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Screened polarization waves and the energies of simple metals: Formulation
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Vfe investigate the efFect that core polarization has on the energy of a simple metal. To do this we establish an

approximate Hamiltonian based on the standard result for nearly-free-electron metals but generahzed to include

interactions between localized core electrons. An application of perturbation theory then leads to expressions for

various contributions to the total energy and a reformulation of the one-electron Hamiltonian for use in structural

applications. The fluctuating dipole interactions between the ions are dynamically screened by the valence electrons.

In the crystalhne context the corresponding excitations are screened polarization waves and are manifested as

screened van der gals forces between ions. The core electrons also participate in the screening of other interactions

in the metal.

I. INTRODUCTION

In the structural expansion method' for deter-
mining the thermodynamic fuDctlons of a cxystal-
line simple metal, the ions are considered to be
immersed in a compensating system of valence
electrons usually taken to be in one-electron
Bloch levels. In this approach the ions themselves
are regarded as inert spherically symmetric ob-

jects and the effects of their core electrons are
assumed to be fully incorporated in the definitions
of the single-particle electron-ion potentials (or
pseudopotentials). The relaxation of the static
(in the electronic sense) ion approximation is man-

ifested mainly in two ways: first, there will be
collective excitations of the ions. These can be
expected to result in dispersion forces, the most
prominent of which are the van der Waals inter-
actions. In metallic systems these interactions
are dynamically screened by the conduction elec-
trons ',' the collective core-coxe excitations giving
rise to such interactions are screened polarization
waves, as we shall see below. Second, polariza-
tion of the ions can also lead to screening of the

various static interactions between ions and elec-
trons. %'e shall also see that if the ions are suf-
ficiently tightly bound, an adiabatic principle will

permit the mutual valence-electron interactions to
be screened statically. The simplest physical
picture of such effects is normally realized' ' by

imagining nonpolarizable ions and interacting val-
ence electrons to be placed in dielectric continuum

with a dielectric constant e~ representing all pol-
arization effects Qot originating with the electloD
gas. In such a model, all microscopic fields will

be reduced irrespective of the physical length
scales of importance.

The aim of the present paper is to treat the
problem of interacting dipoles and electrons in

shall arrj.ve at a model Hamil-

tonian for use in the calculation of thermodynamic
and structural properties of simple metals. Be-
cause the problem we consider a pnon', lacks
translational invariance we resort to approxj. ma-
tions which account for the dominant effects. In
Sec. II of the paper we write the fundamental
starting Hamiltonian in terms of an unperturbed
part (free electrons and independent ions) and a
perturbation arising from Coulomb interactions.
Following Mon eI, al. we introduce a local pseudo-
potential to describe the interaction between
itinerant valence electrons and localized core
electrons. This standard procedure permits us
to treat the valence-electron systems as a quasi-
homogeneous system for the purpose of calcula-
ting its response in both the static and dynamic
contexts. Screening of all the interactions is dealt
with in Sec. III, and the energy of the screened
polarlzationw'aves 18 reduced to palx' terms between
ions. The model Hamiltonian is discussed in Sec.
IV.

The system under consideration (a simple metal
of nominal valence Z) consists of N-fixed ions, "
positions (R}, and NZ valence electrons, mass m,
all in a volume W. The ions are to be regarded as
compact objects on a scale of nearest-neighbox
separations. They are composites of nuclei
(charge Z„e)and Z, = Z„—Z localized core elec-
trons with relative coordinates (F(R), /= I, . . . ,
Z,}.. We denote the positions of the valence elec-
trons by (rt, i = 1, . . . , NZ} Implicit in th. is no-
tation is an assertion of implied distinguishability
by site of the core electrons on each ion and a
further notion of distinguishability between core
and valence electrons. As discussed in Ref. 6,
the corresponding states ignore certain exchange
corrections and these are assumed to be incorpor-
ated by local approximation into the xelevant poten-
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tials. We associate with each ion a Zj-electron
Hamiltonian Ha and corresponding states hatt:

%e then take as the unperturbed Hamiltonian for
the system the quantity

p2
H = + HI,

2IPP

where dais the dipole operator for the ion at R.
The neglect of terms beyond those displayed in (6)
amounts to the dipole approximation.

Next, let

p"(r) = g ~(r - r"()

be the density operator for the valence electrons.
Then

where the first term in (2) is the kinetic energy of
the valence-electron system. The total Hamil-
tonian is now written

Finally we write

gp —q N+

a =II("+a"'
where & reflects all Coulomb interactions other
than those already incorporated in the (Hg). We

may therefore write

where Hj j is the total interaction Hamiltonian be-
tween different ions, H„„the mutual Coulomb in-
teraction between valence electrons, and H„the
coupling between both.

Define an operator p&z(r) for the ion at R by
gj

og(r) =&„~(r-R}-g~(r-R-r', (R))
jaf

Sj
p~&(~) ql 'I (ZyQ (( 8I . ((I)()

g~f

It follows that e times this quantity gives the
charge-density fluctuations about Ze (the monopole

charge on the ion at R). Defining v,(qj=4ve /q
we have

pI, q p5e

Since we have assumed the ions to be compact on
a scale of the lattice constant, we shall rewrite {4)

ep-„'((l)= e"""(&e+i(l. d-„+ ),

@jq.sly (10)

n'(i)=Q s"

Here v,(q)f(q) is defined as the monopole (static)
part of the pseudopotential [f(q) =-Zcosqr, for an
empty-core pseudopotential]. The (luantity f(q)v,
is the pseudopotential representing the coupling of
valence electrons and fluctuating dipoles. As dis-
cussed in Ref. 6 an empty-core model can also
describe this term though it is not necessary that
the corresponding core radius be exactly equal to
the corresponding static pseudopotential value.

Before proceeding to the thermodynamic limit
we accumulate the q -0 limit of all the terms in
II" and refer to the result' as NZEO. Then in the
limit N-~, Q-~, H/0= p(, we have
where

Q:nl((h& ( i)'-
as the coupling between valence electrons and ions.
Here v, (q) is a pseudopotential which is taken as
local. ' Using (6) we rewrite (8) as

B,„= ' p"-q p'q q+i e qq d~ 9

/

B PTZE, —H + p qpg q + pIqp q + p&qp& q

A

H(QR+ 1 Q (:(q) Q (jt:(R (t~) Z+ (l, d~ g
if/0 R, Ie 8 - 8

+ ' p"(-(1)[O'((l)f(a) + (i/eNq)(l 'da 1+"'+ —,
' 2 ' P"((1»"(-(1)

D

which we take as a model Hamiltonian. Setting
fditj=-0 and fHgj =-0 recovers the starting point of

the pseudopotential approach to the energetics of
simple metals. The theory of dispersion forces
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(neglecting retardation effects) for insulating sys-
tems follows from (12) by taking Z =0 [or p"(tI) = 0].
In the next section we wish to combine both cases.

III. SCREENING AND PERTURBATION THEORY

As noted earlier we shall assume the system is
such that the dipole approximation is valid: The
ions must be sufficiently compact that even micro-
scopic local fields do not vary appreciably over an
ionic dimension. To obtain the ground-state en-
ergy of the system, we follow Rehr et al. and

apply standard many-body perturbation theory to
(12). If we write

H=H +H (X), 0 ~X &1

where

H"'(X) = m"'

then

E =E„+J
—(4„

i
H (A) i 4„&

0

—E +gE "'

where E„is the unperturbed energy and E'" is
the contribution nth order in H ' . It is given by

~ g»f 40 OO

E(P) d] . . .
~

dt y TH 1 H 1
g

. . .~ 1 (13)

where T is the time-ordering operator and c re-
stricts the diagrammatic representation of E'"
only to connected diagrams. In (13)H"'(t~) =8,', (f,.)
+H,„(t~)+H (f~); note that in the absence of H«
and H,

„

the retention of H„„to all orders leads to
the familiar diagrammatic expansion for the
ground-state energy EFG of interacting electron
gas. On the other hand, if we set (dg)=0 but re-
tain all the other terms, we recover the structural
expansion' for the thermodynamic functions of
simple metals. An important example is the case
where H,

„

is kept to second order, but H,
„

is
taken to all orders. We then find the linear-re-
sponse result

E=E G+Eo+E

4wZ

where E„is the Madelung Hamiltonian

22'v. (q) ~'

—p'(i) p'(-q) —1I,N 2Zg c

which includes the direct Coulomb interaction be-
tween point ions. If instead this is combined with
the last term of (14) we may obtain a (linear-re-
sponse) pair potential between the ions as

g„(r)= dj(2m) '
2 ~

1+f'(q)~ -1 e"',
(16)

where f(q) reflects the presence of the (static)
electron ion pseudopotential. Equation (16)(or its
generalization beyond linear response) neglects con-
tributions to ion pair energies from fluctuating di-
pole interactions. These are readily obtained
from (13) as follows: Suppose we take &=0 (i.e. ,
p"—= 0), then to second order in H«we have

/ ~ F40—„2Z v.(q)v.(q')s'" "'""'I&—„'«&qalT~. &-.~' &-'«)
I
C-.&+ &~a ~T~ d-. ~ d-'(t) ~+a &

R, R~ q, g~ ~'» 40

and since the ions are spherically symmetric we may write this as
(17)

2 Og

E(2 1 5 qv q. eg'ai""- 'q. q'' —' + dt eR Td'-d-t 4R eR TdRda t CR ~

R, R'
(18)

Using the identity

S'q N'q' e~ '
q q'

we may rewrite (18) as

E(2i
R, R~

(20)

e'Wr ' 2 8W&2

r' erj'
where

4 (&) =-
~

2' +—
2

' —o.o(t.'N). (21)
fs'v, ' 2 sv, ' '"du
( er r er 0 2w
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The quantity np((d) is the frequency-dependent pol-
arizability of the isolated ion, i.e. , V„=rlt g T(R —R')(dg, &,

Re
(27)

no((d) = " dt e'"'(i/I)([»f(t), d(0)]&,

1 1
T(R) = v V—=—(I-3HA) .

R R
(23)

As is known ' ' this Hamiltonian can be solved
for crystalline symmetry', its excited states are
collective excitations of all the ions in the system.
For crystals, the collective states are polarization
waves with frequencies or~(q) given by solutions to

1st[I+ no(u&)T(q)]=0. (24)

Here
I

T(q) = e""T(R)

and is a scalar. For the Coulomb interaction v,-r ' and (21) gives the London or van der Waals
interaction between ions. These dispersion forces
follow from consideration of a Hamiltonian of the
form

Hnr =Q HI + y d-„T(R—R')d-„„
R R,%'

where T is the dipolar coupling

where (dR & is the induced dipole moment at site
R'. %'e also require the contribution to V„dfrom
the valence electrons. The Fourier transform of
this quantity is v,(q)p„~(q,&o). We can obtain
p»~(q, ~) as follows: Let v„bethe single-particle
density matrix for the system of valence electrons
in the absence of interactions. The levels of the
system are labeled by k and the energies are c„-.
Then

p„=Tr[v,",'5(r„-r)],
where v,", is the first-order shift in v, y

FroIQ
the equation corresponding to (26) we have

k, r ~H'

+ V„(k'-k,&o)]5& „-

(26}
If e„(q,&o} is the wave-number- and frequency-
dependent dielectric function of the valence-elec-
tron system we may rewrite (28} as

P»nd(»f ~ ~) =
v ) [~I»((f~ +)

1

v, q

and for a cubic solid

limT(q) = 4m-(q q ——,'I}.
»a~ 0

and hence that

x [V„,(q) + ip(q, &u)
.qe, (q) ] (as)

In terms of the determinant in (24) whose vanishing
gives the mode frequencies, the ground-state en-
ergy can be written

p»»O

E =— dllog det I+a0 iu T q 25DF 4m;
as shown by Mahan. A straightforward expansion
of the integrand then leads to (20).

In the presence of conduction electrons (25) has
a natural extension. A simple one-electron mean-
field argument gives an indication of the general
result to be obtained from perturbation theory.
Let v, be the single-particle density matrix for
the system of ions. The single-particle levels are
f~ n&] and f their occupancy. The system is sub-
jected to an external field E,(r) with time depen-
dence e'"'. The corresponding potential is Ve f,
and that of any induced electron charge is Vf Q

If
v, ' is the first-order change in v, then we have

&n~v»' ~P&= @„(n~(-e)(V»+V»,)~P&

(26)

where g„a=s„-ca.
In the vicinity of the ion at R we have

( )+ V ( )
V,»(&, (d)+»p(q, ~) qv. (q)

V.*» q 4' + V».a (I ~ = e'*( '
) +,'

(
)' ~

(30)

p(a ~(=Q ~" "«N(~(&.

It remains, therefore, to calculate (d»t)= Tr[v,
(-er»t)]. Using (26) and (31) we find after a little
algebra, that

p(q, (v) = no [I+ n, ((o)T"(q, (d) ]'E"(q, (o) .
Here E"(q, &a) is just Z»»e»4' E'(r, (d), where
E'(r, (d) is a screened external field whose poten-
tial is V,„,(q, (d)/z„(q, &u}. In a similar way, the
static Coulomb interaction used in the definition
of T(R) or T(q) [see Eq. (23)] is also screened by
e„(q,v). It is apparent from (32) that the collec-
tive excitations of the dipolar system are now

screened polarization waves, and are given by the
solutions to

(3l)

(32)

det[I+ n, (u))T"(q, (o) ]=0. (33}

Correspondingly, the ground-state energy of the
screened polarization waves is [see (25)]

Here we have defined the induced polarization p by
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EP& ——g du log(det[I+ o.', (iu)T*'(q, in) J}
ce

(34)

dg p„(q)
v(r, iu)=

( ), (' . )e"'. (s6)

Here v, is taken for convenience as an empty core
pseudopotential (see Ref. 6). It is important to
note that (34} is only the contribution to the pair
potential arising from screened fluctuating dipole
interactions. The total potential requires the ad-
dition of the statically screened pseudopotential
contribution. Part of this is given by (16); there
is, however, a modification arising from the
static screening of the ions. We return to this
point in a moment.

Equation (35) can also be obtained from pertur-
bation theory. starting from (13) as shown by Rehr
et al. The necessary modifications to (18) are
those that result from including the valence elec-
tron-dipole part of the coupling II,

„

to finite order
and II to all orders. As discussed in Refs. 2 and

I

and the lowest-order expansion of this quantity
leads again to pair potentials, in this case [see
Eq. (21)]

("du 2 . s'v(r, iu) (' 2 (sv(r, iu) ~'

(s5)

where

6, the four lowest-order diagrams that emerge
after inserting the polarization of the electron gas
are equivalent to a single diagram represented by
a term with a structure identical with that of (18)
but with the interactionv, replaced byv, (q)/«„(q, e}.
It then follows that lowest-order dispersion
forces are the screened van der Waals interac-
tions given by (35).

This accounts for physical processes involving
collective excitations and dynamic screening. It
remains to consider those interactions that are
statically screened by the polarizable ions. This
system constitutes an inhomogeneous dielectric
for which we may define an inverse static diel-
ectric constant «d'(q, q') by relating a static ex-
ternal scalar potential V„,(q) to a total potential
V(q) = V„,(q}+V„d(q). The defining relation is"

V(q)=~ Q«, '(q, q')V„,(-q'j.

Then
2

Pt d(q) =—„Z[ d '(q q')- 5;„-.]4 V.„(-q').
(38)

If we have a system of point charges (the monopole
part of the ions, for example)

V„,(q) =&v,(q)p'(q),

sothat from a simple coupling-constant integration
the total energy of the system in linear response
is

2

2 Z V.,~(q}pi.d(q) = „2EE2'v.(q)v.(q'}p'(q}p'(-q'}I 4, «d'(q q'}-
d. d I.

For the homogeneous dielectric «,' is diagonal and (39) reduces to the expected
2

2&2 g v.'(q)p, (q)p'(-q)
4 [«,'(q) —1].

(s9)

(40)

We may compare (39) with the result for E obtained from (13) by taking the monopole-dipole interaction
to second order, i.e. ,

2„2ZZ~'v. (q}v.(q')P'(q}p'(-q')~ I ~ J did'0
~
Tq d.;q'. d-;(&)

~
q'0},

tI,
S )

which involves single-ion polarizabilities. Going
beyond second order can only be carried out ap-
proximately. We first assume, as in (40), that
the major contributions to the energy can be cal-
culated by taking e~ to be diagonal. . For long-
range interactions in systems of high symmetry
this approximation, though neglecting certain
local-field effects, is not unreasonable. Second,
dipole-dipole interactions will be included by an

appeal to the standard random-phase approxima-
tion. Then

«d'(q) —1 = -4wn&0/ [I + o.'0&(q) ], (41)

where T(q) is a cubic average of Ze""&&(I-l&)
In the long-wavelength limit (41) reduces to the
Clausius-Mossotti result. '

The background dielectric, described by «d(q),
leads to a. modification of the Madelung Hamilton-
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ian to give

40 q'q

v„(q)/e~(q) evidently holds to all orders in the
structural expansion so that we may replace the
electron (static) ion interaction of Eq. (12) by

(42)
"~ p'q p -q

p$40 ~g q
(44)

where the first term describes screened point-ion
interaction and the second a one-body seU-energy
that can be combined with Eo. The magnitude of
the Madelung eriergy will be reduced by the screen-
ing action of the ions.

In arriving at (42). all static interactions have
been screened by t~(q) A.similar principle clear-
ly holds for the band-structure energy term [the
last term of (14)]. Per electron, this becomes

The replacement of the (static) pseudopotential by

A similar argument can be advanced in support of
the replacement of the mutual valence-electron in-
teractions by

~C '7 f V (45)';~o «gq
However, here it is also necessary to invoke an
adiabatic approximation in comparing valence-
electron Rnd core-electron motions. The relevant
physical requirement is that core-excitation ener-
gies be considerably in excess of the character-
istic valence-electron energies (say s~). If this
condition is satisfied the pseudopotential part of
the Hamiltonian can now be rewritten as

(46)2 2*' +l g„;p"(q)p"(-q)+ g „," S'(q)p"(-q)+ 2 g Z'„; [p'(q)p'( q) -&]+-»E.

where, as noted earlier, E, is the sum of all q-0 terms in the starting Hamiltonian. In (46) vp, is the
assumed local pseudopotential [previously written as v, (q)f(q)]. For systems in which the adiabatic ap-
proximation is satisfactory, we may therefore write the total Hamiltonian for a crystal Rs

p'
H=NZE, + T, +E +2+ .p'L, (B-H')++2 *+-,' g ' p"(q)p"(-q)

R,R'"' '() "( ).-'g '' [ '() '( )-~]

where T, is the kinetic energy of the ionic system.

(4V)

IV. COMMENTARY AND CONCLUSIONS

In simple metals the ions are tightly bound, the
core excitation energies are large, and the macro-
scopic background dielectric constants e„(q-0)
are typically quite close to unity. %e might
reasonably expect, therefore, that the numerical
consequences of including e, in (4V) will be rela-
tively m1nor, Rt leRst so fal Rs the thermodynamic
functions of the metal are concerned. It would ap-
pear plausible, for example, that in calculating
the Madelung energy, a scaling procedure involv-

ing the replacement of e' by e'/e~(q- 0) will be

adequate. Similarly, such a replacement may
seem sufficient for a reformulation of the electron
gas problem in the presence of a polarizable back-
ground of ions." A simple argument shows other-
wise: Suppose we estimate the Madelung energy
by the familiar ion sphere method. Each point
ion of charge Ze is surrounded by a. uniform
sphere of valence electrons, radius r, Z'/3. To
within very small multipole corrections, the ener-

gy, per electron, of the entire system is then Z '
times the electrostatic energy of a single neutral
epfggre. This is, per electron, -I.SZ'~3/r, (Ry/
electron). But since the energy is determined so
closely by a region of essentially atomic dimen-
sions, it is quite apparent that the effect of polar-
izable dipoles must be small. This is merely a
restatement of the fact that one expects e~(qa x,')
to rapidly approach unity. Accordingly, for prob-
lems in which the physically important length
scales are y, (or k~') the scaling behavior assumed
to follow from the replacement e'-e'/e „will lead
to error.

Notice that although core-polarization effects in
the simple metals may contribute little to the in-
ternal energy compared with the large direct Cou-
lomb interactions and volume-dependent terms,
they may nevertheless have important structural
consequences. This point was emphasized in Ref.
6 and also more recently in the context of the
structure of the alkali metals by Upadhyaya et
al.'0 In the analysis above, core pola, rization has
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been included fox structural purposes only to the
extent that it modifies the pair interaction between
ions. Thus (4V) is proposed as a Hamiltonian for
use in lattice stati. cs, lattice dynamics, statistical
mechanics, and so on. It is clear, however, that
lt ls still appl oxlmate, In particular thr ee-body
(and higher-body) dispersion forces are neglected.
These are contained implicitly in the formulation
in terms of screened polarization waves and will
arise systematically from the expansion of (34).
Two physical points may be made: (a) Providing
the polarizability of ot, of the ions is not large,
these multicenter potentials are expected to be

smaller than the standard fluctuating-dipole (pair)
terms, even in the absence of the valence elec-
trons; (b) dynamic screening by the valence elec-
trons will reduce the higher-order contributions
still further relative to screened van de Waals
interactions. The restriction to pair terms is
thus reasonable.
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