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W'e present a theory for the late-stage spinodal decomposition for- two relaxational tricritical

models in which the order parameter is nonconserved and the subsidiary order parameter is ei-

ther conserved or nonconserved. We find that for d-dimensional systems (for d & l) the

characteristic domain size grows in proportion to t'l3 (Lifshitz-Slyozov) and I'~ (Cahn-Allen-

Chan), respectively, where t is the time. A discussion is also given for the growth mechanism

of a one-dimensional model. Our analysis in general involves linearizing the dynamical equa-

tions of motion around a stationary, but unstable state, which describes coexisting phases.

I. INTROI3UCTION

A fundamental area in condensed matter physics is
the subject of nonlinear phenomena in systems far
from equilibrium. A number of fascinating instabili-
ties' have been discovered in a variety of physically
disparate systems which nevertheless have some
qualitatively similar features. One example of such
phenomena is the kinetics of first-order phase transi-
tions, which include problems of metastability and
instability, involving nucleation and spinodal decom-
position processes, respectively. So far most of the
theoretical and experimental studies in this area have
dealt with systems below their critical points, with the
order parameter either being conserved or noncon-
served. Recently, ho~ever, some studies have been
made of instabilities in tricritical systems. These in-
clude a linear stability analysis for the early-stage spi-
nodal decomposition in He- He mixtures, ' a theory
for nucleation in certain symmetric tricritical models
such as a scalar metamagnet and a 3He-~He mixture, ~

and also a Monte Carlo study of spinodal decomposi-
tion in a two-dimensional metamagnet. In addition,
experimental studies have been made of spinodal
decomposition in an Fe-Al alloy, which is. thought
to have a tricritical point.

-In this paper we extend this work by presenting a
theory for the late-stage spinodal decomposition in
simple relaxational models of a tricritical system in-
volving two dynamical variables, the scalar order
parameter Q and a subsidiary order parameter c.
Although our main interest is in the case in which P
is nonconserved and c is conserved, such as describes
a simple Ising-like model of a metamagnet or alloy,
we also treat the simpler case in which both Q and c
are nonconserved. Since we do not consider a com-
plex order parameter nor include hydrodynamics in
our model, our work does not apply to 'He-~He mix-
tures. However, we expect that it woukl serve as a
basis on which one could subsequently analyze such
effects. Our theory is an extension of existing work

on similar problems in critical phenomena. There ex-
ists essentially two fate-stage theories in critical spino-
dal decomposition. The first is the Lifshitz-Slyozov
prediction'0 that the characteristic domain size for a
case in which the order parameter is conserved, such
as a binary alloy, increases like t', where t is the
time. In this case the surface tension also enters as a
proportionality constant. The second case is a Cahn-
Allen, 6 Chan" theory appropriate for a nonconserved
order parameter, in which the characteristic growth
rate is proportional to t' ' and is independent of sur-
face tension. This result has also been derived in a
more detailed perturbation theory by Kawasaki, Yala-
bik, and Gunton. " It should also be noted that ear-
lier theories also predict a t'~2 behavior, but these in-
volve the surface tension. "'4 In this paper we ex-
tend these calculations to the tricritical model,
presenting two different derivations for the late-stage
behavior for both the conserved and nonconserved
cases. The first is based on a variational calculation
originally due to Langer, '5 in which the key point to a
late-stage theory involves linearizing the dynamical
equations of motion around a stationary, but un-
stable, state which describes the coexistence of
phases. The second involves a "solitary-wave" ap-
proach of Chan" {or equivalently of Cahn-Allen6).
Although these two derivations appear at first sight to
be quite different, we point out that in fact they are
essentially equivalent descriptions. In both cases a
fundamental quantity is the nucleating droplet ap-
propriate for the tricritical model, which one might
call a "tricritical soliton. " It should also be noted
that our theory of the late stage growth involves a
calculation of a negative eigenvalue which character-
izes the dynamical instability. This eigenvalue also
enters as a dynamical prefactor for the nucleation rate
of the tricritical model, so that the work presented
here completes our earlier discussion4 of nucleation
in the scalar metamagnet.

The structure of our paper is as follows: In Sec. II
we define our dynamical model and discuss its sta-
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tionary state solutions. We also present a linear sta-
bility analysis for this model, in a slightly different
form than originally presented by Hohenberg and
Nelson' for 'He- He mixtures. In Sec. III we discuss
the Langer variational approach and apply it to two
different examples of our model. One case is a
one-dimensional array of our solitons, which is pri-

marily of pedagogical interest for demonstrating vari-
ous growth mechanisms. Another more interesting
case is a d-dimensional array of isolated droplets. In
the latter case we obtain the Lifshitz-Slyozov and
Cahn-Allen-Chan results for the conserved and non-
conserved tricritical models, respectively. In Sec. IV
we present an alternative derivation based on Chan's
approach and discuss the relation between the two
derivations. Finally, we note that our late-stage
theory for the tricritical model gives results quite
analogous to the critical models already studied. In
the Appendix we present a strict mean-field calcula-
tion of the nucleation rate for our model which may
be of relevance to systems that can be well described
by a mean-field theory and which possess a tricritical
point, such as laser with saturable absorbers' and ir-

radiated semiconductors. ' Although this calculation
does not involve any discussion of domain growth, it
does involve an evaluation of a negative eigenvalue
analogous to that calculated in the text.

conserved variable with

(2.5)

whereas in model B, c is conserved with

Ic= I (2.6)

Model B is appropriate for the usual scalar metamag-
nets but model A is at least of some mathematical in-

terest. It should also be noted that in the same way

as theoretical studies of binary alloys have been use-
ful in developing a theory of spinodal decomposition
in binary fluids, ' a theory for spinodal decomposi-
tion in &he above models could be of some relevance
for understanding tricritical systems for which hydro-
dynamic effects are important, as for example in
3He-4He mixtures. In this case P becomes a complex
order parameter and c stands for the concentration of
3He.

A. Stationary configurations

Since in the following sections of this paper we will

study the late time behavior of models A and B by
linearizing around certain stationary-state solutions of
Eels. (2.3) and (2,4), we briefly review the relevant
stationary states obtained in Ref. 4. These states are
the solutions ef

II. STA'TIONARY CONFIGURATIONS AND EARLY
TIME BEHAVIOR OF THE

PHENOMENOLOGICAL MODELS

SX
S

3,' 0.
Sc

(2.7)

(2.8)

83!y= —r, +g, ,
S

c=—L, +g,S3!' Sc

(2.3)

(2.4)

where g& and g, are assumed as usual to be uncorre-
lated Gaussian white-noise random forces which
satisfy the usual fluctuation-dissipation relations. We
will consider two models, both having a noncon-
served order parameter P. In model A, c is a non-

As a simple prototype of a tricritical system, we
consider a Ginzburg-Landau model of a scalar
metamagnet whose Hamiltonian is

t

X[y,c]=J dx (&y)'+ —'(&c)'+f(y, c)
,

2 2

(2.1)
X 'c2

f(P, c) = —P +uP +vg + " +ye/2 —Ac

(2.2)

where P is the sublattice magnetization, c the global
magnetization, and 5 the applied magnetic field. We
will describe the dynamics of this system by the non-
linear Langevin equations

The first set of solutions which will be of interest to
us for the early stage analysis describe spatially
homogeneous states ($0, co) and wili be considered
in Sec. II B. The set of solutions which are relevant
for the late time behavior describe an interface
between the ordered and disordered phases. As in

the case of critical phenomena, . we can obtain the
planar interface solution for the one-dimensional
model. This solution can then be used to describe
the d-dimensional situation in the case in which the
droplet of one phase is considered sufficiently large
that the interface is locally approximately planar, with

P and c varying in the radial direction. To obtain this
solution in the tricritical case, 4 one first develops a
perturbation expansion in powers of the inverse
correlation length. One then obtains an effective
Hamiltonian 3.'[g] of the Riedel-Wegner form, with

a characteristic triple-well shape below the tricritical

point, where

r r + 2hyX„, u u —y2X„/2 (2.10)

X dx —l&gl +—
Q +up +vQ, (2.9)

,
2 2

where
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FIG. 1. A chain of tricritical solitons, lIII(x), is plotted as a

function of position x.

aAd the condition for phase cocxlstcncc corresponds
to a particular value of 5 Ao such that

F =u'/2u . (2.11

In the remaining discussions we choose 5 = ho. The
stationary-state solutions are

111'

Q (x) - — I+tanh—
2

c (x) =X„[LLo—yj (x)], (2.12)

8. Early time behavior

where 111,
'= —u/2v is the equilibrium value of 1I1 in

the ordered region and the correlation length is given

by g = (u/2K'v) '~'. The profile given by Eq. (2.12)
is the tricritical analog of the well-known hyperbolic
tangent profile obtained in the mean-field theory of a
critical interface. This latter profile has recently been
termed the "van der %'aals" soliton. '9 In the same
sense one might call the solution given by Eq. (2.12)
the tricritical soliton. One should also note that the
111(x) obtained from Eq. (2.12) differs from the van

der aals Sollton by having regions in which its

values can be —Q„zero and 111„shown in Fig. 1. Fi-

Aally, as wc discuss lA mol'c dctall lA thc next sec-
tions, it shouM be observed. that although the solu-

tions mentioned above are stationary states, they are
in general unstable states except for d = 1. Thus an

infinitesimally small perturbation around a particular
stationary state ~ould grow, rather than decay, as the
time increases. The main point of this paper is to ex-
amine the stability of the above states by using a
linear stability analysis.

tures to account for an initial transient process in
which thc order paramctcr rapidly develops. Thc
subsequent analysis then allo~s us to identify the un-
stable modes for the scalar metamagnet. For the
linear stability analysis we neglect the noise terms
and linearize Eqs. (2.3) and (2.4) around the initial
homogeneous equilibrium state above T„character-
ized by 111 111o-0 and c co. The parameters of 3C

correspond to the final state to which the system is
quenched. Denoting 8$ Q=—

Qo and gc = c —eo, the
linearized equations in Fourier space are

8111(k,r) I o 0 (Klkl +f11)
dr&e(, kr), , ,

0 4, f,&

„gy(kl),
,gc (kr),

fll
(Iolk'+ fig )

Sy(k, r)'
=—-LM

,gc(k, r),
' (2.13)

$2f
=2vfo ~

81118c oo,c(
(2.15)

, &o'o
(2.16)

The instability is in general characterized by a nega-
tive eigenvalue of the linear matrix LM, and the
domalA of instability 18 bouAdcd by thc points for
which det LM =0, where the negative eigenvalue be-
comes zero. In a mean-field approximation we can
neglect the two gradient terms in X and the limit of
instability is determined by

I'&I",k'(dctf) =0 .

That ls,

(2.17)

0 = 2yco+ r + 12u 111o+30ulilo 4X„yl41o-. (2. lg)

For thc quench from an iAltlal disordered state
go = 0, the system is unstable for co & c1, where

8f11= l
= r + 12u 111' + 3011111o4+2yeo, (2.14)

~o'o

The first case which we will consider is the early
time behavior of model 8 after this system is
quenched from a high temperature, disordered state
to a state below the tricritical point. %c will be con-
cerned with the spinodal region in which the system
is unstable, rather than the nucleation region con-
sidered in Ref. 4. The analysis presented here is of a
Cahn-Hilliard2o type, but modified as originally sug-
gested by Hohenberg and Nelson3 for 'He-~Hc mix-

In this situation Eqs. (2.13) are decoupled and we

have a negative eigenvalue associated with an insta-
blllty 111 Q fof co C el slid a posltlvC C1gCllvalllC fof
thc c variable which 18 stable ln this tln1c domain.
Tllc fluctuatlotl ln c for Qo = 0 would relax after a

sufficient time to the equilibrium value c„g„hoof a
disordered state. Thus this standard linear stability
analysis for an initial, disordered state does not yield
the expected instability in c which would lead to
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co= (2y) '( —r —4ugo' —6uyo") (2.20)

Using this argument we then do a second linear sta-
bility analysis around (Pt, co) to obtain the physically
significant, unstable modes in P and c. This yields
Eqs. (2.13)—(2.18) but with Po replaced by Po. Equa-
tion (2.18) determines the domain of instability for
the initial growth of P. The new Eq. (2.18) with Po
replaced by $0 determines the spinodal curve which
defines the domain for the spinodal decomposition
process; i.e.,

u Qt + 3 ufo ='0 (2.21)

The first solution Pt=0 gives upon substitution in

Eq. (2.20) as a spinodal value of co the one obtained
in Eq. (2.19). The second solution

phase separation. Rather, it simply shows that the
initial behavior of the system after quench is one in
which the nonconserved order parameter rapidly
evolves, awhile the conserved, subsidiary order param-
eter c remains essentially constant. During this pro-
cess P approaches a local equilibrium state specified
by the final (quenched) temperature and magnetiza-
tion co. This local equilibrium (constrained) value of
p, P = $0, is obtained by setting P =0 in Eq. (2.3)
(and neglecting the noise term) which leads to the
following relation:

does not depend on ra. The eigenvector (8$, 8c) as-
sociated with cop identifies the direction of instability
in the (P,c) space at point (Po, co). To leading order
in r, k2/ra this is

8$
Sc

y
4u go + 128/0

(2.27)

which means that near the tricritical point where $0 is
small, the direction of initial instability is closer to
the P axis than to the c axis.

So far our analysis of Eq. (2.18) has considered a
quench from an initial, disordered state. For a
quench from an ordered state, the linearized Eqs.
(2.13) are no longer valid, since ra8Ã/8/~a is no

longer zero. However, we can still argue that the ex-
istence of different time scales for the evolution of P
and c implies that g will relax rapidly to the con-
strained value $0. Therefore although a different ini-
tial transient behavior exists, our analysis of the spi-
nodal decomposition process remains essentially un-
changed. This completes our discussion of the very
early time behavior of model B. We have not con-
sidered the corresponding problem for model A,
which would be more complicated to analyze due to
the absence of a clear cut separation of time scales in

P and c, which is the basis of the original Hohen-
berg-Nelson argument used above.

ljlo = —u/3'

gives the spinodal value cp= c,
2'r+uX„y

(2.22)

(2.23)

III. VARIATIONAL CALCULATIONS OF THE LATE-
STAGE SPINODAL DECOMPOSITION

A. Basic equations

+r, r&k f~2I (2.24)

Since r, k2/ra « 1 for the interesting long-
wavelength fluctuations, we can expand Eq. (2.24) in

powers of this parameter to obtain

'r k''
(2.25)

where

X = I'k +X„'(u +3ug'2)/(u +3ug' ) (2.26)

is the inverse of the constrained susceptibility defined
in Ref. 3. It is worth noting that to this order cop

These two spinodals are the ones derived in Ref. 3
and also obtained in Ref. 4 by a different argument.
To determine the unstable modes (for a band of k)
for a quench from a disordered state with c & cp( c ~, we calculate the negative eigenvalue of the ma-
trix LM, which is given by

0= [ra(&'k'+f)))+r k (Iak +f22))/2

—([r,(~'k'+f„) —r, k(Q
'kf+„)]'/4

We now turn to the considerations of the late-stage
time evolution, or coarsening of our models. In this
section we will use a variational method of
Langer" ' to obtain the characteristic late time
domain growth for two simple but nontrivial exam-
ples. The first is a d-dimensional metamagnet (with
d ) 1) in which we imagine a distribution of isolated
tricritical droplets embedded in a background of the
opposite phase. In the second example we consider a
one-dimensional periodic array of droplets. In the
d-dimensional model we find, making reasonable as-
sumptions, that the late-stage coarsening is the same
as for the binary alloy, namely, either a t' ' or a t'
growth rate for models A and 8, respectively. We
first summarize the basic idea, which again involves
linearizing Eqs. (2.3) and (2.4) but now around a
quasiequilibrium, unstable steady-state solution
(P,c). The dynamical evolution of this configuration
gives the asymptotic law of domain growth. Such a
configuration for the three-dimensional case
describes the interface between two phases and is
considered to be a large isolated droplet of the
emerging phase in a matrix of the other phase. On
these grounds Langer" derived the Lifshitz-Slyozov
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Ls~jk4 = ~f (3.1)

where L is the matrix of kinetic coefficients in Eq.
(2.13), M is the matrix defined in Eqs. (2.13)—(2.16)
but with fJ evaluated at (p, c ), and

(3.2)

(3.3)Q=c —c

The characteristic decay time v for the system to
evolve out of a stationary configuration can be shown
to be given by"

(3.4)
cal g 0

where the co„which are to be included in the sum are
the negative eigenvalues of the stability problem
described by Eq. (3.1). To calculate these negative
eigenvalues (which characterize the unstable modes)
we use a variational approach. First, we construct a
set of states g" conjugate to the set of eigenstates

(, where ( is a column vector with components gi
and g2, which satisfy

LY =7 (3.5)

We have as an upper bound on the lowest eigenvalue
cu of Eq. (3.1)

~, » (g, M ~)/(g, ~), (3.6)

where g ( r ) and f ( r ) are a trial function and its

conjugate, respectively. Langer has argued on rather
general grounds that a matrix such as M which
describes the droplet instability should have a nega-
tive eigenvalue governing that instability. This nega-
tive eigenvalue can itself be shown to be related to
the existence of an exact zero eigenvalue correspond-
ing to a translational mode of the isolated droplet. In
Ref. 4 we have explicitly calculated this negative
eigenvalue A.o for this model. To obtain a negative coo

from Eq. (3.6) one therefore chooses as a trial func-
tion an eigenstate of M whose eigenvalue is negative.
This is discussed in more detail in Secs. III B and

law for a binary alloy (conserved order parameter).
This idea of considering small deviations from a
planar equilibrium interface is also the basis of calcu-
lations of Cahn and Allen and of Chan for an order-
disorder like transition, The t' ' law obtained by

these authors is implicitly contained in Langer's origi-
nal work, as is shown below. In the one dimensional
system the unstable steady state (P,c) models a
periodic array of interfaces between ordered and
disordered phases. The characteristic coarsening in

this problem follows a logarithmic behavior in time.
The linearization of Eqs. (2.3) and (2.4) discussed

above leads in general to the eigenvalue problem

III C for our model.
Finally, following Langer, one obtains an equation

governing the coarsening of macroscopic droplets or
zones by the following argument. We consider a
periodic array of "spherical" zones in d dimensions,
with d ) 1, some of which are growing and some
shrinking with a characteristic lifetime 7. If there are
N such zones per unit volume, then the rate of
change of N is given by

N )dN
dt

(3.7)

Since N —R ~, where R is the characteristic size we

have then

dR ——Rv -1
dt

(3.8)

where since A.o is independent of the surface tension,
so is the proportionality constant in Eq. (3.9).

S. Metamalnet in d dimensions

In this case we consider the matrix M in Eq. (3.1)
obtained by linearizing around the isolated droplet
configuration (p(x), c(x)) given by Eq. (2.10). We
have a single negative eigenvalue of LM, coo= v '.
This eigenvalue is, in addition to being the life time
of the unstable configuration (P(x),c(x)), the
"dynamical" prefactor which occurs in the expression
for the nucleation rate.""Therefore our calculation
of coo as presented here completes our earlier analysis
of the nucleation rate for the scalar metamagnet. To
evaluate coo for this example'4 we will use Eq. (3.6),
taking as the trial function ( the eigenvector v asso-
ciated with the negative eigenvalue Ao of M. The
eigenvalue governing the droplet instability was calcu-
lated4 from the effective Hamiltonian for P in d di-

mensions, k[$) given by Eq. (2.9), with the result

zo -—K'( d —I )/R ' . (3.10)

To get a better understanding of the coupled equa-
tions which correspond to the linear stability analysis,
we derive Eq. (3.10) and the associated eigenvector
from the eigenvalue problem M&v& = A. v& which for
the radial part of v; reads explicitly

As an example of this approach we consider a system
with a single, nonconserved order parameter. In this
case from Eq. (3.1) we have r ' =coo with coo= I'h.o,
where I is the kinetic coefficient and A, o is the single
negative eigenvalue of M. Since Xo —R it then
follows from Eq. (3.8) that

(3.9)

2
d'

2 (d —1) d K'I(I+d —2) 2 4—K
&

—K — —+
2

+r + l2uf +30ug +2yc v~+2ypp2=Apl
QI' r Cff I'

(3.11)
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Ig d I2 (d —1) d +I2 I(l+d —2) +~ 12y v, + —Ip —Ip
dr2 r dr r20 +X„v2= v2 (3.12)

(3.13)

This eigenvalue corresponds to the translational
modes of the droplet and is contained in a band of
eigenvalues defined by different values of l, where A.p

corresponds to l = 0. To calculate A, p we rewrite Eqs.
(3.11) and (3.12) as

Myvg = A, vl
I

MI=MI '+~M
where

(3.14)

(3.15)

Comparison of these equations with the explicit form
of Eqs. (2.7) and (2.8) for a spherical symmetrical
configuration shows that Xi = 0 is an exact eigenvalue
for l =1 with eigenfunction

dc
dr dr

Model A (ri onconserved c)

From Eqs. (3.5) and (3.13) we have

v| (r) =I'pps

df

vP2"(r) = I'p'—
dr

and from Eqs. (3.13), (3.18), (3.19), and (3.20)
r

+Iz de

dr dr
2 '2'

F1de
dr

'
,

dr

dr E2
d —1

Citlp
——

R
, dr r~'

(3.20)

(3.21)

K (I —1)(l+d —1)
f2

Ip (I —1)(I+4—1)
f2 cup = —K'I'p(d —1)/R2 . (3.22)

For kinetic coefficients I & and I, of the same. order
of magnitude we can do the same approximation that
leads from Eq. (3.18) to Eq. (3.10) and we obtain

(3.16)
The eigenvalues A, I are obtained from a standard vari-
ational calculation as

( M' ) ( 8M' )
(

I I) (
I 1)

(3.17)

where we will assume that A.i is equal to this bound.
Since the eigenstates have to be localized around the
interface position r —R, we can replace r' by R' in
SM'and in the volume integrals in Eq. (3.17). We
then obtain a set of Xi, with A. i

= 0 and A.p ( 0,

dih
drR~ 'IK' ~ +(2 d c

(d 1)" dr dr
A,0=-

de + dc
dr dr (3.18)

( M' v ) "p("
(3.19)

In the spirit of the approximation scheme of Ref. 4
which leads to Eq. (2.10), we can safely neglect

dr (d c/dr) 2 with respect to „dr (dP/dr)i to obtain
Eq. (3.10). The difference between h1 and hp comes
from the angular part of the Laplacian in Eqs. (3.11)
and (3.12), and the radial part v of the eigenvalue
associated with hp is still given by Eq. (3.13).

We are now in position to deal with the dynamical
problem. From the above discussion and Eqs. (3.5)
and (3.6) we have

This is the result for a model describing the relaxa-
tion of a nonconserved order parameter p already
discussed in Sec. III A. To this order the coupling
with c plays no important role. The same result [Eq.
(3.22)] is of course obtained directly by using Eq.
(3.10) instead of Eq. (3.18).

2. Model 8 (conserved c)

In this case

vi (r) = I'pp.
dr

(3.23)

Lpv2 (7) = I p+~v2 (x) =
v'4a dr

(3.24)

A solution of Eq. (3.24) in d dimensions can be easi-
ly worked out in an analogous way to the calculation
in Ref. 15. We then have"

(v', ", v2) —r, 'R' dr e-
dr

R (rLc)' (3.25)

d —1
Qj0 R2

—12 ' '2
Rd-1 dr g2 +(2d ~lr

dr dr

d +R ~I 1(lte)2-
dr

(3.26)

where (rLc) is the difference of c values at both sides
of the interface. We then have
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Neglecting once again the dr dc dr 2 term and re-

calling that the interfacial tension o- to leading order4

form

( —K V, +r+12up +30up )p[ &Op~ (3 29)

o=K Jldr
dp
df

we obtain

(3.27)
We now rescale these equations using the following
relations:

z = r/g, m = Q/Q&, n - c/yX„Q, , (3.30)

(3.28)

This is again the result one obtains using directly Eq.
(3.10) instead of Eq. (3.18) in the above calculation.
For normal values of I & and I', and in the limit in
which we are working of large R we can neglect the
first term in the denominator and, from Eq. (3.8)
with Np= T ', we obtain the Lifshitz-Slyozov' law for
a coriserved one variable problem. This can be physi-
cally understood by considering that in the late stages
the slow variable c takes over and the fast variable p
is "slaved" as discussed in the stability analysis of
Sec. II. It is interesting to see that this slaving is pos-
sible due to the coupling introduced by the coefficient
y. In the limit y =0 we have decoupled equations
and the equation for c has no instability. This means
that in this limit we should reobtain Cahn-Allen-
Chan law for the nonconserved order parameter P.
Indeed, if y = 0 we have hc = y X„Q,2 = 0 and we re-
cover Eq. (3.21) from Eq. (3.27). In the above cal-
culation it is also clear how o- cancels out for a non-
conserved variable in agreement with the Cahn-
Allen-Chan results.

C. Coarsening in a one-dimensional
metamag net

We wish to consider a one-dimensional version of
model 8 as discussed already in Sec. III B. We will

folio~ the procedures as set out in Sec. II A. To this
end we first turn our attention to the numerator of
expression (3.6). In Eq. (3.6), M is a matrix opera-
tor defined by Eqs. (2.13)—(2.16), and it is evaluated
at the stationary-state values P and c given by Eq.
(2.12). As we have already shown in Sec. III B the
negative eigenvalue of M as calculated from the ef-
fective Hamiltonian 3.'[P] [Eq. (2.9)], and from the
full Hamiltonian 3C[g,c] [Eq. (2.1)1, are equal, to a
good approximation. Therefore we will use a form of
M derived from the effective Hamiltonian (2.9).
This effective M can be constructed from the full
coupled equations as follows. We first use the rela-
tion (2.12) to eliminate c in terms of g. We then use
the one-dimensional version of Eq. (3.12) to con-
struct a relationship between the two eigenfunctions.
We do this by neglecting the derivative term (Io 'vr,')
and using the value of A. =0 associated with the
eigenfunction which describes the translational sym-
metry. We then have an eigenvalue equation of the

[ —V', + I —12m (z) +15m (z) ]X, = 6X,

where
e= h.og

(3.3 1)

(3.32)

We will call the operator in square brackets in Eq.
(3.31) F. 5 is of the form —'7,'+ W(z) where W'{z)
is a "potential. " For a single interface we have that

m (z) = ( I + tanhz) '~' .
1

2
(3.33)

We know that dm/dz is an eigenstate of 5 with eigen-
value zero.

We now introduce a periodic array of N interfaces
with a distance p between each interface. The opera-
tor which describes this array of interfaces will be of
the form

F = —V, +
4

+ —X e' J tanh(z —pj)
J

——", Xsech'(z —pj)
J

(3.34)

This new "potential" is shown in Fig. 2. We now
construct a set of mutually orthogonal trial functions
x;~ of the form

z&2 JN, 0 [I+tanh(z —pj)]'

If we insist on periodic-boundary conditions we have
that

q =, iVpg=L
Np

(3.36)

where L is the physical length of the system and n is
an integer. We should also note that q ranges in
values from —rr/p to rr/p We then compu. te
(X~~ FX~~) to first order in overlap integrals and get

(Xiq, PX&g) — Ae ~cosqp

where A =1.06.

(3.37)

where Q, is the equilibrium value of p. Using these
rescaled quantities as well as Eq. (2.11) and the rela-
tions g = —u/2u and g = (u /2u) 'r' we get

g '[ —'7,'+ I —12mz(z) +15m4(z) ]X,= XoX~

where we have set the coefficient of the gradient and
the lattice spacing equal to unity. X~ denotes the re-
scaled eigenfunction. Therefore the eigenvalue equa-
tion reduces to the following form'.
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4

Therefore the denominator of expression (3.6) has
the form

2

(XIq XIq) + (XPq X&q) +
4r& I', 2 1 —cosqp

(3.45)

Therefore combining Eq. (3.45) with Eq. (3.37) we
have

4 qLIoq

Ae pcosqp

1 +4'
4r& r, 2(1 —cosq p)

(3.46)

FIG. 2. W(z) is the potential associated with N inter-
faces, where each interface is separated by a distance p. The
variable z is the scaled unit of length; i.e., z -x/(.

If we neglect the first term in the denominator in the
tricritical region, we have, using Eq. (3.32),

MPq—
2~1

q

' e qcosqp(1-cosqp)
4'p

(3.47)

%e now turn our attention to the denominator of
Eq. (3.6). There are, for this model, two terms to be
considered. In the scaled notation these two terms
are of the form (XI,, XI, ) + (Xqq, X~q), where XIq and
Xqq are related to XIq and Xpq by the relation (3.5),
namely,

1 DNep
(3.48)

This implies that the most unstable modes are those
near values of q such that q = + qr/4p. We will dis-
cuss the implications of such a result later. Proceed-
ing on, we have from Eq. (3.4) that

I

I"~

0

In the scaled form

0
X(q Xiq

rc Vz Xgq X2q
(3.38) where D =0.141,. Therefore, following Langer, we

interpret v
' as a rate at which the domains are dis-

solving or coalescing in a system of N interfaces; i.e.,

and

XIq(z) =ra XIq

V, X,', (z) = rI('~~X-„Cz .

(3.39)

(3.40)

dN

dt

Using Eq. (3.36)

dl l2

dt Lr

(3.49)

(3.50)

We now use expression (3.40) to compute V, Xqq,

N —I

V', —X,', = X e'q»[l + tanh(z —p, ) ]+C .r,2JW, ,
(3.41)

C can be determined from the periodicity condition,
namely,

teN p- p/2

X2~dz 0,~ p

where we have shifted the limits of integration. This
gives C = —B/J1V (1 —e'qq) where B = f~/r, Now.

e-I/gdl C
Ch

(3.51)

V ) lf

where l is defined as some average dimension of the
coarsening domains. Then from Eqs. (3.49) and
(3.50) we have that

(Xgq, Xpq ) =—
q JI Xpq 7gxpqCz

; JI lv, x l'cz. z (3.42)

Then using Eq. (3.41) we find

8P
(Xpqz Xpq) 2(1 )

Also using Eqs. (3.35) and (3.39) we find that

1
(XIq, XIq)—

(3.43)

(3.44)

FIG-. 3. e display X(z) which is the'eigenfunction (3.35)
with q -+ m/4A, . Also shown is the coarsening produced by
this instability for a set of domains represented by the po-
tential W(z) shown in Fig. 2,



2342 SAN MIGUEL, GUNTON, DEE, AND SAHNI 23

where C =D. Therefore we find that

t(t) =Io+gln 1+c—et l o—tr
(4

{3.52)

IV. SHAPE-INVARIANT SOLUTION
FOR LATE-STAGE GROWTH

In this section we reexamine the late-stage evolu-
tion of an isolated droplet (or set of droplets) dis-

where lp is the initial "domain size. " This is of the
same form as originally obtained by Langer for a
one-dimensional model of a conserved binary alloy.

Finally, it is of interest to consider the coarsening
pattern one obtains by considering the unstable mode
at q = + m/4p. The eigenfunction associated with this
instability is shown in Fig. 3, together with the coar-
sening it would produce in a system.

cussed in Sec. III, as formulated in terms of a solu-
tion that preserves the profile of the interface during
propagation. This approach was applied recently to
obtain the late-stage growth of a system described by
a time-dependent Ginzburg-Landau equation for a
nonconserved order parameter " As we will see, we
obtain the same results for the late-stage growth of
our tricritical models as obtained via the variational
method.

The basic idea in this approach is to find a solitary
wave solution which describes an invariant interface
profile. This invariance is strictly true for the one-
dimensional model and can be considered as asymp-
totically correct for the d-dimensional model. Fol-
lowing Chan we neglect any orientational dependence
of P and c. We then write our nonlinear Langevin
equations in matrix form, which in this approxima-
tion involves the radial part of the functions P(x, t),
c(x, t), with I =0:

—K2 — -+t)' (d —1) 8—+ (r+4ug +6vg )2 4

, d Q(r, t) Br' r Br

(d-1) 8—lp + +X„
' 9r2 r Br

" c

4(r, t)
c (r, t) (4.1)

82—K~- + r+4u Q'+ 6vf
gr

K~ (d —1) 0
'p(r, t)' r 9r
,c (r. t) )

If

'g(r, t)
Q(d —1) 8,c(r, t),

r Qr,
(4.2)

Our stationary-state solution (p, c) which describes a planar interface then satisfies the equation
t t

82—K +r+4ug +6vf
Br

C

lp — + X„82

(4.3)

which is the d =1 form of Eqs. (2.7) and (2.8),
whose approximate solution is Eq. (2.12). We now
look for a particular solution of Eq. (4.2) of the form

y=y(R (t) —r),
~ = r(~ (~) —r),

{4.4)

(4.s)

where R (t) denotes the time-dependent position of
the center of the interface profile. The physical situa-
tion which we imagine herc is the late-stage growth
of an isolated droplet of one of our phases immersed
in the background of the other phase. The instability
discussed in Scc. III corresponds to the growth of the
droplet and, as we will see, the negative eigenvalue
obtained in that section is given here by R (t)/R (t).
The point is that this instability develops in a way
that is an approximate shape invariant solution of the

and the definition of v given in Eq. (3.5) we obtain

——v,"=[SMt-'(r =R)]„-v,' . (4.8)

I

equations. To obtain this solution we follow Chan
and approximate the term (d —1)/r which occurs in

the Laplacian in Eqs. (4.1) and (4.2) by
(d —1)/R (t). Thus upon substitution of Eqs. (4.4)
and (4.5) into Eq. (4.2) we obtain upon using Eq. (4.3)

dp dp

dc dc
L' = [SM—' (r =R)] ", (4.6)

, dr, , dr,
where SMt 0 is defined in Eq. (3.16). Using our pre-
vious result

d4 dc
d dr

(4.7)
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Taking the scalar product of Eq. (4.8) with u; yields

R
R

(u SM' u )

(
p+ p)

(4.9)

The right-hand side of this equation is identified by
Eq. (3.19) as the pip calculated in Sec. III B. With this
identification we recover from Eq. (4.9) the relation
(3.8). Therefore the results of Sec. III on the asymp-
totic t dependence of R also follow from Eq. (4.9).

It is finally worth mentioning that the results of
this section and also most of the ones in Sec. III are
independent of the explicit form of the configuration
(lit, c) given in Eq. (2.12).

We conclude by commenting on the relationship
between the variational approach of Sec. III and the
asymptotic solitary wave approach of this section. In
the former case one first notes the existence of an
exact translational symmetry to obtain an eigenvector
with eigenvalue zero corresponding to "angular
momentum" I =1. One then argues that this implies
the existence of a negative eigenvalue Xo correspond-
ing to I =O. The lifetime coo is then calculated by a
variational method using the I = 1 eigenvector as a
trial function (the radial part of the I =0 and I -1
eigenvectors are the same). In the solitary wave ap-
proach one starts with the I =0 equation and looks
for a shape invariant solution which is the analog of
the I =1 translational eigenvector. One then obtains
an equation for R (t)/R (t) which is the same as Eq.
(3.8) with r '- pip. One can interpret both results
for R (t)/R (t) as a generalization of the dynamical
equation which governs the growth of a single critical
droplet in the nucleation problem. In the coarsening
problem, however, one has a distribution of droplets
of varying sizes, with &alp= Qlp(R).

where BXis the energy barrier

&3' = I [f(Tlt, c ) —f (lilp, cp) l (A4)

(litp, cp) is the metastable minimum of f, and (lTt, c) is
the saddle point between (litp, ep) and the stable
minimum. The matrix M is the matrix of second
derivatives of f with respect to lit and c, evaluated at
(lTt, e ) and Mp is the same matrix evaluated at the
metastable point (litp, cp). The dynamical prefactor K

contains all of the kinetic information and is defined
as coo in Sec. III, the negative eigenvalue of LM,
where L is again the matrix of the kinetic coeffi-
cients. For the case in which the variables are space
dependent the energy barrier and the "statistical pre-
factor" (detMp/detM)'tt have been evaluated in
Ref. 4, while the dynamical prefactor ~ has been
evaluated in the main text of this paper. In the spirit
of the approximations made in those calculations we
shall evaluate (hX) to first order in (Slk) 5 /Lp

where bp is given by Eq. (2.11); the prefactors in Eq.
(A3) will be evaluated for 5 = hp. The structure of
the extrema of f (lit, c) was reviewed in Ref. 4. Local
minima are located at the values

=0
—4u + (16u —24ur ) '

12'

(AS)

(A6)

obeys the Fokker Planck equation

BP(q) „B ', Bf B 'P
Bt 'By B@ By

—I,—V ——P(y, c) . (A2)
B Bf B

9c Qc Bc

The work of Krarners as extended to include several
variables yields for the nucleation rate ' '

l/t2

detMp e-h A3
2m detM
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where u and r have been defined in Eq. (2.10). The
value of e at the extrema is related to lit by

e=X„(h—plat') . (AS)
APPENDIX

In this appendix we calculate the nucleation rate
for a strict mean-field version of our model A in
which ill and c have constant values throughout the
system. In this situation

For definitiveness we consider the case in which the
metastable state is lJlp Q„,cp=X„E. This corre-
sponds to 5 ) hp and ill~+ and the corresponding value
of c are the absolute minima or stable states. Recal-
ling that for 6 = b 0,

~[ill, c] = &f (lit, c) (A 1)

where V is the volume of the system and d is now an
arbitrary parameter. The probability density P(lit, c)

F =rp~u /2u
we obtain to first order in (86)

yx„84
4

2

6v g

(A9)

(A10)
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and so

aX =3'.[y = y, c = x„(A —yy') j —Xlyp. cpl

13u 1y ~"
55 V.

72 y2 6 v
(A 1 1)

so that

2

detM = ———X„
2 u

3 lJ
(A15)

We also have
r

u/2w 0
0 x-'

I
n

so that

detMp = x„'u /2u

(A12)

(A13)

The fact that detM & 0 indicates the existence of one
negative eigenvalue giving rise to the instability and a
second positive one associated with the stable direc-
tion at the saddle point. From Eqs. (A13) and (A15)
we have for the statistical prefactor

and
' I/2

"(u+y'x„) 2y
3$ 6v

r ' 1/2
detMo

IdetM I

= —'J3 .
2

(A16)

r ~ 1/2—u
2y x„-'

(A14) Since L is positive definite, (detLM) & 0 and we

have again a positive and a negative eigenvalue of
LM. The negative one is

u I cXg
~= ——1' —(u+y2x„)+~y "

2
—r2p ",(u+y'x„)'+

9v'

'x-'
n

&/z
y'u- r, I., 3'

(A17)

When I &= I', =1, the dynamical problem becomes
trivial since both variables relax on the same time
scale and ~ is identified with the negative eigenvalue
of M, This negative eigenvalue is the curvature of
f (P,c) at the point P, c in the direction of the
"MPEP" (most probable escape path) connecting

(Q, c) and (Qp, cp). This particular case of coupled
dynamical equations for two variables is the one con-
sidered in Ref. 29 where a more detailed description
of the time evolution of a general P (p, c) is given.
The explicit expression for the nucleation rate follows
from Eqs. (A3), (Al 1), (A16), and (A17):

%3 i uI = —I' —(u + y'x„) +
4m ' ~e "

2
I' r

13 u 1 yX&u
xexp V + — 55

72 y2 6 v

, (u+y'x„)'+
9e'

2 i/2r,r,—I I —x-'— y u
U 3V

(Alg)

Recalling that 3C includes an implicit factor of
P = 1/ks T, we see that the exponential term of Eq.
(A18) has the same dependence on temperature and

system size as the mean-field model of Griffiths,
Weng, and Langer. In the limit of T 0 or
V ~ the nucleation rate goes to zero and the meta-

stable states have infinite lifetime (note that u & 0).
In the calculation for the space-dependent variables

the mean-field limit is taken" by letting the range of
the interaction, given by the coefficient of

~
V'P~2, go

to infinity. One can then explicitly see that b, 3C

giving rise to infinitely long-lived metastable states.
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