =l ~ I
3 Z cos 8;,— Nl(N~ 3)

III+s k E& j ]

l
27 cose;, cose„cose„fe '(

Ers E f&J(k

+9(3 —N,) g cos'e;,

(A1)
(A6)

As for V„, we define reduced variables for S and
D:

S 3 Sp V& ——
y& +y2 +y» d=~Dy Vf —gf g2g3 ~

1 / 2 2 2

(AV)

(A2)+ ~NI(3 —N~)(3 —2Ni) l.
)

In the following we assume r, to have some con-
stant value.

For NI=2, the problem of finding the distribu-
t;ion function P2(V„, q) is trivial. There is only
one free parameter, the bond angle 8&2. We in-
troduce the abbreviation y = cose&2 and express
V„ in terms of the contribution of a single ion,
V&

——q/r3, v= V, /V&. If the ions have zero
radius, r, =0, and for a random charge distribu-
tion, y is distributed uniformly in the range —1
~y ~ 1. Both v and q are functions of y:
v= 3(I+3y). 0=3(I-y)/(I+3y).=-1, )=3lyl fo. --, =y=-,1 - 1

v= (1 —3y), @=3(I+y)/(I —3y)

for —, &y &1

(A3)

fOr —1 ~&) ~& —3 .1

For hard-sphere ions of finite radius r„ the
range of y is reduced to —1 &y &ym =1—2(r~/
r,) . The resulting marginal distributions Q(v)
and R(g) for rI=O, 0.25r„and 0 5r, are sho.wn in

Fig. 8.
For a shell containing three ions the arrange-

ment of the charges is described by three vari-

P(y) =(y-yi)(y-y2)(y —y3)

=y~- ty2+ -'(t2 —s)y- d. (A8)

This relation can be used to derive by some alge-
braic manipulations the distribution function:

E(d, s)dsdd =C(1 —s+ 2d) i I(d, s), (A9)

where C is a normalization factor and I(d, s) is a
sum of two integrals:

t(j)
I(d, s) = dt[R(d, s, t)]

1

with

R(d, s, t) = 2s3- 108d2 —36sdt

—5s2t2+20dt3+4st —t .

(A10)

(A11)

This polynomial is the discriminant of P(y). The

For the derivation of the distribution function
E(d, s) from Eq. (A6) a third variable t is re-
quired such that a one-to-one correspondence
exists between all points (y„y„y,) and (d, s, t).
We define I;=y, +y2+y3. Then this correspondence
is equivalent to the relation between the coeffi-
cients and the roots of the polynomial
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f~ =ya g (2d/y ~+s-ys ) (A12)

limits of integration f,'"are defined by R(d, s, f,'.")
=0 and R(d, s, f) & 0 in the range tp' & f & t2o'.

Using Eq. (10) of Sec. IIC, the function I'~(V, q)
is easily obtained from Eq. (A9). Figure 9(a)
shows the resulting marginal distribution functions
Q(V„), R(q) [P(V„,q) integrated over all V„j,
R,(g) (V„&0), and R (q) (V„&0) and the compari-
son with the corresponding distributions obtained
from computer experiments for ions with radius
rl =0.

In the framework of a hard- sphere model, ex-
cluded volumes can be accounted for exactly. The
formal expressions (A9)-(A11) remain unchanged,
but the limits of the t integration are modified by
the requirement that all y, must have values less
than the limiting value y ~ ——1 —2(r, /r, )'. Substi-
tuting y ~ into the polynomial P(y), Eq. (A8), we
obtain the excluded-volume limits for t for given
values of s, d, an.d yb

Inspection of the derivative dy/dt for y =y „. and
t= tb shows that the range t~ g t &t ~ has to be
omitted from the integrals in Eq. (A10). The re-
sulting marginal distribution functions in compari-
son with the distributions obtained from computer
experiments for the case r, =2r, are displayed in
Fig. 9(b).

We have carried through the calculations for the
case of a random distribution of the ionic charges.
Any other structural model is treated by chosing
the appropriate distribution function 4 (y&, y2, y3)
of the bond angles in Eq. (A5). Because of the
equivalence of the variables y&, y2, y„ the function
4 must by symmetric in these variables for any
physically meaningful model. Thus, it can be ex-
pressed as a function 4 (d, s, f). The final result
is again given by Eq. (AQ) with Eq. (A10) replaced
by (g)2 r g2

I(d, s) =g

dt's(d,

s, t)[R(d, s, f)]
) J ](g)

1
(A13)
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