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Pinning and roughening of one-dimensional models of interfaces and steps

S. T. Chui' and John D. %'eeks
Bell Laboratories, Murray Hill, New Jersey 07974

(Received 19 January 198.1)

%e shoe that an external pinning potential located along a single row ~ill at all temperatures
localize the interface in a one-dimensional solid-on-solid model unless the pinning roar is located
near a boundary. Then there arises a simple example of the roughening transition found by

Abraham, with a localized'interface possible only for sufficiently large potential strengths. %e
suggest this transition may be observed experimentally on a stepped semiconductor surface.

Thermal fluctuations play an important role in
determining the properties of an interface, particular-

ly in a system of low dimensionality. Indeed these
fluctuations are sufficient at any nonzero temperature
to cause the interface between oppositely magnetized
phases in a two-dimensional (2D) Ising model to
wander arbitrarily far from its straight T =0 location. '

Similar wandering or "roughening" behavior is

found for models of a step on a crystal surface. 2

Abraham' recently showed that interesting new
behavior can arise from the addition of an attractive
"pinning" potential which favors locating the inter-
face in a semi-infinite 20 Ising model along a row

near the boundary of the system. At sufficiently low

temperatures the interface is pinned or localized near
the attracting row. However there is a "roughening
temperature". Tq (which tends to zero as the pinning
potential tends to zero) above which the interface
wanders arbitrarily far from the boundary. '
Abraham's solution makes use of detailed properties
of transfer matrices for the semi-infinite 20 Ising
model and represents a true mathematical tour de

force.
However the nature of the roughening transition

does not change even. in the limit of a small but finite
pinning potential, for which there is a small T&. This
suggests that the main features of the transition can
be found more simply by suppressing bulk hereto-
phase fluctuations by a "no-overhang" or "solid-on-
solid" (SOS) cond'ition. "' We provide such an
analysis below. 6

The positions of the interface (or step edge) in a
SOS model are given by the set of integer heights
[h; ) of a 1D array of N columns. Here Ii; gives the
height of the i th column (1 ~ i ~ N) from the fixed
reference level with all A; =0. The energy of a partic-
ular configuration is

E({a,])=X[y([I,-I„,i)+ V(I,)],
where the intercolumn interaction energy f(lt) is
some increasing function of the absolute value of A

with f(0) =0 and V(h) is a singie-column pinning

potential. At low temperatures the essential physics
should be independent of the form of f(h) for
lt &1.' Particular choices for f and Vwill be dis-
cussed later'. %e assume cyclic boundary conditions
A~=—h~+~ and take the limit N ~. At a reduced
temperature ks T =P' the —free energy A and parti-
tion function Z are given by

Z =—exp( —PA ) = X exp[ —P&( [ It; ])] (2)

with To the "zero-field" transfer matrix, it is easy to
see that Eq. (2) can be rewritten as the trace of the
Nth power of T. Representing the eigenvalues and
eigenfunctions of T as

T(h', It ) y(h) = ep(h') (4)

we find in the usual way7 that the free energy in the
limit W ~~ is given by

where a,„ is the largest eigenvaiue of Eq. (4). Simi-
larly the probability of finding a particular column at
some height A is

P(h) = c@,'„(lr)

with P,„(h) the corresponding eigenfunction and c a
normalization constant.

In this paper we consider only the special case sug-
gested by Abraham' of a single pinning row located
at lt =0. Then Vhas the form V(h) = —Bgho. Thus
a column with height h =0 gains an extra energy —8
over other positions of the column and the flat inter-
face with all h; =0 is favored. This pinning field can

where the surnrnation is over all possible integer
heights of each column,

If we define the "transfer matrix" T using Eq. (1)
as

T(1',~) -=exp[-pr(]l '- I () ] exp[-p V(I ) ]

=- T,(I ', I ) exp[-P V(l )],
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with the special case

X r, (o,h) y(h) =.e-'y(0) .

Thus the modified eigenfunctions p(h') for h' %0 in

Eq. (7) must be closely related to those of the zero-
field matrix To and Eq. (8) represents a boundary
condition created by the pinning field which P(0)
must obey.

The eigenfunctions of To are easy to find for an in-
finite system with —~ ( h & ~. Clearly Eqs. (7)
and (8) with h =0 can be satisfied by an eigenfunc-
tion of the form

y(h) =r"

and to obtain finite probabilities as h +~ from
Eq. (6) we must have r pure imaginary. Thus we
find a band, of eigenfunctions $(h) = e'""

( —w «k «n) The ma.ximum eigenvalue ao in Eq.
(8) occurs for k =0:

so=1+2 X T0(0,h)
h 1

(10)

and from this the free energy can be calculated using
Eq. (S).

The simplest column model we study, the "re-
stricted" or RSOS model, permits at most a height
difference of unity between neighboring columns.
This restriction should be unimportant at low tem-
peratures. The only nonzero matrix elements of To
are then

1 h —h'

Here J is the cost in energy to move nearest-n'eighbor
columns one unit apart and is proportional to the
spin-flip energy in the unconstrained Ising model.

T0 is a tridiagonal matrix and hence is linearly re-
lated to the matrix E representing a finite-difference
approximation to the kinetic energy operator —2V .
Thus finding the eigenfunctions of the transfer ma-
trix To is equivalent to finding the eigenfunctions of
the (finite difference) kinetic energy matrix E. The
maximum eigenvalue ~0-1+2R arising from
Eqs. (11) and (10) in the infinite unpinned case
corresponds to the zero kinetic energy solution. The
pinning field at h =0 then gives a localized attractive
potential which produces a boundary condition Eq.
(8) which the "wave function" p must obey.

be located near a boundary by considering a semi-
infinite system with 0 ~ h ~ ~.

%'e can exploit this simple form for V by defining
p(h) =—exp(h5~0) $(h) with h =—PB. Using Eq. (3),
the eigenvalue problem Eq'. (4) can then be rewritten

X To(h', h) p(h) = ap(h'), h' WO

%e first consider the case ~here the pinning field
at h =0 is located far from the boundaries of an in-
finite system with —~ & A & ~. In the quantum-
mechanical analogy we seek a bound-state solution
induced by the attractive potential, A solution of
even parity of the form of Eq. (9) satisfying boun-
dary conditions at h =+~ is $(h) = ti"i (r «1). As
will become evident immediately, this solution satis-
fies both Eq. (7), which can be written after division

I

by t" as

Rr+1+Rr '-e (h'&0)

and the boundary condition, Eq. (8),

Rt+1+Rt =me

(12)

(13)

for an appropriate choice of t. Note from Eq. (12)
that e & ~0=1+2R for any t & 1 and that ~ ~ so as
"critical binding" is achieved and t 1. Dividing
Eq. (13) by Eq. (12) we find that t must satisfy

r (1+2Rr)
r +R (r'+1) (14)

e =(1+R)/(1+2R)
As h h„ t 1, and the exponential decay of P(h)
in Eq. (6) becomes weaker and weaker. For b ( h,
the interface is unpinned and delocalized; the proba-
bility of finding the interface at any particular height
h is zero.

At low temperatures R =—e ~J 0; hence from
Eq. (16) h, =PB, ~0. Thus for fixed pinning poten-

This quadratic equation for t has a unique solution
t & 1 for any b & 0. Hence we always get a "bound
state" and exponential decay of P(h) in Eq. (6).
The interface remains pinned for any nonzero b and
a roughening transition to free behavior does not
occur. This is simply an example of the well-known
fact that in one dimension a symmetric square-mell
attractive potential will always support a bound state. s

Similar conclusions have been reached by Burkhardt
and by van Leeuwen and Hillhorst. 6

The semi-infinite case with heights restricted to
0 ~ h & ~ has very different behavior since the pin-
ning potential at h =0 is located next to a "hard
wall. " Such an unsymmetric potential can support a
bound state only if the well is sufficiently deep.
Equation (7) still gives Eq. (12) as before for h') 0
but now rather than Eq. (13) the boundary Eq. (8) is
Rt +1 = ee ' since negative heights are not permit-
ted. These equations combine to give

r (1+Rr)
r+R(r2+1)

This quadratic equation for t has bound-state solu-
tions t & 1 only for sufficiently large b. The mini-
mum value b, produces "critical binding" with t =1
and is, from Eq. (15),



2440 RAPID COMMUNICATIONS 23

where we must now explicitly choose an approximate

po as well as t to e to satisfy Eqs. (7) and (8). Sub-
stituting Eq. (18) into Eq. (7) we find after division

b

(R/t)" l P, + Rt/(I Rt) t/(t ——R)—]
+ I/(I —Rt) + R/(t —R) = e . (19)

If we choose go = t/(t —R) —Rt/(I —Rt) so that
the term in square brackets vanishes, we find from
Eq. (19) an expression for e independent of h':

e = 1/( I —Rt) + R /( t —R)

and we note that ~ & eo for t ( 1. These choices
must be consistent with Eq. (8) which becomes
ga+2Rt/(I —Rt) =ee Po Combin. ing these results
we find t must satisfy

(I Rt) (t —R)—
~

—b

t (I 2Rt +R2)— (21)

This quadratic equation always has a bound-state
solution 1 ~ t ~ R as b varies from zero to infinity.
As b 0, e in Eq. (20) tends smoothly to eo.

In the semi-infinite or hard-core case 0 ~ h (~
the terms arising from negative heights are missing.
Instead of Eq. (21), we find exp( —b) = (t —R)/t
and a bound-state t ( 1 solution is possible only for
b & b, = —ln(1 —R). This requirement is a special
case of the general expression [his Eq. (8)] found in
Abraham's paper. Again the hard-core condition
will induce a roughening transition from localized to
delocalized behavior of the interface.

A physical realization of this transition may be

tial strength 8 there is always a T small enough that
B & B,( T) and a bound state or localized interface
arises. As T becomes large however we have from
Eq. (16) that B,(T) cc T. At sufficiently high tem-

peratures then, the interface becomes unpinned and
moves far from the boundary. This is the roughen-
ing transition found by Abraham. '

These same methods suffice to treat the usual
ASOS model ' where the matrix To is now

T, (h h ) R-l~-&'I

This model is a special case of the general anisotropic
Ising model considered by Abraham' which arises
when the vertical coupling strength Jq ~. Since no
new physics arises from the possibility of multiple
height jumps between nearest-neighbor columns per-
mitted in Eq. (17) we will be brief in our discussion.

Considering first the infinite unpinned system with

b =0, we have from Eqs. (17) and (10) the max-
imum eigenvalue eo = (1 + R) /( I —R). A pinning
potential at h =0 may induce a bound state with

wave function of even parity

h~0
h=0 (18)

found by considering the behavior of steps on a crys-
tal surface cut at a small angle to a close-packed
plane. In the simplest case which probably applies to
metallic surfaces we expect the equilibrium vicinal
surface to consist of single steps separated by terraces
whose average width is determined by the angle of
the original cut. Thermal fluctuations will occasional-
ly cause the steps to wander' close to one another
but it is clearly unfavorable for the lower step to pass
beyond the position of the upper step, though two
step edges can coincide and form a double height
step. This noncrossing requirement produces a
"hard-core" repulsion between the steps. To achieve
the maximum entropy of wandering the steps will on
average be as far apart as possible just as the un-

pinned interface discussed before is found far from
the system's boundaries.

However for certain (probably covalent) materials
it may be energetically more favorable to form
multiple-height steps or step bunches (risers) rather
than separated monoatomic steps. These are in fact
observed on vicinal semiconductor surfaces. "' The
terraces undergo covalent reconstruction and the wid-

er terraces that result from step bunching allow addi-
tional reconstruction. ' The bunched steps them-
selves may be stabilized by some similar kind of
reconstruction, though impurities could also play an
important role. ' This difference in energy produces
a pinning mechanism which must dominate the
entropy-driven repulsion between steps at sufficiently
low temperatures. However since the pinning is as-
sociated with a hard core from the noncrossing condi-
tion, at high temperatures the risers should break
apart in a roughening phase transition with widely
separated single steps favored, Indeed after laser an-
nealing, when the Si surface is raised to very high
temperatures, single steps are found"' on the fast-
quenched surface, though this is not necessarily the
equilibrium situation. In addition, impurities could
complicate this simple picture.

It would be very interesting to study the equilibri-
um properties of these vicinal semiconductor surfaces
as a function of temperature. If our ideas are correct
the risers will break apart at a given temperature Tq

whose magnitude depends on the pinning or recon-
struction energy 8. Thus information both about the
phase transition and the pinning energy could be ob-
tained from these experiments.
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