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The mixing of the Landau-Khalatnikov (order-parameter) and fluctuation contributions to the

critical ultrasonic attenuation is calculated in the ~ expansion. The resulting scaling function

agrees with the experimental data over nine octaves.

When a system undergoes a second-order phase
transition and enters a state of broken symmetry, this
change is characterized by a nonvanishing average
value of the order parameter ($) 40. A pressure
wave propagating through the system produces a local
modulation of (P). If the relaxation rate y is com-
parable to the angular frequency cu of the wave, the
modulation of ($) will lag behind the input pressure
signal. The Landau-Khalatnikov' (LK) theory of ul-

trasonic attenuation is based on this hysteresis. The
LK attenuation exhibits a characteristic relaxational
maximum when y =co. It vanishes at the critical
point, where ($) =0. The actual critical ultrasonic
attenuation, however, by no means vanishes at the
critical point. This discrepancy can be attributed to
the effect of fluctuations. Being a mean-field theory,
the LK approach neglects fluctuations. Williams and
Rudnick, ' in interpreting their measurements of the
ultrasonic attenuation in liquid 4He II, achieved suc-
cess by simply superposing the LK component on top
of the fluctuation component. They assumed the
latter to be the same function of the reduced tem-
perature below the A. point as it was above, where
there is no LK contribution. This approach, howev-
er, has been found by Tozaki and Ikushima to fail at
higher frequencies. It has clearly become necessary
to have a theory of critical ultrasonic attenuation
which does not ad hoe assume a linear superposition
of the order-parameter (LK) and fluctuation contri-
butions. It is essential instead to take the fluctua-
tions into account from the outset. The purpose of
this short note is to present such a theory. Our prin-
cipal result is the scaling function shown in Fig. 2,

which fits the experimental data over a frequency
range that spans three orders of magnitude. From a
more abstract point of view, the general significance
of our work is that there is an inescapable mixing of
the two components which necessarily invalidates any
approach that assumes a linear superposition. This
"hybridization" also occurs in the intensity of light
scattering4' and can be expected to occur in a wide
range of phenomena not restricted to superfluid heli-
um.

Recall that the origin of the ultrasonic attenuation
is a lagging temperature signal6 resulting from a com-
plex frequency-dependent specific heat Cp(cu, y).
Thus the attenuation in one wavelength is

—1
nh. = (const) Im

Cp co, y

For (ru, y) ) I MHz liquid helium is in the van Hove
precritical regime' where the kinetic coefficient for
order-parameter relaxation equals its noncritical back-
ground value 8&. Therefore the temperature depen-
dence of the relaxation rate is given by

y = a,~' a,~'~(~4&',

where t is the reduced temperature, K
' is the corre-

lation length, and Ko is a nonuniversal constant of the
fluid that has to be determined empirically and in-

dependently above and below the A. point.
The specific heat that we need for Eq. (I) is related

to the correlation function G~ of the quadratic field

Q = Qt + Q2, where the first- and second-order com-
ponents are Qt =2 ($)QL and Q2 = P' = $t, + fr.

23 2434



23 RAPID COMMUNICATIONS 2435

$z r are the longitudinal and transverse fluctuations
of the order parameter, respectively. The correlation
function of Q between times 1 and 2 is consequently
composed of three terms,

Gg(12) = (Q(1)Q(2)) =G((+2Gt2+ 622, (3)

where

Gii = (Qi(1)Qi(l) ) =4 ($) (p L(1)@ 1(2) )

of the familiar mean-field step-function contribution
of the order parameter to the specific heat.

The interaction corrections to Eq. (4a) correspond-
ing to graphs (b) and (c) become

~gii=4(0)'&g ~(ygo)'LrL ~

where L&L represent the "bubbles" of graphs (f) and
(g). Each "leg" of a graph corresponds to a factor of
ygo. Thus Eq. (4b) becomes

—=4 (y)'G (12) (4a)
g12 ~ ygOLT, L ~

The mixing of the two contributions to Q is clearly
exhibited by the cross term

Paying due attention to numerical factors, we find

2G)2 ——(Qt(1) Q2(2) ) + (Q2(1) Qt(2) )

=2(p) [(pt, (I)p'(2)) + (p'(I)&L, (2))) . (4b)
and

gb (al, y) = (1 3ygo) d—LI. + Lg( i y, y,

)— (9b)

gg(~, y) = (I —ygo)'ALr+ReLr( i y, y—) (9a)

go=
y —i co

The zero-order part of Eq. (4a) becomes therefore
the response function

gi'i =4 (4 ) 'go = &oygo = Co
y —IM

(6)

of the LK form. The proportionality of ($)~ to y,
which is valid to lowest order in the e expansion, is

expressed by the constant Co. As expected, Eq. (6)
vanishes at the A. point, where y =0. In the thermo-

dyanic limit co 0 it adds the constant Co to the
specific heat for all y & 0 (i.e., for all temperatures
below the h. point). This is the finite-frequency form

(b)

e

(d) (e)

FIG. 1. Low-order contributions to the specific heat
below the A. point.

The purely fluctuational component is

Gg2 = (Q2(1)Qp(2) ), = (qb'(I )$'(2) )„. (4c)

(The subscript on the above equilibrium average indi-
cates the connected part. ) We now work with the
Fourier transform and convert all correlation func-
tions to response functions. In the broken symmetry
state there is a three-point vertex which produces the
mixing and interaction effects illustrated by the
graphs of Fig. 1. We treat these effects in the e ex-
pansion. Graph (a) involves only the noninteracting
response function ygo corresponding to correlation
function

for the total contribution to the specific heat from all
of the low-order graphs of Fig. 1 involving transverse
fluctuations and longitudinal fluctuations, respective-
ly. We have made a subtraction at the pole ao = —i y
as this is, by definition, the renormalized value.

A particularly satisfactory feature of Eq. (9a) is
that, although ALT does not have a thermodynamic
limit, Eq. (9a) does. This is because of the vanishing
of the prefactor of I,LT as ao 0. For this reason we
do not have to sum a series of bubbles, as is often
done in this kind of problem. It would be natural to
represent superfluid helium, which has one longitudi-
nal and one transverse mode, by an equal mixture of
Eqs. (9a) and (9b). We, however, follow a different
approach which adheres more closely to the ~ expan-
sion. We take as the hallmark of the superfluid not
that it has just one transverse component of the or-
der parameter, but rather that its critical specific-heat
exponent vanishes (or very nearly so). It is well
known that to describe this situation to first order in
the e expansion we need three transverse com-
ponents. We therefore argue that the correct weight-

ing of Eqs. (9a) and (9b) is —and 4, respectively.

At this point a computational convenience enters.
We have found that the results are not significantly
changed (error of a few percent) by using 100% of
Eq. (9a). Therefore, from now on, for the sake of
simplicity, we drop Eq. (9b) and use only Eq. (9a).
A further simplification, justified by a detailed study
to be published elsewhere, is to neglect the oscillatory
nature of the intermediate lines in graph (f). Thus,
ignoring second sound effects and treating the lines
as relaxation only, we obtain Lr(ao, y) = L„(co), in-
dependent of y, where L„(co) is the h.-point specific
heat. The subtraction is consequently

&Lr=L„(~)—ReL„(—iy) =in —I CU

Denoting ReL„(ca) by Lt„(ru) and writing ger(ro, y)
as L( y)oowe find from substituting Eq. (10) into
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Eq. (9a)

Coy
L(r», y) = — + -

2
ln +in-' —/r» {r»+/y) -/r»

Co 0+L„(~)=, „——,in( —/0)
1 —in 0+i
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where we have introduced the scaled. frequency9
0 = r»/y. With L = Lt +iL2, the imaginary part gives
the scaling function

F(n) = —L,(n)2
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which is shown by the solid curve in Fig. 2(b). The
dashed curve shows the first term of Eq. (12a) alone,
the LK contribution. The real part of L does not
scale, being a function of two variables

~p n 0'
i+0' 2 (n'+i)'

—02 inn +Inn+Lt„(r»)02 —1

(0'+1)'

{b)

FIG. 2. (a) Unprocessed experimental data showing
dependence of shape on frequency and absence of scaling.
(b) Scaling functions F(O} from Eq. (12a) and processed
experimental attenuation data ra/ax, where r = [L

~ /[Lx~ .
Inclusion of r restores scaling. The dashed curve shows the
Landau-Khalatnikov contribution. The lower curve shows
the scaling above the lambda point (Ref. 6).

The thermodynamic limit of Eq. (12b) is

Lt(Q, y) = Cp+ L (ytx). Although the e expansion
gives a value for Co of roughly the right size, it is ob-
viously better to determine Co empirically from the
thermodynamic data. Having determined in this way

CO=5.4 as well as K0=1.5 X10'cm ', we have been
able to account very well for the ultrasonic data on
the basis of Eq. (1), which becomes ah. a -ImL '

= L2/IL I2. Thus, neglecting the very slight tempera-
ture dependence of the sound velocity, we find the
ratio of the attenuation below the A. point to that at
the A. point to be

=r 'F(0)

where r =
I
L I2/IL I2x. Because the factor r ' does not

scale, the product depends on the frequency of the
measurement. At higher frequencies, IL I2 is a rela-
tively strong function of 0 and tends to cancel out
the maximum of F(0). For this reason the 1-0Hz
data of Commins and Rudnick' as well as the 1.7-
6Hz data of Lambert, Legros, and Salin" hardly ex-
hibit any maximum in a/a„, as seen in Fig. 2(a)
which exhibits the raw data. This contrast with the
pronounced maximum in the 3-MHz data of %illiams
and Rudnick. 2 The effect of frequency on the shape

of a/ax is also clearly evident in the data of Tozaki
and Ikushima, 3 and has been remarked upon by
them.

In order to reveal the underlying regularity in the
apparently disparate data described above, it is essen-
tial to subject them to a "processing. " This is simply
the removal of the offending nonscaling factor r '

from the right-hand side of Eq. (13) by transferring it

to the left The "p.rocessed" values ra/a„ for the
various runs referred to above, as well as for the 35-
MHz run of Roe, Meyer, and Ikushima' for their
Q. 7% mixture, are shown in Fig. 2(b). It will be not-
ed that not only do the data thereby coalesce into a
single scaling function, but also that this function is
in satisfactory agreement with the predicted scaling
function of Eq. (12a).
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