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Effect of solitons on the thermodynamic properties
of a system with long-range interactions
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Thermodynamic properties of a one-dimensional "44" system, interacting via a pair potential
which falls off exponentially with distance, is studied as a function of the range of this potential.
From the classical equations of motion we find closed-form expressions for solitary wave solu-

tions which reduce to Krumhansl and Schrieffer solutions in the short-range limit. The width

and the energy (E, ) of the solitons are found to increase indefinitely as the range of the interac-

tion increases. Transfer-integral techniques are used to evaluate the partition function by con-
verting the functional integral into an equivalent nearest-neighbor problem. At low tempera-

tures, the free energy contains a term proportional to exp( —E,/kB T) which signals the existence

of solitons and ensures that there is no long-range order. However, when the range of interac-

tion increases (i.e., E, increases) this term approaches zero and the system undergoes a second-

order phase transition in the infinite-range limit. The critical properties in this limit are found

to be identical to a van der Waals model.

I. INTRODUCTION mention a few.
Apart from their importance in the low-tempera-

ture thermodynamics, these solitons also play an im-

portant role in the dynamics of the system. A not-
able example is the so-called 4 model which has
been applied by Krumhansl and Schrieffer' (KS) to
study the displacive phase transition in ferroelectrics.
In addition to linear oscillations or phonons, KS find
intrinsically nonlinear soliton solutions. By treating
the solitons as a gas of weakly interacting particles
they are able to calculate their contribution to the
free energy at low temperature which agrees well with

the results obtained from an exact calculation by a
transfer integral method. " More importantly they
can relate the central peak near co=0 of the dynamic
response function S(q, co) with the motion of the sol-
itons.

Recently, the ideas and methods of KS have been
extended to other models exhibiting soliton excita-
tions. These include, for example, the sine-Gordon
chain" and a certain, complex scalar field model. '

In these systems the presence of the solitons is sig-
naled by a term proportional to exp( E,/ks T) in the-
low-temperature free energy, ~here E, is the energy
of the soliton.

Because of the mathematical complexity, most of
the models studied to date have been limited to one
dimension and to nearest-neighbor interactions only.
Since such a system does not undergo a phase transi-
tion, it is not clear what roles, if any, solitons play in

systems where there is a long-range order. One way

to study this would be to consider two- or three-
dimensional models; however, because of mathemati-
cal difficulties very few analytical results are known

It is well known' that a one-dimensional system
with finite range interaction cannot exhibit a phase
transition. The reason for this can be traced to the
presence of low-lying excitations which destroy the
long-range order in the system. An example is the
one-dimensional Ising ferromagnet on a lattice in
which spins which either can point up or down in-

teract via a nearest-neighbor interaction of strength
—J. In the ground state all the spins point either up
or down, and are thus perfectly ordered, i.e., the
magnetization is finite. The lowest excited states,
however, are "kinks" or "domain walls" which con-
sist of pairs of oppositely ordered sets of spins, and
therefore have zero magnetization. The energy of a
kink differs from the ground-state energy (= 1VJ, —
where N is the number of spina) by an amount J. At
low temperatures the thermal density of such kinks is

—J/A'8 T
then given by e ~ which is nonzero as long as
T A 0. Thus the magnetization or long-range order
vanishes for any finite temperature.

Over the last few years a large number of physical
systems have been identified in which various kinks,
also known as solitary waves, or solitons, appear as
natural low-lying excitations. ' In most cases, these
are localized large amplitude solutions of the govern-
ing equations and exhibit remarkable stability and
other particlelike properties. Because of these pro-
perties, solitons have found wide spread use as
models of extended particles in quantum field
theories, ' domain ~alls in ferromagnets and fer-
roelectrics, ' disgyration planes in superfluid He, and
weakly pinned charge-density-wave condensates, ' to
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for dimensions greater than one, although computer
simulations have been carried out in some cases. "

An alternative approach to the problem of phase
transitions has been to introduce long-range interac-
tions in one dimension. A well-studied example of
such long-range interactions is the so-called Kac-
Baker' ' potential in which the interaction between
particles falls off exponentially as e ~" as the separa-
tion x between them increases. This potential has
been studied extensively in connection with the Is-
ing' ' and the Potts's models, ' mainly because ana-
lytic methods are available by which closed form ex-
pressions for various thermodynamic quantities can
be obtained in the limit y 0. These models are
found to undergo a second-order phase transition as
this limit is approached.

In this paper we study the "44" model with an ex-
ponential potential. In Sec. II we present the Hamil-
tonian and discuss the various low-energy solutions
of the resulting equation of motion for the field.
Closed-form expressions for the soliton solutions are
obtained. As the range of the interaction increases
both the width and the energy of the soliton are
found to increase indefinitely with y . In Sec. III we
use a transformation to convert the partition function
into a functional integral in which the effective in-

treaction is nearest-neighbor type. Standard transfer
integral technique" is then used to obtain the low-

temperature properties for small y '. The contribu-
tion of the solitons to the free energy is found to
disappear as y increases. In Sec. IV the infinite
range (van der Waals's) limit of the functional in-

tegral is discussed. As expected, the system is found
to undergo a second-order phase transition. Various
critical parameters are calculated, in particular the
critical exponents are found to agree with those of
the Ising model. ' Conclusions and discussions are
contained in Sec. V.

en to be of the Kac-Baker form

J(1 r—) e

Let

and

d =a —— rli-II =a —2JJ(1—r)
j pr'-i

II=u; —duI+auI

Then Eq. (4) can be rewritten

(7)

where r = e ~ and J is a constant. y
' essentially de-

fines the range of the interaction. The prefactor
(1 —r ) is chosen to ensure that the total potential
experienced by one atom due to all others is finite for
all r so that a thermodynamic limit exists. ' With the
above choice, this is obviously

J(1— ) ~ u-l J
JWi 2f J

which is independent of the range of the interaction.
Note also that because of the prefactor r ', the
model reduces to a nearest-neighbor problem in the
limit r 0, y~~. On the other hand, the limit

y —0, r 1 will define the infinite-range problem.
For comparison we note that if in Ref. 5 we take
uo ——)A (/B =1, )A [ =a, m =1, C =J, and add a con-
stant term

4
for each lattice point then the KS Ham-

iltonian reduces to (1) in the limit r 0.
The equation of motion for u; which follows from

(1) is

u; —a(u; —u; )+ Xr'l'(u; —uI) =0 .J(1 r)—
jwi

(4)

II. MODEL AND THE EXCITATIONS
QF THE SYSTEM

Now,

We consider a system of ions (unit mass) placed
on an infinite one-dimensional lattice of lattice spac-
ing unity. The Hamiltonian is given by + (2ru; uj+[ u' &)

— (8)

H= —Xu; +XW(u;)+ —XV,, (u, —u, )2

Here i, j are the lattice points; u; and u; are the dis-
placement and the velocity of the ith ion. The on-
site potential W(u, ) is the double-well type

From Eqs. (7) and (8) we obtain

(r+r ')L;=L;+&+L; I

+ (u;+)+u; )
—2ru;)

J(1—r)
T

(9)

W(u) = —(u2-1)2
4

(2)

with a pair of minima at u =+1. The ions are as-
sumed to interact via a pair potential V;, which is tak-

Notice that Eq. (9) contains only nearest-neighbor
terms. It is precisely this property of the exponential
interaction that enables one to obtain analytic results.

As in KS we now make the continuum approxima-
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tion and write

u, u(x), L, L(x)

u;+~ +u; &

—2u(x) + 9Q
Qx

L; ii + LI t
= 2L (x) + $2L

Qx

Equation (9) then becomes

ru «+ [J(1+r ) —ar ]u„+aru 3

(10a)

(10b)

(10c)

with the dispersion relation

J(1+r)q'
(I —r)'+ rq'

(17b)

B. Solitons

For these phonons there is a solution for any q & 0.
We note that for a long chain, the energy of this state
is much lower than the corresponding state in case I.

—(I —r)'(u„+au' —au) =0 . (11)

As expected, for r = 0 this equation reduces to the
KS form. Following KS we shall discuss the various
solutions of Eq. (11).

A. Phonons

Case I: Oscillations about u 0

To find the soliton solutions we turn our attention
to the full nonlinear Eq. (11). The fourth-order term
will be neglected in the spirit of the continuum ap-
proximation and also because this term vanishes for
zero velocity solitons and/or for r =0. We look for
solitons of the form u = u (x —vt ) = u (z), which

gives

[J(I + r ) —ar —v ( I —r ) ]u„+aru 3

—( I r)'a (u' —u—) = 0 . (18)

u =a sin(qx t«t)—
with the dispersion relation

(12)

This case corresponds to small amplitude oscilla-
tions about the top of the double well which is at a
a/4 above the bottom of the wells. Neglecting the u3

terms we obtain solutions of the form

Define

J(l+r) —ar —v (I —r)
a(1 —r)'

r
(I —r )'g'

(19a)

(19b)

(19c)

J(1+r)q'
(r —I)'+ rq'

In order that co~ be positive q must satisfy

qz & (I —r)'a/[J(1+r) —ar]

The energy of these phonons are given by

1

NP[I 4
La +A ~

(13)

(14)

(15)

In terms of these variables Eq. (18) takes the form

d'u d+El —Ll +O' M =0
dy' dy

(20)

The solution which corresponds to a soliton can be
obtained by imposing the boundary conditions
u +I, du/dy 0, asy +~. Then Eq. (20) can
be integrated to give

where the first term comes because each atom con-
tributes 4 a to the energy, with L as the length of the

chain.
du ( I —u')'

, , (2cru'+ I+a)
dy 2 I+3ou')z (21)

Case II: Oscillations about the bottom

of the well

This case corresponds to the situation in which all

the atoms are lowered to the bottom of one of the
wells. We then write u =+1+v, to linear order v
satisfies

rv «+ [J(1+r)+2ar]v,„—(I —r) ( z«v2+a)v=0

(16)

The solutions are

and

+ y- d 1+3oQ
J2 "o (I —u')(I+o +2ou')' '

]/p t

= —3 — sinh
2a

2 1+(y

&/z

+(I+3o)' tanh '
1+ (r + 2cru'

(22)

(23)

u = + I n+ins(q —x r«t) (17a) As r 0, o 0 and Eq. (23) reduces to the KS
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FIG. 1. Soliton profiles for (a) (a= J/a =10 and (b) I'a 5 for various values of the range parameter r =e r. Note the in-

crease in the width of the soliton as the range increases.
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FIG. 2. Soliton profiles for r =0.5 and for various values of (o=J/a.
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form

u =+ tanhy/W2, (24)

where the positive (negative) sign corresponds to a

soliton (antisoliton) .
The parameter ( has the dimensions of length and

gives a measure of the width of the soliton. As
r 0, g reduces to gxs = [(J —u )/a ] ' . Since (
should be greater than a lattice spacing we require
that J ) a. In the limit r I, g diverges as
(1 —r) '. However, the parameter a remains small

throughout and approaches a/(2J —a) as r 1. We
note the o-dependent term breaks the Lorentz in-

variance of the short-range problem. Since g
diverges as (1 —r ) ', the kink s'lowly disappears as
r 1. This is shown in Fig. 1 where u is plotted
against x/]p for u =0 solitons, with fp=g x(su=0)
= J/A. In the limit r I, the width of the soliton
becomes infinite and u 0 for all X. This
corresponds to the case in which all the particles sit at
the top of the well and has a high energy as is shown
below. We have also plotted u vs x/fp for different
values of fp and for r =0.5 (Fig. 2). We see that the
shape of the curve changes very little as the gp is

measured from 2 to 20.

C. Energy of the soliton

The potential energy can be written

E, = X —(u, '-1)'
I.

= X —(u —1)'
4

I

where we have used
ing (6) and going to

Ep = E) +E2
where

J(1 —r) u;
I Z uJI

/&i

+ Ju( ——uIL;
[

the equation of motion (7). Us-
the continuum limit we obtain

(26)

(25)

and

faoo

Ei = — dx (1 —u4)
1 4

(27)

(28)E2 =
} dx uuff

oo

Let y =(x —vr}/g and integrate by parts once. Then
goo

Ji dy u' (29)

Also
faoo

Ek= J dxui = J dyu =E (30)3'

where Ek is the kinetic energy. Substituting for u the
soliton solution (23) we obtain after considerable
algebra

'
]./21

(1+a ) (I —15a ) sinh '

32' I+~, + [2(r(1+3a ) ]'I2(27cr —1)
320

(31)

and
' 3/2

1+30.

)J2 9

I 1/2

(1+3 )'"
I gg J2g I + 34r 6a.

(32}

and

242a g (1+ lsp s3i

3 640 8960
(33)

Since o 0 as r ~0, and a remains a small parame-

ter even when r 1, we can expand Eqs. (31) and

(32) in powers of a.. To order g' this yields

temperature properties of the system when the range
of the interaction is very long. In'particular, they can
not destroy the order of the low-temperature phase in

the van der %aals's limit. However, for small r they
constitute important low-energy excitation of the sys-

tem, and contribute an exponential term to the free
energy as we shall see in Sec. III.

2

E,= (—+—a — a).y 2 ] 17

3 15 252
(34)

III. STATISTICAL MECHANICS

Note that in the limit r 0 Eqs. (33) and (34)
reduce to the short-range values. Equations (31) and

(32) are very well approximated by (34) and (35) for
all o-. Even when a =0-,„=1,the error is only

about 6%. Since Et ~ (, the energy of the soliton in-

creases indefinitely as r 1. These solitons there-
fore play a minimal role in determining the low-

It/ N

Z = J +du; Qdp;exp[ —PH((p;, u; })]
i 1 i 1

(35)

The thermodynamic quantities are derived from
the partition function which can be written as a func-

tional integral over the field variables u, and p, = u;
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with

Z Zp Zgg (36)

goo

Zp

N N p2
gdp; exp —P X
i 1 2M

1

'N
2m.

P,

and

m = I (37)

N

+du; exp[ —PV({u; j)]
i —1

(3S)

where

where P = I/ks T and N is the number of atoms.
For classical fields the integrations over u and ~

factorize and we have

In general the evaluation of Z„ in closed form is
very difficult, if not impossible. For nearest-neighbor
interactions the problem can be transformed into one
of finding the largest eigenvalue of a transfer-integral
equation. In one dimension one can solve this equa-
tion at least numerically and thereby calculate all the
thermodynamic quantities of interest. KS' have used
this technique based on a method of Scalapino, Sears,
and Ferrell" to study the low-temperature behavior
of the short-range (r =0) problem. For long-range
interactions, however, the reduction of the problem
to one of solving an integral equation is, in general,
not possible. The Kac-Baker potential proves to be
an exception to this rule in that the functional in-
tegral for Z„can be transformed into an equivalent
nearest-neighbor problem. %e now show how this
reduction can be achieved.

V(u;) = X—(u —1)'+ X (u —u )'r~' '~
4

'
4r

(39)

A. Integral equation

%e start by rewriting Z„as

ZN J
K I

I j)i
(40)

where IV(u) is the on-site potential

IV(u) = -a (u~ —I )~+ Ju~
4 (41)

and K =PJ.
One can, in principle, also include a term linear in

u which describes the coupling of the displacement
field u to an externally applied field. The following
analysis is valid for any form of the local potential
IV(u). Kac and Helfand"" have shown that Eq.
(40) can be converted into a nearest-neighbor prob-
lem and therefore can be written in terms of an in-

tegral operator which repeatedly operates on a corn-
plete set of functions. Although their integral equa-
tion is well suited for analysis near the van der Waals
limit (r =1), for arbitrary r it is not easy to analyze
and in particular, it does not reduce to the integral
equation of KS in the limit r ~0. Baker, ' on the
other hand, used an ingeneous transformation to
derive a different integral equation which reduces to
the corresponding short-range transfer integral. His
analysis, however, is only valid for the Ising model

I

(u = +1) in zero magnetic field. In what follows we
show that a Baker-type equation, which reduces to
the KS form in the limit r 0, can be obtained for
general type of field variables u and for arbitrary local
interaction IV(u).

To derive this equation we first define the auxiliary
field variable y; by

y, =xr' 'u, .
jmmi

Then the y's satisfy the recursion relations

(42)

yj uj + fyj+lp J 1 y 2f ~ ~ ~ r N 1

yN uN ~

Using (43) the interaction term can be rewritten

(43a)

(43b)

The partition function then becomes

N-l N N —1

K(I «)
X a uurI ~ =K(1 r) Xuy+~—ruj
i-1 j i+1 i 1

goo N N-1 N-l
Z„= @du;dy; exp —p X IV(u;) +K(1—r) X u;y;+~ g 8(y; —u; —

ry; ~) 8(y~ —uw)
r i 1 i 1 i 1

(45)

The 8 functions ensure that the integrations over the auxiliary

variables

; are restricted by Eq. (43). Note that
the original field variables u; are now decoupled and therefore can be integrated out. Define
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G(yy')-~I du exp[ —pW(u)+E(1 —r)uy']8(y —u —ry')

= exp[ —P ll'(y —ry') +E(1—r )y'(y —ry ) ]

(46a)

(46b)

F(y) = JI du e l'~'"'8(y —u) =e s~'", (47)

G(y,y') = X).~.(y)d. (y')

with the normalization

(49)

dye„(y)d„(y) =8 . . (50)

Putting (49) in (48) and using (50) one obtains

z„=Xw.a.)t."-',

so that thc partltloA fuActloA takes thc form

N iV-I

Z„=J J ffdy; ff G(y;.y;, ) F(y ) . (48)
i-I i I

%e have thus arrived at a nearest-neighbor problem.
Equation (48) is valid for any type of field variable
(discrete or continuous) and any form of the local in-

teraction 8'(u).
Since G(y,y') couples only nearest neighbors the

integral in Eq. (48) can be regarded as a repeated
operation of an integral operator. As it stands,
G (y,y ) is not symmetric in y and y, therefore we

express the kernel 6 in terms of left and right eigen-
vectors

Since the analysis is valid for arbitrary number of
atoms, the quantities A,„,B must be finite, for oth-
erwise the partition function will be infinite for a fin-
ite chain. The free energy per particle is then given
by

PF
lnZ =— ln ——lAZy

N W l p N

In the thermodynamic limit this gives

pF 1 2lr
lim — = ——lnw- W ' P

l

—ink. O (56)

where ho is the largest eigenvalue of Eqs. (53) and
(54). Various thermodynamic quantities can be ex-
tracted from Eq. (56) by standard means.

8. Low temperature properties near r 0

%C have already noted in Sec. II that near r =0 the
solitons can be regarded as low-energy excitations
and therefore should show up in the free energy at
low temperatures. %hen r is exactly equal to zero
Eq. (54) reduces to

taoo

h.rp(y) =
J~ dy exp[ —p W'(y') +Eyy']C (y')

{57)
Let

A =& dyer (y) (52a)
r 1

dl(y) =exp (y~ —2y')+Ey' h(y) {58)

8 =JI dye a~'"e„,(y) .

The eigenvalues are given by

Z 1P (y) =
J dy'G(y, y')q' (y'),

X dl (y)=J dy'G(y', y)C (y') .

(5»)

(53)

(54)

Then h (y) satisfies

)th (y) = exp —(y' —1)'

1

x Jt dy'exp ——(y -y')' h(y'), (59)
co 2

l

To obtain the cigenvalues wc need to solve only one
of these equations.

We note that if W(y) = 8'(—y), then the kernel G
llas dcfllll'tc parity, l.c., G (y,y ) = G (—y, —y ). Tllc
functions dl(y) and qr(y) are then either even or
odd. For even functions (54) reduces to Baker' s
functional equation for the Ising model. This equa-
tion has also been derived by Viswanathan and
Meyer" in connection with the Ising and Potts's
models by a different method. They have shown that
the eigenvalues are real and the largest eigenvalue is
positive.

where a=Pa =EH, with 8=al j.
This is precisely the KS integral equation for the

short-range problem Following the method of
Scalapino, Sears, and FerrcH,"KS have converted
this equation into an effective Schrodinger equation,
valid in the "displacive regime". (small tl). We shall
use the same technique to extract the low-tempera-
ture behavior of our model for small but nonzero f.
The simplicity in (59) arises because the integrand
depends oAly OA thc dlffcrcAccs y —y . Since fof
finite r the kernel is not symmetric in y and y', such
a simplification is not possible. To make the kernel
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as symmetric as possible, let us define
t 1

e(y) -exp —(1 —r)'(1 r'—)y' —-'(a —2EC)(l —r')y' h(y) .

Then h (y) satisfies
1

Zh (y) =e ~' dy'exp —(1-r')(1-r )'(y"—y') -y') ——(y'-ry )'

x exp —(I —r)'(y'+y') --'[It.'(I+r) —«l(y -y')' h(y') (61)

In (61) only the quartic term in the exponential is not symmetric in y and y'. However, for r =0 and 1, the ker-
nel is symmetric. For small r an effective Schrodinger equation can be obtained as followers. First, consider the
identity

-x2 2e "~'"-v'2nq epx— 8(x)
dx

which can be easily established by using the definition of the 5 function

goo

8(x) 'i dq e"" .
2e ~-

Using (62) in (61) with ri = [E(l+r) —ar l ' we obtain

(y) - (2~~) V'e dy' exp —(1-r )'( I -r') (y" y") — (y' ry——)'+ ——(1-r )'(y'+y')
1

xexp —" 8(y —y')h(y') .
Qp

2 (64)

At this point complication arises because of the noncommutativity of the operator 8 /8y with the rest of in-

tegrand. However, if both e and q are small then ee can use the vvell-known Baker-Hardsdorff'8 formula

~aA~g8 ~aA+q8 eg8eaA (65)

Corrections involving commutators of A and 8 are higher orders in q and e. Since q ~ E ' and
a = K(alJ) = Kg these parameters will be small only if 8 « A' ' (( 1., However, the work of Guyer and
Miller'9 on the sine-Gordon system indicates that even if KH & 1, Eqs. (64) and (67) would yield the same result
for the largest eigenvalue as long as 8 &(1 and K ' « 1. Using (65) the operator exp(-, ri8')/8y' can be taken

outside the integral (64) and the integration over the variable y' then yields

1

Ith(y) = (2wq)'~'exp ——+—" exp —(I r)'y'+ (I —-r )'y' h (—y)4 2 dy2 4 2

= (2ng)'"exp —" ——[(1—r)'y' —ll' h(y),
2 dy2 4

(66)

where we have again used (65). Defining h. (2mq)'~2e ~' we finally arrive at the effective Schrodinger equation

+—[(I—.)'y'- l l' h (y) -.h (y),1 d2 a (67)
2P'g'( I - r ) 'a dy'
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where ( is the width of the zero velocity soliton.
As expected (67) reduces to the differential equa-

tion obtained by KS in the limit r ~0. The largest
eigenvalue A.o of the integral equation corresponds to
the ground-state energy of (67). With the change of
variable x= (I —r)y, Eq. (67) reduces to

with

I F 1 1 Pg(l —r)Wa

p gKr
(72)

6f 8+ —(x'-I)'I -.I .
2P'ay' dx' 4

1 1 4a e

p ~ i2pga
exp — pea

242
3

' l/2
-Pco2s

pg'(I —r )'a

we have for the free energy per particle
1

F 1 2e 1 2m
ln ln, --, + ~0

W 2p P 2P Pg'( I —r ) 'a

1 1
Fph + ' Ftunn

(70)

(71)

The potential has two degenerate minima at x = +1.
For very low temperatures the effective mass
m' p'a/' of the "particle" becomes very large so
that the low-lying states are localized at the bottom of
the wells and are essentially degenerate. This degen-
eracy is broken by tunneling across the barrier, which

becomes increasingly more important as the tempera-
ture rises. On the other hand, at a fixed temperature
the effective mass increases as r increases since

g «: (1 —r ) ' so that the tunneling becomes less im-

portant. In the limit r 1, I'= p'g'a ~ and the
ground state becomes degenerate. According to the
traditional wisdom such a degeneracy is characteristic
of an ordered phase. On the other hand, (68) would

imply that the system is ordered at all temperatures
as r 1. However, this cannot be true since at high

enough temperature the system must be disordered.
This question will be discussed in more detail in the
next section where we treat the van der %aals's limit

by an alternative method.
The ground-state energy can be obtained by ex-

panding the potential around each minimum. These
yield harmonic oscillation states at each well with

doubly degenerate spectrum E„=(n + —)co, where1

«p K2/pg. The degeneracy is broken by tunneling

across the barrier. A standard %KB treatment"0
yields for the ground-state energy

r '
T

' 1/2
I 16 a e 2%2

%2pg a' 4 J2pga 3

If we neglect the o corrections in Eq. (33) then

2J&( E$

is the energy of a zero-velocity soliton. The tunnel-
ing term then becomes

I/2
1 4a 2e -/3F-,

P rr, 3PE,

This is just the contribution of the solitons to the
free energy which is seen to fall off as the soliton en-
ergy E, increases, as is shown by KS. As r 1,
E, ~ and this term vanishes. Similarly, from Ap-
pendix A we see that Fpq is nothing but the phonon
free energy. Again, as r 1 the first term in (77)
vanishes since g ~. However, since g(l —r )
remains finite in the limit r 1, the second term
gives a finite contributions to the free energy.

IV. VAN DER%AALS LIMIT: r ~1

The behavior of the system in the limit the range
of the interaction becomes infinite has been exten-
sively studied in connection with Ising'4 '6 and
Potts's' models. As r ~ 1, these models exhibit a
continuous phase transition at a finite temperature
T, . Since 44 model is similar to the Ising model we
expect it to exhibit similar behavior. In what follows
we study the van der Waals limit (r I) of the
model under consideration. The treatment presented
here parallels those of Baker (Ising model) and
Vishwanath and Meyer (Potts's model).

In the limit r I, we rewrite (54) as

g@(y) -Jl dy'„I du exp[-p W(u) +It'(I —r)uy ]8(y' —u —ry )4(y')

-Jl du exp[-pw'(u)+it (I —r)uyle(u+ry)
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A. E Q x (u' —1)'] ensures that contribution to the integral
for u && 1 is minimal. In the limit r 1, ee write

(75)

Let

ln the speciai case, K 0, Eq'. (74) can be solved
exactly for arbitrary r. Putting K 0 in (74) we get

(p(y) du e-Sw(u)@(u +ry)4 -ao

g((1-r)u+ry) =g(y)+(1 —r)(u-y)~
dy

g ( y) e(u-y)u( y) (84)

Then the solutions are of the form

(p„(y) = X a y'
IN 0

~2,+((y)- X b y'"

(76)

(77)

(78)

where q (y) - (1 —r )g'/g. Then (83) becomes

du exp[ —PW(u)+Kuy+ (u -y)q(y)]

(85)

Since h, must be independent y, we set d)(/dy 0,
which gives

[K +q'(y)]F'(Ky + q (y))

Substituting (77) and (78) in (75) and equating the
coefficients of y2p and y2p+i respectively, give the
eigenvalues

sphere

-[«»+yq'(»]F«y+q(y» . (86)

p r

2NA2pa„~ 2 r a F
IN ~N

(80)

The coefficients a and b can be unambiguously
determined by equating coefficients of y . This gives

lac)o

F(x)- ' exp[-PW'(u)+ux]du

F'(X) - J exp[-P W(u) + ux]u du

Defining G(x) F'(x)/F(X), we can rewrite Eq.
(86) as

(87)

(88)

p r~,2m +1
~2p+)b„= ~ 2„+1 r b F

( (
(81) ,

( ) KG(Ky+q(y)) —q(y)
y —G (Ky + q (y)}

(89)

w'here

%e remark here that as r 1, all the eigenvalues
converge to Xo v [Eq. (79)]. However, since K 0
means that there is no interaction between the parti-
cles, there is no phase transition implying that the
largest eigenvalue should be nondegenerate. The ap-
parent ambiguity can be resolved by noting that the
limit r ~1 should be taken only after N ~co, i.e.,
the thermodynamic limit is taken. The limit r 1

actually corresponds to'~ r 1, r~ 0, as N oo.
Thus the contribution to the partition function p r
vanishes for any p 4 0, so that only the p 0 state
contributes.

y G(Ky+q(y)) (90)

q (y) -KG (Ky +q (y))

Combining (90) and (91) we obtain

Z()- 2KG (Zo),

(91)

where Zo Kyo+q (yo). Dividing (90) by (91) we
also see that at this point y yo, q (yo) = Kyo, so that

Since the eigenvalue is independent of y it suffices to
evaluate the right-hand side of Eq. (85) for any par-
ticular y. Following Baker'~ we now note that
q'(y) -g'(y)/g(y) must be finite, so that if the
denominator in (89)' vanishes anywhere, the
numerator must also. Thus, if

S. Maximum eilenvalue for arbitrary E

Let us define g (y) -(p(y/(1 —r)), then Eq. (74)
becomes

-Z 2/4K)(-e ' F (ZD)

The free energy per particle is then given by

(93)

Xg (y) -„du exp[ —P }V(u) +Kuy]

x g((1-r)u+ry)

The exponential e s~(") exp[-Ku'- p-'a

(83)
-pf - lim N '(lnZ, +lnZ„) -ln +in)( . (94)

Using Eqs. (92)-(94) one then obtains for the inter-
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nal energy and the specific heat per particle

U = —ks T —Z(~& /4K4

C„ I ZOG'(Zo)

ks 2 I —2KG'(Zo)

(95)

(96)

To obtain an expression for the order parameter
(u) = m, we must include a term in W(u) which
describes the coupling to the external field h. Let

1.5

W(u) = W, (u) bu, - (97)

where the subscript stands for the zero-field quanti-
ties. From (87) it then follows that G(Z)
=Go(Z+H), with H=ph. The magnetization is
then given by

1.0

m= (—pf) =G(Z0) = (98) 0.5

Notice that (98) holds also for H =0. In this case a
finite Zp implies the existence of a spontaneous order
in the system.

In the absence of a field we have only to consider
the function Go(Z). Since F (Z) as defined by
(87) is an even function, it follows that Go(Z) is
an odd function of its argument. Recall that H =a/J.
Then as 8 ~, the only contributions in the integral
in (87) come from u = + I,. i.e., the model reduces
to the Ising model. Thus as H ~, F(Z) =coshZ
and Go(Z) = tanhZ; For other values of H, we have
numerically evaluated Go(Z). Some typical curves
are shown in Fig. 3. It is clear that Go(Z) is mono-
tonic in Z and Go (Z) decreases with increasing Z.

Since Go(Z) is odd Zo= 0 is a solution of Eq. (92).
In the neighborhood of Z =0, Go(Z) can be expand-
ed in a power series of form

Go(Z) =bo(K, H)Z —b (1,K)HZ3+, (99)

FIG. 3, Function G(Z) for Z & 0 and for various values
of 8=a/J and temperatures T =K

as a power series in x

F(x) = X (102)

where

a„=J dyy "exp ——(2 —H)y — y . (103)KH
—oo 2 4

where the coefficient bp, bi & 0. If 2Kbp ( 1, then
G(Z) will never cross the line y = Z/2K, hence the
only solution is at Zp =0. This regime corresponds
to the disordered or high-temperature phase of the
system. For 2Kb p & 1, however, there is another
solution at Z Zp W 0, which corresponds to the or-
dered phase. The critical temperature is given by

Integrating by parts once, we obtain

2 —8 2n+1
Qn+2 = an+i +

8 Ke Qn

Using (102) and (104) and the defining relation

G (x) = = Xb„x~"+i(—I )"F'(x)
F(x)

(104)

2Kcbo(Kc H) =1 (1oo)
it can be shown that

K~ is in general a function of 8. The thermodynamic
functions can be obtained by solving Eq. (92) numer-
ically for Zp.

For T close to T, (T ( T, ) Zo is small, using (99)
up to the cubic term we can solve for Zp.

a&
bp= —=

ap

(

Jtdyy exp ——(2 —H)y' — y4K 2 KH 4

2
I

JI dy exp ——(2 —H)y — y4K KH 4

2 4

(101)Z'= —b (K, H) ——1 1

b
' 2K

j

To calculate bo and b, we express F(x) [Eq. (87) 1

1 1 2 —eb1= — — bp —3bp6Ke e

(105)

(106)
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FIG. 4. Critical temperature K~ ' as a function of ln(1+8).

m = Zs- (T, —T)"' (107)

Using (99), (100), (105), and (106) in (96) we ob-
tain for the specific heat at T,

C„ = —+
ks 2 1 —2Kcl3

(108)

The above results agree with Baker' in the Ising
limit. From (108) it is apparent that the height of
the specific-heat maximum increases as 8 decreases,
diverging at 8~0.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have studied the effect of long-
range interactions on nonlinear solitonlike excita-
tions. The particular model chosen was the one-
dimensional strongly anharmonic u4 model used to
study displacive phase transition. The interaction
between displacement fields at different points were
taken to fall off exponentially with separation. The
virtue of this particular interaction is that the range
of interaction y

' can be varied continuously.

In the Ising limit 8 ~, b0~1, which gives for
critical "temperature" K~' = 2, in agreement with
Baker. As 8 0, on the other hand, the quartic term
in (105) vanishes and doing the Gaussian integrals
we obtain K~' = 3. Between these two limits K~'
varies smoothly with 8, as is shown in Fig. 4.

Expanding bo, b~ about Kz, we see that the magnet-
ization per particle diverges as

Whereas in the short-range limit the model exhibits
solitonlike excitations which play an important role in
the low-temperature thermodynamics and the dynam-
ics of the system, as the range becomes infinite the
model undergoes a second-order phase transition. By
studying the equations of motion, we have found
closed-form expressions for low-velocity single-
soliton solutions. These solutions reduce to the
well-known kink solutions in the short-range limit.
However, as the range of interaction is increased the
width and the energy of the solitons were both found
to increase indefinitely with the range so that these
solitons could no longer be considered as low-
temperature excitations. This is expected since single
solitons tend to destroy long-range order, and there-
fore in the limit of infinite range they must become
energetically less favorable for the sytem to support.
On the other hand, soliton-antisoliton pairs can still
be considered as low-energy excitations. Unfor-
tunately, for the u4 model no multisoliton solution
has been obtained even in the short-range limit.

By using a novel mathematical transformation we
have converted the problem of calculating the parti-
tion function into an equivalent nearest-neighbor
problem. The partition function is evaluated by the
familiar transfer-integral technique. When the range
of the interaction is small it is seen that the solitons
play an important role at low temperatures. Howev-
er, as the range is increased their contribution to the
low-temperature free energy is found to vanish. In
the infinite-range limit the system, as expected, un-
dergoes a continuous phase transition. The critical
properties are identical to a van der Waals model as
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were discussed by Baker. "
An important feature in these systems is the ap-

pearance of a central peak in the dynamic response
function S (q, c»). Krumhansl and Schrieffers have
shown that this peak is related to the motion of the
domain walls; in particular, they have shown that the

E /k~T
height of the peak increases as e ' . Physically,
the central peak corresponds to the slow oscillation of
clusters of ordered atoms reflecting the existence of
short-range order in the system. This short-range
order persists (above T = 0) up to temperature
AT' —E,. This means in our case that the T" in-
creases with the range of the interaction.

Finally, we remark that it would be very interesting
to study the role of soliton-antisoliton pairs since
they do not destroy the long-range order. One possi-
ble model for which this might be feasible is the
sine-Gordon model since in this case multisoliton
solutions are known in the short-range limit. Howev-
er, we have not yet, succeeded in obtaining closed-
form soliton solutions for the long-range sine-
Gordon model.
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APPENDIX A: STATISTICAL MECHANICS
OF PHONONS

To calculate the contribution of the phonons to the
low-temperature free energy we use the formula

r t

dn
pF» dq —ln(1 —ear") =—

J dq intro
dq

(A 1)

in the classical limit p (&t. Using the dispersion re-

lation
J(l+r)q'

(gj =2Q +
2rq'+ (1 —r )'

we then have

r r 1/2iV, , 2
J(1+r)n' 2 2a (1 —r)

2 rrr +(1—r)~ n' 2ar+J(l+r)

' 1/22ar+J(l+r) 2 1 —r
~ n Jr

tan m tan
2a (1+r)' n' Jr 1 —r

(A2)

1 r~ rrlr-
tan —n.

= g'a n'(1 —r )',

In the limit r 0, we shall write

J(l+r)n~
2 + n~g~a(l —r)'+arm~

2Q + =2a+
rn +(1—r) rn +(1—r)

In the approximation above we have assumed that
J » a, i.e., (» 1. The phonon free energy then
becomes (with f = 1)

13F h
=Ar lnPfrrda (1 —r) + —— —1

1 2
ph 2 2

2a(1 —r)' 2

2ar +J(1+r )

r

1 +1„PgnWa(1 —r)
gi2 e

(A3)

' 1/2
2ar +J(1+r)

tan m.

2a (1 —r)~ 2
which is essentially the same as Eq. (72) apart from
a factor of order unity in the logarithm.
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