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Polarization fluctuations in ferroelectric models
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We consider the relation between the finite-wave-vector susceptibility X(q) of the six-vertex
model family and the macroscopic susceptibility. This is nontrivial because X(q) is singular at

q =0. Using exact results for the macroscopic susceptibility, we infer the analytic form of the

anisotropy parameter appearing in the pair-correlation function at large separation. Proceeding
phenomenologically, we consider the effect of relaxing the ice rules, and the effect of short-

ranged interactions other than the ice rules (e.g. , polarization gradient energies).

I. INTRODUCTION
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This paper is concerned with long-wavelength polar
fluctuations in model ferroelectric systems which

obey or which nearly obey ice-rule constraints. Much
of the discussion concerns the six-vertex model in

two spatial dimensions (2D). Many exact results
have been obtained for this model family, ' and there
are real systems to which these results may usefully
be applied. ' ' %e will see that many of the conclu-
sions dragon about the 2D models apply as well to the
3D case.

The 2D six-vertex model consists of arrows (pseu-
dospins) assigned to each bond in a square planar ar-

ray, such that precisely two arrows point into and two
arrows point away from each vertex (the ice rules).
Each of the six allowed vertices (shown in Fig. I) has
a weight ot; =exp( —pE;), where E; is the vertex en-

ergy. In the absence of external fields, symmetry re-
quires that co~ = cv2, co3 = co4, and co5 = cu6. There are
two important characteristic parameters for this
model family. One,
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Q)~ + Q)3 —

QJ5
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is a measure of ferro- or antiferroelectric tendencies,
since a transformation to a ferroelectric (antifer-
roelectric) phase occurs for 6 = I(—I). The aniso-
tropy parameter,

7) (ctl t/ot3) t

measures the preference for (1,2) vertices over (3,4)
vertices, and hence the x —y anisotropy of the polar
configurations. The intrinsic inversion symmetry is
removed by a pseudoelectric field with components
(h, v) which lie along the directions (x',y') of the ar-
rows and couple linearly to them, so that

—h-v h+v —h+v h —v
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0
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FIG. 1. Here we define the six vertices and their associat-
ed weights cu, =exp( —18m;). The energy of each in the pres-
ence of horizontal and vertical fields (h and u) is also given.
The primed coordinate system lies along the bond direc-
tions; the unprimed system faithfully reflects the symmetry
properties of the (ru, ).

In this paper, we use a coordinate system which is ro-
tated by —m from the bond axes (see Fig. I), which

thus coincides with the natural twofold axes of the
anisotropic (g A I) model. For example, we use
field components (E„,E, ) related to (h, v) by

E„=2 ' (h +u); E =2 ' (—It +u)

In general, expressions are more simplified in tais
system.

Our goal is to describe the long-wavelength polari-
zation fluctuations, i.e., the small-q behavior of the
wave-vector-dependent susceptibility X(q). A recent
study' of polarization correlations at large r gave par-
tial information about X(q); but in that study, the
functional form was incompletely specified, and the
relation between the macroscopic fluctuations and the
merely long-wavelength ones was left altogether un-

clear. Here, we complete the derivation of X(q AO)
at small q, and consider its relation to X(q =0). In
addition, we offer conclusions about the effect on X

of ice-rule violations, and we consider phenomeno-
logically the leading finite-q corrections to X due to
d -dependent energies associated with polarization
gradients.

Since we are concerned with a synthesis of thermo-
dynamic and microscopic quantities, we begin by
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F —F,= —,(x, 'P„'+ x, 'P,') —P E+ (5)

where the ellipsis represents higher-order terms in

(P„,P~) and

x„(h, q) =2) p/(~ —p, ),
Xy(h, g) =2P/i. (n —p, )

(6a)

(61 )

X(~ )
I+sinz. ~40

cosz 2p,

summarizing the relevant information currently avail-
able from each. Both developments are elaborations
of Lieb's observation that the transfer matrix for 2D
ice has an eigenvector identical to that for the quan-
tum I D Heisenberg Ising ground state; this culminat-
ed in exact expressions for the free energy of the 2D
six-vertex problem in an arbitrary external field by
Sutherland, Yang, and Yang (SYY).' Their solution
for the "disordered" region, —I ~ b, ~ 1, can (with
some rearrangement) be written in the form:

variable P of Eq. (5). g &(R) decays algebraically

(x' —
A.'y')

g-(R' -"(» ~)~ ~

(x +A, p

2X'xy

( 2 2 2)2

g (K)-AX''"
(&2 +X2y2)2

(IOa)

(1ob)

(Ioc)

n A (I) = (n —p) ' = I/cos '(6)

On the other hand, it was possible to evaluate A. only
for the special case d =0,

where R = (x,y ) measures the distance in units of
the elementary six-vertex cell dimension, and-
denotes asymptotic equality as R ~. These results
were derived for iL =0, but YAM were able to use
the spin-spin correlation function" " for the
Heisenberg-Ising chain to establish that the form of
Eq. (10) is generally valid for —I ~ 5 ~ I, and fur-
ther that

and from SYY

p, =cos '( —5) (0) p, )m)

x(~=0, ~) =~ . (12)

I +q exp(ip, )
exp(i p, ) + g

II. %AVE-VECTOR-DEPENDENT SUSCEPTIBILITY

A. Long-wavelength response

Equations (5)—(8) are a straightforward transcription
of SYY, in which we have: (i) supplied an omitted
factor P = (ks T) ', (ii) transformed from order
parameter variables (Pq, P„) which point along bonds
in the six-vertex lattice to new variables rotated by

1

4

P„=(2) ' '(P +P„) P=(2) ' (—'PI, +P„); (9)

and (iii) added a term —P E to convert from a
Helmholtz. to a Gibbs free energy.

The other linc of development involves pair-
correlation functions. Sutherland gave an exact
result for the correlation function between vertical ar-
rows at arbitrary r, valid at 5 = 0, where the problem
simplifies to one of free fermions. Youngblood,
Axe, and McCoy' (YAM) considered this problem
further. They used: (i) Baxter's9 correspondence
between the six-vertex model and the dimer model;
(ii) Fisher and Stephenson's'0 exact results for the
dimer-model correlation functions; and (iii) a
coarse-graining procedure to suppress antifcrroelectric
fluctuations.

Combining these things, they found explicit,
asymptotically exact expressions for g,&( R )
= (P ( r ')Pa(r)) for large R= r —r'. P(r) is the
local generalization of the spatially homogerieous

2

x (q) =2nA p
Xq„+A. 'qy

(14a)

X (g) =X „(q)=2nAP, , (14b)
A,q„+~ 'q~2

2

X (q) =2~A p
Xq„2+4. 'q~2

(14c)

Note that X( q ) is singular: it tends to no unique
value as q 0, but rather depends upon the direction
along which q = 0 is approached. This behavior is
familiar in certain electrostatics problems'"; the
clearest insight into its cause in the present case
comes by transforming Eqs. (14) into a rotated coor-
dinate system, whose axes are parallel and perpendic-
ular to q. In this system the tensor X &(q) is diago-

Consider the linear response, P ( r ) = P ( q )
x exp(i q r ), to a spatially inhomogeneous, long-
wavelength perturbation, E( r ) = E(q) exp(i q r ):

P (q)
X,a(q) = =13 dRexp(iq R)g &(R), (13)

Ea(q )

where we have made use of the classical fluctuation
dissipation theorem. Inserting the asymptotic expres-
sions for g &(R), we find' the following expressions
for X &(q):
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nal. Its diagonal elements are given by

xg(q) =0 (15a)

X = (X„,X~) are given by Eqs. (14). However, at
q A 0, P„(q) and P~(q) are no longer independent,
but are constrained by the ice rule

'7 P=i Xq P (q) =0
2+ 2

X,(q) =2~aP (»b)

so that the response is entire1y transverse to q. The
explanation of the complete suppression of the longi-
tudinal response is evident, The ice rules guarantee
that polarization is locally conserved, so that

0 P(r)=iq P(q)exp(iq r) =0

for all r. Thus, the ice rules alone force P (q) to be
transverse, and this is in turn directly reflected in the
singularity of X(q).

One may inquire as to the effect on X a(q) of the
shorter-ranged contributions to g &(K) omitted from
Eq. (10). Since the neglected terms are shorter
ranged, and because the singular behavior of X p(q)
is associated with the range of the correlations, we

expect (but have not proven) that the contribution of
the neglected terms to the susceptibility, call it X'(q),
is nonsingular as q 0. We know that the exact
longitudinal susceptibility vanishes because of the ice
rules, so that Eq. (15a), X~~(q) =0, is exact. There-
fore, if X'(q) is indeed nonsingular, it must also tend
to zero as q 0 along every direction. This implies
that Eq. (15b) for Xt(q) is asymptotically exact as
well.

B. q 0 versus q W 0 response

P.(q )P.(—q )

2, X

-P.(q)Z. (-q) + (17)

where E(q) is the field conjugate to P (q ), and

We saw from the preceding paragraphs that the ice
rule, V P =0, constitutes an important constraint on
X a( q ) near q =0, and determines uniquely its

singular form. We argue now that X &(q) can, in the

q 0 limit, be obtained directly from the homogene-
ous free energy [Eq. (5)] subject only to the addition-
al constraint O' P =0. This hypothesis can be
checked: it must give not only the proper form for
X a(q ), but also an expression for A (5) which can
be compared with the correct one, Eq. (11). If
correct, it will give new information in the form of
h. (h, g), known until now only for 5 =0.

For long-wavelength spatial fluctuations, the free
energy is generalized by rewriting Eq. (5) as

The constraint can be introduced by a Lagrange mul-
tiplier, but in the present case it is simplest to use Eq.
(18) to eliminate one component, e.g. , P~( q ), from
Eq. (17) and then to minimize the resultant expres-
sion with respect to P„(q ). By this means, one easily
finds for X a(q ) = P ( q )/E&(q ),

2
qy

X (q)=
q„Xy + qy X„

(19a)

x (q) =x,„(q)=
qx Xy +qy Xz

2
qxX~(q) =

q„Xy + qy X„

(19b)

(19c)

On comparison of Eqs. (14a)—(14c), with Eqs.
(19a)—(19c) we find that they are indeed of the same
form, and become equivalent if

nA (6) =(vr —p) '= [cos '(5)] '

and

X(g ) X
I +slnz

cosz
(21)

The value of A agrees with the independent evalua-
tion' of Eq. (11) and confirms the correctness of the
approach. In addition, h. (i) =0, g) confirms previ-
ously known results5 for 5 =0, in which case
iM,

= n/2, z = Po, and exp (igo) = (I +i q)/(i +g), so
that

cosz = cos$o =, , sinz = sin@o = ~,q'+1 q'+1
and

1+singo

cosgo
(22)

Equation (21) for h. (h, q) represents the principal
quantitative result of this paper. Equations (14),
(20), and (21) completely characterize the behavior
of long-wavelength polarization fluctuations in this'

model throughout the "disordered" regime,
—1 & 5 & 1. A plot of A. vs q for various values of
6 is shown in Fig. 2. We consider only the case

q g 1, since the choice of labeling of the x and y axis
can be used to ensure this with no loss of generality.
Note that for 6 & 0, X is less than q, so that the
basic vertex anisotropy is softened in the fluctua-
tions, whereas for 5 )0, A. is greater than q, and the
anisotropy of the fluctuations is enhanced. This ten-
dency culminates in singular behavior as one ap-
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see the review paper by Nagle. "
Another important aspect of dipolar interactions is

that the wave-vector-dependent susceptibility of
dipolar-coupled systems (including ferroelectrics) has
a contribution which is singular' in the same way as
is the susceptibility of ice-rule systems, since the
long-ranged dipolar force tends to suppress longitudi-
nal polarization fluctuations. In spite of having a
similar effect on the susceptibility, this mechanism is,
of course, quite distinct from the ice rules. Note that
in the case of 20 bond networks, it is easy to distin-
guish the effects of ice rules (operating in 2D) from
those of dipolar forces (which necessarily operate in

3D).

5/2 7/5
C. Gradient terms and ice-rule violations

FKJ. 2. Plots of A. (q, 5 =const). As b approaches +1
(as T approaches Tp, the ferroelectric transition tempera-

ture), X tends to infinity (A, ~ T Tp) . [See Eq. (7),]
The axes are scaled so that the distance along the q axis is

proportional to (q —1)/(q+1), and similarly for the A, axis.

proaches the ferroelectric transformation at
5( T = To) = 1. By expanding near 5 = 1, one'can
easily show that for small e

(g-1)
( T —To) '~'

(23)
since a = [2(1 —5 ) ] '~' —( T —To) '~'.

In using P for the order-parameter variable, we in-

vite a dielectric analogy; but we are doing a lattice
statistics problem, not electrostatics, and the statisti-
cal mechanics is determined by the vertex-weighting
scheme alone. In particular, while the vertex weights
reflect the interaction of adjacent dipoles, nothing has
been said here about long-ranged dipole-dipole in-

teractions. Thus, at this point, we are not free to
identify the susceptibility we calculate (which is the
response to a field conjugate to the configurational
polarization P ) with the physical dielectric suscepti-
bility. According to at least one school of thought
(which may be called the Onsager-Slater-Pauling ap-
proach), such an identification can be made in ice-
rule systems. For a recent discussion of this point,

In the previous section, we considered a generaliza-
tion of the free energy of the six-vertex model to
spatially varying external fields, and obtained the
zero-field, small-q susceptibility. Now we wish to
broaden the scope of our inquiry to take into account
(a) ice-rule violations, and (b) the free-energy cost
associated with a transverse polarization gradient.

In this section, we will proceed phenomenological-
ly, by adding two terms to the free-energy expression
developed so far, and then treating the resulting ex-
pression as if it were a Landau free-energy expan-
sion. The first new term is D [q P (q ) ]', which is

proportional to (0 P)', this term expresses the
free-energy cost of longitudinal [ q I I P ( q ) ] polariza-

tion fluctuations, which violate the ice rules. The
other new term is C [q && P (q ) ]', this term expresses
the free-energy cost of transverse [ q s P ( q ) ] fluc-

tuations (for example, the free-energy density at a

vertical wall separating a region of "up" polarization
from a region of "down" polarization). Rather than

( q && P ) ', one might consider introducing separate
terms for all distinct bilinear forms compatible with
the twofold-symmetry axes of the model [(8P„/f)x)',
(r)P„/'dy ) (QP»/Qx), etc.], each with its own coeffi-
cient depending on 5 and q. Here, for simplicity, we

have suppressed all but the rotationally invariant part.
One could also consider generalizing the (q P)' term
in a similar way, but the (q P )' form is special, in

that it expresses the free-energy cost of ice-rule viola-
tions.

Minimizing the free energy, one obtains

1+2X„(Dq„'+Cq„')' 1+2X„(Dq„'+Cq»') + 2X»(Dq»'+ Cq„') +4X„X»DCq4

x (q)=x„x,
—2(D. —C)q„q»

1+2X„(Dq„~+Cq»') + 2X» (Dq»~+ Cq„~) + 4X„X»DCq4

1+2X» (Dq»~+ Cq„') + 2x„(Dq„'+Cq»') + 4x„x»DCq4

(24b)

(24c)
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There are several limiting cases to consider.
(1) C =0, D ~+ oo. In this limit, we recover the

previous (ice-rule) result. Longitudinal fluctuations
are suppressed; the susceptibility is singular at q =0.

(2) D = 0, C + ~. This is the inverse situation;
transverse fluctuations are suppressed. For example,
in this limit

q X
x~(q) =xy'

q,'/x, + q„'/x„
r

(3) D = C & 0. There is no difference between
transverse and longitudinal. We have

(25)
O—

I

Cg
O—

I

x~(q) =
1+2X Dq

(26)

1x~(q„=0,qy) = xy 1+2X Dq 2
(27)

etc. , whose constant-intensity contours are simply cir-
cles. The anisotropy between divergence and curl is

eliminated; the susceptibility resembles that charac-
teristic of a scalar order parameter except, of course,
that X~ & X~.

A system which is incipiently ferroelectric
( —, ( 5 ( 1) and which is near to obeying the ice

rules corresponds to C &0 and D &&0. When D
and C are both finite, there is no singularity at the
origin; the macroscopic susceptibi'lities are given by
x„and x», and these values are approached by x(q )
as q tends to zero along any direction, For example,

O—
I

C)
I i I I

—0.5 —0.4 —0.3 —02

O—
I

Gl
O—

I

O—
I

—0.1 0.0 0.1 02 0.3 0.4 0,5

and

x~(q„,qua=0) =xy I

1+2XyCq„
(2g)

C)
I

C)
I

—0.5 —0.4 —0.3 —02 —0.1 0.0 0.1 0,2 0.3 0.4 0.5

We see that there are characteristic lengths p~
= (2xyD)' ' and pq= (2x~C)' ' associated with the
longitudinal and transverse directions. Similar quan-
tities can be defined for the x direction.

When D = ~ and C & 0 (an incipient ferroelectric
obeying the ice rules), we have

X=0.50 D=~ C=l

(c)

2

x (q)=x,' q„'+ (xy/x„) qy'+ 2' Cq'
(29)

&ov'o—

0—
I

When the product XyC is small, the q term in the
denominator is significant only at relatively large q.
But as the ferroelectric transition is approached,
Xy ~, and this term becomes progressively more
important at ever smaller q, unless C also tends to
zero in a suitable way. (C is, by construction, an un-
specified function of 5 and q alone. ) Equation (29)
shows that the regime of q space inside which Eqs.
(19a)—(19c) are valid diminishes as the ferroelectric
transformation is approached. The corresponding
real-space argument is that the large parameter in the
asymptotic expansion of the correlation function is
proportional to' (x'+ A.'y')' ', the definition of

6?O—
I

O—
I

O—
I

C)
I

-05 -04 -03 -02 -01 00 0.1 0.2 03 04 05

FIG. 3. Contours of constant Ayy(q) for three cases: (a)
D = ~, C = 0, which corresponds to the ice-rule case at
b, =0 tEq. (14c)]; (b) D finite, showing that X is no longer
singular when the ice rules are relaxed; (c) D = ~, C =1,
showing that X(q„,qy 0) peaks at q„=0 when the system is
incipiently ferroelectric (5 ) 0). In cases b and c, the sus-
ceptibility depends on ~q ~, as well as on q.
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"large separation" changes as the ferroelectric transi-
tion is approached.

Contour plots illustrating some of these cases are
shown in Figs. 3(a)—3(c). First [Fig. 3(a)], we show
the case D = ~ and C =0; all the contours are
straight lines meeting at q =0. If we relax the ice
rules, this singularity is no longer present; this is il-

lustrated in Fig. 3(b). There is not much difference
in these two cases, except very near the origin. The
explicit detection of the singularity by a measurement
of X(q ) by a scattering experiment with finite q reso-
lution is clearly a logical impossibility; the best one
can do is set limits on how far X is from being singu-
lar. Finally [Fig. 3(c)], when D = ~, C & 0, the
singularity is present, but X~ is no longer flat along
the q„axis; it falls off with increasing q„, reAecting
the free-energy cost C of polarization gradients.

We have shown that in the large-D limit, the form
of the singularity in X(q) is correct. However, it is
not clear how accurately X is given for D infinite,
C ~ 0. Consider a similar calculation for the Ising
model. We write an equation like Eq. (17) involving
the Ising pseudospin polarization and the exact bulk
Ising susceptibility, and then we phenomenologically
add a gradient term. (There is no distinction
between longitudinal and transverse. ) This will lead
to a Lorentzian form for X(q), which is an excellent
approximation for many purposes. '6 However, X(q)
is not strictly Lorentzian; the deviation from
Lorentzian behavior is expressed by the critical ex-
ponent g. '6 Thus, by analogy, we expect Eq. (24) to
be a useful approximation, but we anticipate that the
form of X may differ when C A 0 or D is finite.

D. 3D ice-rule modeis

We have seen that, in 2D, the form X(q) is deter-
mined by the ice rule, 0 P =0. This suggests that
the analysis of Sec. II B can be carried over to 3D
ice-rule models as well. Consider, for example, a
material with uniaxial symmetry [hexagonal ice or
KDP (potassium dihydrogen phosphate) would serve
as physical examples). Then, in place of Eq. (17), we

write

P„'(q) +P,'(q) P,'(q)
0

Xa Xc

—P(q) E(q)+ (30)

and once again solve for X ~(q), a,P = (x,y,z), sub-

ject to the constraint 0 P = i q P (q) =0. After
some simple algebra, one finds that X (q) is diagonal
in a system with basis vectors (e~~, eq, e, ), where e~~

is along r[, e, is perpendicular to g and to the unique
c axis, and eq(q ) is perpendicular to q, but in the
plane defined by q and the c axis. In this system,

the equations analogous to Eqs. (15a)—(15c) are

xg(q) =0, (31a)

xg(q) = 1

X, ' sin 8+ X,' cos 0
x, (r[) = x. ,

(31b)

(31c)

2 + 2

x„(-)=
(q„'+qy')x, '+q, 'x. ' (32)

Obviously, it is also possible to extend the discussion
in 3D to include ice-rule violations as in Sec. III C,
with similar results. In particular, X(q ) is no longer

singular at q =0 when D is finite.
Villain, "by summing diagrammatic expansions of

the correlation function, predicted a singularity of
this kind in 3D ice, and neutron scattering measure-
ments were consistent with that prediction. ' Scatter-

ing having this dipolar form was also observed in

KDP. ' Originally, this was attributed to long-ranged
electrostatic dipolar interactions; but more recently,
Havlin et al. ' suggested that the anisotropic short-
ranged interactions between the hydrogen bonds
could be responsible. Equations (24a) —(24c) and

Fig. 3 confirm this in a direct way. For finite D, one
calculates scattering which resembles a dipolar pattern
in its anisotropy, in qualitative agreement with obser-
vations.

III. SUMMARY

We have shown by direct Fourier transformation of
the polarization correlation function that the wavc-
vector-dependent susceptibility tensor of 2D six-
vertex systems in the paraelectric regime (—1

6 ( 1) at small q has a single nonvanishing com-
ponent

x~(q) =2mpA
)q„2+X 'q~'

The fluctuating component of P (q ) is strictly

transverse to q. This follows directly from the ice-
rule conservation law 0 P =0. The dependences of
A and A, on the vertex ~eights have been deduced by
estabiishing the relation between X(q A 0) and the
macroscopic uniform susceptibility, which was non-
trivial because of the singularity. The results are

A (I)= (n cos 'b ) ',
1+sinz

cosz

with z defined in Eq. (7).

where 0 is the angle between q and c. That is, the
components of X(q) lying in the q-c plane. behave as
for the 2D case, while the third component, X, (q), is

not singular. In terms of Cartesian coordinates along
principal crystal axes, we have, for example,
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We have phenomenologically considered coupling
terms corresponding to ice-rule violations and short-
ranged forces. There is a characteristic length associ-
ated with each of these coupling constants. When
ice-rule violations are allo~ed, the singular behavior
of q =0 is relaxed, and X(q ) is then well defined at

q =0. 3D ice-rule systems can be discussed in a
similar way.
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