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It has recently been observed by Mc%han and co-workers that the commensurate charge den-

sity wave in 2H-TaSe2 can be suppressed by a pressure P = 2 GPa only to reappear again at

higher pressures. This behavior can be explained if the energy to introduce a discommensura-

tion in the commensurate phase goes through a minimum. This can happen if the interlayer

coupling causes the intralayer phase to move from one minimum to another. A quantitative

discrepancy remains and it is suggested that this may be due to impurity pinning effects on the

discommensurations.

I. INTRODUCTIO'N

Charge density waves (CDW) have been observed
and studied in many transition-metal dichal-
cogenides. " The most studied compound in this
group is 2H-TaSe2. In the original neutron scattering
experiments of Moncton, Axe, and Di Salvo3 the on-
set of the CDW phase in an incommensurate phase
(I) was observed at T = 122 K followed by a first-
order transition to a commensurate CDW phase (C)
at T =90 K. The commensurate phase had a wave
vector which was one third of a basal plane
reciprocal-lattice vector. Recently a more detailed
study4 of this transition has revealed more complex
behavior at the incommensurate-commensurate (IC)
transition. Further high-pressure studies by
McWhan, Fleming, Moncton, and DiSalvo5 obtained
an unusual reentrant behavior of C phase with pres-
sure. Their phase diagram is shown in Fig. 1. The
IC phase boundary initially drops rapidly with pres-
sure and in the interval between 1.7 and 2.3 GPa the
I phase is observed down to the lowest temperature.
However, beyond 2.3 GPa the IC phase boundary
rises rapidly and saturates. The C phase is observed
to have the same wave vector as at low pressures,
viz. , one third of a basal plane reciprocal-lattice vec-
tor. The explanation of this reentrant phase diagram
is the subject of this paper.

In the original study of the IC transition, a simpli-
fied Landau model was used. This model of a single

Q vector CDW was further studied by McMillan6 who
found a continuous IC transition whose onset is
determined by the energy to introduce a discommen-
suration (DC) into the C phase. This theory in

which only the phase of the CDW order parameter is
allowed to vary, is equivalent to the theory of the
registry transition of a film on a substrate introduced

earlier by Frank and van der Merwe. ' They obtained
an analytic solution for the shape and energy of a
DC. The effect of including variations in the ampli-
tude of the order parameter in this theory has been
studied by several groups. ' Recently Jacobs and
Walker' have shown that this leads to a first-order
transition at higher temperatures. However in this
work we are interested only in the general form of
the phase diagram and we shall ignore amplitude
variations.

The CDW phase of 2H-TaSe2 has three Q vectors
which leads to a more complicated form of the free
energy in a Landau expansion. The most general
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FIG. 1. The pressure-temperature phase diagram of the
CD% phase in 2H-TaSe2. The points are the results of x-

ray scattering experiments by Mc%han and co-workers (Ref.
5) and the solid line is a guide to the eye. The dashed line

in the empirical fit to the IC phase boundary described in

Sec. IV A.
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form was recently written down by Jacobs and Walk-
er. ' The detailed form of the I phase is also modi-
fied and as pointed out by Bak et al. ,

" this leads to
either hexagonal or stripe configurations of DC in the
I phase.

In this work we are interested primarily in the
phase boundary and we shall take this to be deter-
mined by the energy to introduce a single DC and ig-
nore the effects of interactions between the DC.

In Sec. II the general Landau expansion of the free
energy in the C phase is the starting point. The dis-
cussion is limited to variations of the phases of the
order parameters. The energies of small oscillations
in the phases are evaluated and compared to the fre-
quencies measured by Raman scattering. ""There
are several differences from the assignments and en-
ergies obtained by Holy et al. " Then the energy of a
DC is calculated for the two principal directions
under the assumption that only a single component
of the phase varies in a DC. It is shown that the
lines of DC are preferentially oriented parallel to the
reciprocal-lattice vectors of the crystal, in agreement

with experiment.
In Sec. IVA an empirical fit is made to the IC

phase boundary and from this fit a minimum in the
energy of a DC is obtained. A possible way to obtain
such minimum by switching the intralayer phase vari-
able from one minimum to another is presented in
Sec. IVB. However the resultant minimum is too
shallow when compared to that deduced from the
phase boundary.

The conclusions are presented in Sec. V. It is sug-
gested that the phase diagram at temperatures
T 100 K is influenced by impurities which pin the
lines of DC and restrict their mobility.

II. LANDAU THEORY AT AMBIENT PRESSURE

The form of the Landau expansion of the free en-
ergy in 2H-TaSe2 has been discussed by several au-
thors. The most complete discussion has been given
in the recent paper by Jacobs and Walker. " Their
form for the free energy density (a single layer) is

t

F[%';(x)]=& x{+,{'+G Xlo&{4+-2& X {+,"p, ('+& X ~ +q%',
'

J J i&2 j ' ~XI}.j

2
+ C X Q —Re X)O(%'2%'3+@ X%'i +OR X%'i'It +(%' +2

Qxg J J
i

(2.1)

fhe three complex order parameters 9', (j= 1.3)
describe the three coexisting CDW in each layer.
The charge modulation is given by

Sp(x) - 2 Re X%', (x) exp(i
3 6; x)

J
(2.2)

i

and (6,. } are the three reciprocal short lattice vectors
in the basal plane. The periodic lattice modulation is
-m out of phase with the charge modulation and is

given by

a(R;) =Im Xep 4', (R;) exp(i —,6, R;)f G J (2.3)

and eo gives the amplitude of the lattice distortion.
The first three terms depend only on the moduli,

{%',{. In order to simplify matters, we shall assume
that the moduli are fixed and determined by mini&iz-
ing these three terms. This leaves the phases of the
individual CDW to be determined. The order-
parameters can then be written as 4, ( x )

exp[i@, (x) ] without loss of generality. The
phases ($, } are determined by the last three terms in

Eq. (2.1). The first of these is an intralayer phasing
energy which depends only on the combination

f/ + Q2 + Ift3 The other two terms are the commen-
surability terms which involve each individual phase.

These latter terms describe the coupling of the posi-
tion of each commensurate CDW to the position of
the underlying lattice. Finally the fourth and fifth
terms are the restoring forces when spatial variations
of the phase are introduced. In the fourth term the
occurrence of the wave vector q describes the possi-
bility that the natural wave vector of the CDW may
be slightly different to the commensurate value.

The parameters A, 8, C, G, and E are real but S,
g, and OR are complex in general. A single layer of
2H-TaSe does not have inversion symmetry. The 20
crystal structure has a center of inversion located half-
way between the layers. Under inversion symmetry
the charge Sp+(x) Sp+( —x) where the subscript
(+ } denotes the layer, and the phases $;+ -$;+
under inversion. ' This leads to a form for the free
energy of the second layer in which the replacement
Q+ S",b+ 8 ', and9K+ OIL' is made in Eq.
(2.1).

If we restrict ourselves to symmetries in which the
CDW structure has the same periodicity along the c
axis as the lattice, i.e., a double layer structure, then
the phase parameters ($, + } associated with each of
the three CDW (j = I, 3) in each of the two layers
(+) need to be determined. The part of the CDW
free energy which depends on these phases can be
written as
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F(y}=8 d'x Xj+ ~xllj

'2 ' '2'
—gf/+ +

$XjJ.

r

+„d'x —Ll [eos(@l, +42++43, +y)+cos(4l +A +&3 —y)}

Ex— [eos(3&;++X)+cos(3&/ —x) }
j 1, 3

-~ X [eos(24, + —4;+i, + —4/+l, ++/ )+eos(24; ——41+i.——41+2.——/)}
j 1, 3

+2F X cos(y/, y; -a)—
j 1, 3

(2.4)

where we have written S -=8 exp(/y);
$ = E cxp(/X), alld 5R= /If cxp(/p, ). Thc last term Is

the interlayer coupling energy which arises from
Coulomb coupling of the CD% and elastic coupling
of the lattice distortions in two adjacent layers. In
general a phase difference can arise from the elastic
coupling and is allowed by symmetry.

It is convenient to replace the phase variables

($;+ I of the individual CDW by a set of variables
which describe the relative phasing of the CD% in
each layer and the displacement of the CDW struc-
ture. These variables are

0+ - , (4 i++4-2++ 43+) ~

1

4l+=4++4 +

i36+ = 4++ 4»+ ——,4.+ (2.6)

43+ = 4+ 4»+ l 4'x+
I

The p+ variable describes the pattern formed by the
intersection of the CDW, e.g. , when $+ =0 the
charge maxima of all three CD%' coincide at a set of
points. The other two variables describe displace-
ments of the CDW structure, either parallel ($„) to a
reciprocal-lattice direction (6 } or perpendicular ($„).
The inverse relations are

$„+= —,
' (2/i+ —@2+—$3+) (2.5) When substituted in Eq. (2.4) this leads to the fol-

lowing form for the phase dependent terms in the
free energy of the commensurate phase.

I

F,($+, @„+,@»+)= X d'x Dcos(3$+ + y—) —F. cos(3@~ +3@„++ X)+cos 3@++ P„+—
—,g„+ + y

3&3

+cos 3f+ — Q»+ —
2 $„++ X

3 3.

—M cos(3@„++p)+cos $»+ ——,$„++p, +cos ——
@»+——,$„++@,

343 3 343

1

J3+J d x 2F cos($+ —$ +P„+—P„—a)+cos @+—$ + ($»+ —
$» ) ——, ($„+—$„)—~

2

+cos y, —@ — (P„, @, ) ——(4.+——4.-) —~
2

(2.7)

The total free energy is divided into the elastic energy
F,I and I', .

The lowest energy state is determined by minimiz-
ing the energy with respect to the variables
($+, @„+,$»+ }. This leads to many possible station-
ary points. At atmospheric pressure it has been

determined experimentally' " that $„+—= @»+
—=0 and

P+ = +$0. The Raman scattering experiments of
Holy et al. ' show a pattern of selection rules con-
sistent with a CD% state with inversion symmetry
confirming this choice of variables. Therefore, the
discussion will be limited to this class of CD% states.
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With this restriction the form of I', simplifies consid-
erably to

+6F cos(2&p —u)] (2.9)

F, (gp) = J d'x [—2D cos(3gp+ y)—6E cos(3$p+X)
—6M cosy, + 6F cos(2$p —a) ]

(2.8)

This can be further simplified to give the form

F, (Pp) = J d x [—2$ cos(3$p+ P) —6M cosp,

those obtained by Holy et al. " They used a less gen-
eral Landau expansion in which the angles y and X

were taken as 0 and m, r'espectively. The vibrational
modes at the zone center in which the CDW struc-
tures oscillate around their equilibrium positions are
obtained by expanding Eq. (2.7) for smail P or Q».
The result for the free energy per unit area, is

Fp F, (Po) —,F[—(P @, —)'+(@, —@, )'1

x cos(2$p —a)+
4

(Q„'++/„' +4j»++/» )

where x [Ecos(3$p+ X) +M cosy, ] (3.4)

tanp = (D siny+3E sinX)/(D cosy+ 3E cosX)

and

S = [D'+ 9E + 6DE cos(X —y) ] ' '

9F,
8 p

(2.10)

The equilibrium value Qp is determined by minimiz-

ing Eq. (2.9)
M rp+ = 9[Ecos(3pp+ X) + M cosy, ]

and the out-of-phase mode (E~„symmetry)
M'rp' =9[Ecos(3gp+ X) + M cosy, ]

(3.5)

The modes are isotropic and do not depend on direc-
tion.

However as before the interlayer coupling term
splits the in- and out-of-phase oscillations between
the layers. The in-phase motion has E2, symmetry
and a frequency given by

III. EXCITATIONS IN THE CDW STATE —4F cos(2gp —u) (3.6)

A. Small oscillations: phasons

The discussion of excitations naturally splits into
small oscillations, or phasons, and large amplitude
excitations, or discommensurations. The small oscil-

lations around the CDW state discussed above can
easily be evaluated. They consist of two types: (a)
oscillations of the P variable about its equilibrium

value Pp, and (b) vibrations of the CD% around its

location.
The restoring force for the former oscillation at the

zone center is determined by substituting

P+ = Ijhp+ rr+, Ijb = Pp+ o in Eq. (2.7) and expand-

ing the free energy per unit area in powers of o.+, 0. '.

F, =F„(gp) —(a, +a )'3F cos(2@p a)

+ —,
' (o++ o')9S cos(3$p+ p) (3.1)

The two modes with eigenvalues (o++ o ) have dif-

ferent forces and different symmetries. The mode in

which the two layers vibrate out of phase (o++,.o
mode) has»t ~„symmetry and a frequency given by

M'rp~+ = 3S cos(3$p+ P) —4F cos(2$p —a), (3.2)

These results are similar to those obtained by Holy
et al. ' In their calculations the M cosy, term was
omitted.

Holy et al. "have assigned the phase modes to the
lowest modes of E2, and A &g observed by Raman
scattering. Further with their restricted Landau ex-
pansion they could obtain the coefficients E and D
from the frequencies. However if the more general
Landau expansion is used it is clear from Eq. (2.1)
that there are more unknown parameters and the two
frequencies observed in Raman scattering are not
sufficient to determine the parameters.

The validity of their assignments'2 of the lowest
modes as phase modes is also open to question.
Steigmeier et al. ' observed that the Raman active
mode with E2, at 50 cm ' persists to high tempera-
tures (T =100 K) through the commensurate-
incommensurate transition. Therefore it appears
doubtful that it is the E2„phase mode. A better as-

TABLE I. Phason normal modes of the CDW in 2H-

TaSe2

while the in-phase mode with A ~g symmetry is given

by Symmetry CIJobg (cm ' )

M"rp' = 3S cos(3$p+ P) (3.3)

The mass M' is determined by the lattice kinetic en-

ergy of Ta and Se atoms and has been estimated by

Holy et al. "as 206 amu. These results are similar to

65
44

9[Ecos(3&p+ x) + M cosy, j
3S f cos(3@p+p) j
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sign ment' is to take the 65-cm ' Eq„mode as the
phase mode and to assign the 50-cm ' mode as the
E2„amplitude mode. The frequencies and assign-
ments of the phase modes that result are listed in

Table I.

B. Nonlinear excitations: discommensurations

ables $, $„, $» as we have seen and it is possible to
have discommensurations in any of these three vari-
ables. However it is straightforward to show that the
incommensurate driving term —the part of the fourth
term in Eq. (2.1) which is linear in q —does not cou-
ple to a discommensuration in qh. This driving term
in a single layer can be rewritten as

The boundary between the commensurate and in-

commensurate phases is determined by the energy to
introduce a nonlinear phase excitation or disco m men-

suration (DC) into the commensurate phase. In the

CI3% state of 2H- TaSe2 there are three phase vari-

28rI X— 4t, (x) = 3qB — " +5

Sx]],
' Sx Sy

The elastic energy density terms, quadratic in the
derivatives, are given in a single layer by

(3.7)

' 2 ' 2

F,((P, @„,$») = —(8 + C) +el » X» y Sx Sy

+ 3 (8+C) 54. 54»
8 Sx Sy

12
38 84. 84, 3C 84.
4 Sx Sy 4 Sy

2 ' '
2I8$„8$»

Sy
'

S-

5$»
Sx

5@ 84. Sd» Sy 84. Sd»

Sx Sx Sy Sy Sy Sx

(3.8)

These terms separate into terms involving only the
intralayer phase $ and the displacement ($„,$» ) and
cross terms. The elastic energy of the displacements,
second through fourth terms has corn pressional,
shear, and rotational energies. The latter arising
from the orientation of the CD% structure relative to
the host lattice.

The two principal directions for DC are with the
line of DC oriented either parallel a reciprocal-lattice

vector [i.e., $„=const, Q» ( y) ] or perpendicular to a

reciprocal-lattice vector [i.e., $» = const, Q„(x)]. The
nonlinear potentials differ in these two cases and we
shall discuss them in turn.

i Line of .DC parallel ro [ G ). Making the simplest
assumption namely that only $» varies along y the
energy density relative to C phase, obtained by sub-
stituting P»+ = $», $+ = +Pp in Eq. (2.7) is,

Fpc(p ) = —(38 + C ) ' + 2E 2 cos(3$p+ X) —cos 3$p+ X+ p —cos 3p + X—l 5@» 343 3%3
4 Sy 2

0

t

+2M 2cosp, —cos P —p, —cos P +p, dy
343 343 (3.9)

This can be combined at once to give
r

Foc($ ) = —(38 + C ) + 4[E cos(3$p+ X) + M cosp] I —cos $ dy
8@» 343

3'
Sy

i

(3.10)

This is the standard form for a commensurable potential. In the DC @» varies from $» = 0 (at y =—~) to

$» =4m/3&3 (at y =+~). The energy of the DC' '~ is

Foc» -
3 {(38 + C) [2E cos(3$p+ X) + 2M cosp, ] )

'i (3.1 I )

ii Line of DC perpen. dicular to ( G ). In this case we take only an x variation in @„. Substituting $„+= @„and
f+ = +$p in Eq. (2.7) gives a free energy density, relative to the C phase
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Foc(4, )=J~ 4(38+C) ' +2[icos(3/0+X)+Mcosp][3 —cos(3@,)—2cos( —@„)]dx (3.12)

This free energy density is more complicated than the usual form and we have not solved it analytically for the
detailed shape of the DC. However it is easier to obtain thc energy of a DC since the elastic and commensurabil-
ity energies contribute equally to the total energy. Therefore

Foc„4[Ecos(3&0+ x) +M cosy] J dx ( [3—cos(3&„(x)]—2cos[ —', P„(x)]], (3.13)

f 4~/3
6(38+C)[Ecos(3/0+X) +M cosy]'~' J (3 —cos3@„-2cos—'

, P„)'~'dP„, (3.14)

=g(-,' )'~2[~6+in(~2+%3)1[(38+C) [Fcos(3@o+X)+M cosy] ]' ' .

Comparing this energy with Eq. (3.11) we see that it

1s larger by a factor of 2.2. Howcvcr 1n dccldlng

which orientation of DC is favored in the incommen-

surate phase we must also note, that thc total phase

change of DC„ is 4n/3 while that of DC, is only

4m/3%3. Thus the incommensurate driving term Eq.
(3.7) favors DC„by a factor of W3. Combining these

factors leads to the preferred orientation of the l3C as

DC~ or parallel to a reciprocal-lattice vector. This is

the orientation observed experimentally. However,
we must qualify this comparison by the comment,
that this calculation was performed with the intralayer

phase variable P and the amphtudes held constant.
Relaxing these assumptions involves the solution of
coupled nonlinear equations which is more difficult

and we shall not pursue this subject further.

0.05
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IV. PRESSURE-TEMPERATURE PHASE DIAGRAM 0.02
A. Phenomenololical fit

The EC phase boundary is determined by the bal-

ance of the incommensurate driving term [Eq. (2.1)]
and the energy to introduce a single DC in the C
phase. A measure of' the former is given by the de-

gree of incommensurability at the onset temperature.
This is shown in Fig. 2(a) and it is seen to increase

monotonically with pressure. Clearly this cannot be

the source of thc reentrant behavior. The energy to
introduce DC is a function of thc Landau parameters

[see Eq. (3.11)] and it is clear that we must look to
the possibility of a minimum in this energy to explain

a reentrant phase diagram.

Th1s 1dea can be carried furthcl' by parametrtztng
the phase diagram. The value of q has been meas-
ured in the region where the I phase is stable down

to the lowest temperature and its behavior can be fitted

2H-TuSe

0 40 80 120
TEMPERATURE {K)

FIG. 2, The uppper part (a) shows the increase tn the in-

commensurability at the onset temperature of the I phase
with prcssure. In thc lower part (b), the temperature depen-
dence of q is shown at a pressure of 1.7 GPa where the I
phase is stable down to low temperatures. The points are
the experimental results and the solid line is drawn through
the points as a guide to the eye. The dashed line is the em-
pirical fit described in Sec. IV A.
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in the region of interest ( T & 100 K) by a quadratic
temperature'dependence

q (T) =qp(1+aT') (4.1)

with the values qp=7& 10 '(G/3) and a =7&10 '
K . The fit is shown as the dashed line in Fig. 2(b).
Since the pressure dependence of q is not essential
we shall take this form as pressure independent.

The energy to introduce a DC as we shall see
below may have a minimum at a cusp. This suggests
that writing a form for the phase diagram

qp(1+ a T,') =y (P)

with y (P) parametrized as

y(P) =yo(I +yi IP/P, I I
)—

(4.2)

(4.3)

with the choice of constants yp=6. 3 && 10 (~G)/3),
y~ =0.75 and P, =2 GPa a reasonable fit to the phase
diagram is obtained as shown in Fig. 1. This fit im-

plies a fractional reduction of —, in the energy to

introduce a DC between P 0 and P P, .

B. Pressure dependence of the energy
of a discommensuration

The main effect of pressure in 2H-TaSe2 is to reduce
the interlayer separation and increase the interlayer
coupling energy —the F term in Eq. (2.9). While this
does not enter directly in Eq. (4.4) it enters indirectly
through the value of $p in Eq. (4.4). This value of
$p is determined by minimizing F [see Eq; (2.10)]
leading to

S sin(3$p+P) = 2F sin(2&p a)

The value of qbp has been discussed by several
groups. 3 "'~'6 Brouwer and Jellinek'6 suggest that
the neutron scattering experiments cannot easily dis-
tinguish between the values of @p=5m/4 obtained
originally by Moncton et at. ' and the value
Pp= m/4 (which simply reverses all displacements)
and argue for the latter choice. If we assume with
Holy et aI. , ' that the interlayer couping is relatively
small then we may take 4F =S in Eq. (4.5). This
still leaves two phases a and P to be determined. A
possible choice is illustrated in Fig. 3 which shows a
graphical display of the two sides of Eq. (4.4). There
are three solutions to Eq. (4.4) corresponding to

As discussed above, the key point is whether the
energy to introduce a DC into the C phase can have a
minimum. The parameter y in Eq. (4.3) is directly
proportional to this energy for a DC~

y (-'(3&+ (-")[Ecos(3&p+ X) + M cosy ] )
'~'

m8

(4.4)

A
/ /

/
[o) [b)

FIG. 3. The solid line and the dashed lines illustrate the
left-hand side and the right-hand side of Eq. (4.5) for dif-

ferent values of the parameter o, . The solid dots indicate
the minimum energy solutions.

minima in F. Clearly to achieve the cusp minimum
in y (P) in Eq. (4.3), it is necessary that under pres-
sure a switch is made from one minimum to another.
A possible way to achieve this is illustrated in Fig. 3.
If the phase e in the interlayer energy increases with
pressure then the evolution shown in Fig. 3 takes us
from a region (P & P, ) where Pp increases from m/4
to =1.0 radius and then switches abruptly (when
P ) P, ) to a value =3m/2 radius and continues to
increase. If we further assume a value of X =l3 in
Eq. (4.4), then in the first region (P & P, )
x cos[3$q(P) + X] will decrease from =I [curve (a)] to.
a value =0.7 [curve (b)] while in the second region
(P )P, ) cos[3&p(P) + x] wiII now increase from
=0.7 [curve (b)] again towards +1 [curve (c)]. The
value of y will then decrease, pass through a cusp and
then increase again as in Eq. (4.3). The only prob-
lem with this hypothesis is that the total change in

3@p from P =0 to P =Pp ts only —0.7 fad. This ls
not enough to make a large change in y, since we
must assume, because of the high frequency of the
F2, mode discussed above, that the value of
M cosy, =Ec os( 3$ p+P) in Eq. (4.4). Making a
crude estimate a drop of only =10'k is achieved in y
between P =0 and P = P, while the values obtained
above from a fit to the phase diagram gave a value
=40'/o. The conclusion is that the required qualita-
tive behavior of y(P) can be obtained but not quanti-
tative agreement. Simply stated the problem is, that
the commensurate phase has so many possible mini-
ma with different values of @p, and also possibly
nonzero values of @„and P„ that it is hard to
achieve a substantial reduction in the commensurabil-
ity energy before another energy minimum becomes
the absolute minimum.

V. CONCLUSIONS

The general form of the Landau expansion of the
free energy of the CD% state has several terms with
complex coefficients and the result is that there are
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too many unknown constants to be determined by
the observed Raman-active modes. As a result these
constants cannot be determined from experiment.

In discussing the phase diagram under pressure, it
is shown, that the reentrant behavior of the commen-
surate CDW can be explained if the energy to intro-
duce a discommensuration goes through a minimum.
Such a minimum can arise because of the several
possible minima in the free energy with different
vaiues of the intraiayer phase $0 and the possibility
of switching the absolute minimum in energy from
one of these minima to another. The result is a cusp
in the energy of a DC versus pressure. This accounts
qualitatively for the reentrant behavior of the com-
mensurate phase. However, when quantitative esti-
mates are made, it results in too shallow a minimum
when compared with that deduced from the experi-
mental phase diagram. One possibility for this
discrepancy is that the observed phase diagram is
strongly influenced by impurities. The IC transition
at room pressure is found to have a large hysteresis4
which implies restricted mobility of DC at tempera-
tures T & 100 K. Therefore it may well be that the
observed phase diagram is not in thermal equilibrium
but instead the DC are pinned and the I phase per-
sists down to low temperatures. Mchan and co-

workers' have emphasized that a qualitative change
occurs at temperatures =100 K. The model put for-
ward here could be tested by making structural stud-
ies of commensurate phase under pressure to deter-
mine the variation of $0 with pressure. This pro-
posed change in @0 with pressure would change the
displacement pattern from that proposed in Ref. 16,
in which there is a clustering of Ta atoms, to that
proposed in Ref. 3, where the displacements are in
opposite sense. Another test would be the observa-
tion of a reduced frequency of the Raman-active E2„
mode under pressure. This frequency however
should remain finite at the IC boundary.
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