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We present a Langer-Cahn-Hilliard-like theory of some aspects of nucleation for two tricritical

systems: the symmetric scalar metamagnet ind He-4He mixtures. In particular, we calcul;ite

the work of formation for a tricritical droplet and the imaginary part of the free energy issociat-

ed with the metastable state. In addition we obtain an explicit expression for the interf;ice ten-

sion whose critical exponent agrees with earlier phenomenological predictions. We find that the

scaling form for the work of formation exhibits a universality with respect to critic il and tricriti-

cal points. In addition, we find that the singularity on the coexistence curve' for the metam;ignet

and on the superfluid side of 3He-4He is of the same functional form is for Ising-like systems.
However, the singularity is different on the normal side of the 3He-4He coexistence curve, due

to the role of the phase variable of the complex superfluid order parameter.

I. INTRODUCTION

In this paper we discuss some aspects of the meta-
stable states and associated nucleation phenomena for
symmetrical tricritical systems. Our motivation is in

part based on the existence of experimental studies
of tricritical nucleation in 'He-"He mixtures' and Fe-
Al alloys, ' for which no satisfactory theory yet exists.
In addition, a recent analysis of the essential singu-
larity at a first-order phase transition of critical sys-
tems indicates a universality of this singularity which
one. might also expect to hold for at least some
symmetrical tricritical systems with the symmetry
characteristic of Ising-like systems. We therefore
present here a Langer-Cahn-Hilliard (LCH)-like
theory4 6 of metastability for models of two tricritical
systems: the symmetric scalar metamagnet and
'He- He mixtures. Our analysis primarily deals with
three dimensions, but some results are also given in

d dimensions. Our work allows us to extend the no-
tion of the universality of the essential singularity as-
sociated with a first-order phase transition to include
these tricritical as well as Ising-like critical systems.
Namely, we f&nd that the functional form of the
essential singularity in the free energy on the coex-
istence curve is the same for the metamagnet and the
superfluid phase of 'He- He as for the Ising systems.
However, the singularity is different on the normal
side of the 'He- He coexistence curve, due to the
role of the phase variable. In addition, we obtain the
dominant part of the contribution to the nucleation
rate of these tricritical systems near the coexistence
curve, although we do not calculate the so-called
dynamical prefactor' which also contributes to the
nucleation rate. Until a calculation of the dynamical

prefactor is carried out, however, a detailed compari-
son of theory and experiment for nucleation is not
possible. Since this dynamical prefactor varies from
system to system (i.e., it is different for 'He-4He than
for a metamagnet, say), we leave its calculation for a
later study.

Our analysis is based on a Ginzburg-Landau Ham-
iltonian for tricritical systems which involves a non-
conserved order parameter 0 {such as the sublattice
magnetization for an Ising-like metamagnet or the
superfluid order parameter for 3He- He) and a con-
served "subsidiary" variable c (such as the magneti-
zation of the metamagnet or the concentration of
'He) which undergoes phase separation below the tri-
critical point. Although we do not present a dynami-
cal theory of nucleation here, it should be noted that
our model should be a good starting point for such a
calculation and has been used in earlier studies of tri-
critical dynamics. ' The fact that the Hamiltonian
contains two variables leads to an interesting and
complicated set of coupled equations for the rnean-
field saddle-point analysis which the LCH theory in-

volves. Although the results of our approximate
solution are given in the text, it is worthwhile sum-
marizing here the physical picture which emerges
from the analysis. To begin with, we first recall that
the LCH approach is a spatial generalization of the
classical droplet theory of nucleation. That is, the or-
der parameter for a critical droplet which is assumed
to produce the nucleation of a metastable state varies
from its stable value at the center of the droplet to its
metastable value in the homogeneous background in

which it is embedded. The main spatial variation
takes place in the region of the interface profile
whose thickness is proportional to the equilibrium
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correlation length. The interesting feature of many
tricritical models is that there are two variables, 4
and c, which are dynamically coupled. The earlier
phenomenological theories' ' of the surface tension
for symmetrical tricritical systems are based on the
assumption that there is only one correlation length
and one interfacial tension for such systems. Our
analysis substantiates this picture. Since we are pri-
marily concerned with 'He- He and metamagnet
models in this paper (and not multicomponent
fluids"), we summarize our results using the Ising
model of a metamagnet as an example. We find
from our approximate solution of the saddle-point
equations for the order parameter 4 and magnetiza-
tion c that a tricritical nucleating droplet of a meta-
stable, ordered phase, say, can be described either in
terms. of the spatial variation of 4 or of c. Thus the
tricritical droplet for the-above case has a disordered
phase value of zero for the order parameter at its
center which changes to its ordered phase value over
an interface width proportional to the correlation
length. Since- we find that the saddle-point solution
for c can be given in terms of the saddle-point solu-
tion for P to lowest order by a local version of the
equilibrium solution, we can equally well describe the
tricritical droplet by saying that the magnetization
varies from its zero value at the center to its ordered
phase value which the background has.

Another result of our analysis is concerned with
the nature of the singularity in the free energy on the
tricritical coexistence curve. Here it is important to
note the difference in the basic symmetries of the
two models considered. The scalar metamagnet has
the same reflection symmetry as the Ising ferromag-
net, whereas the 'He- He model has the well-known
invariance under a gauge transformation. We find
that the singularity for the tricritical metamagnet has
the same functional form as that predicted earlier for
the Ising ferromagnet. However for the 'He-"He tri-
critical system, the situation is somewhat different.
The singularity on the superfluid side of the coex-
istence curve is of the same form as for the
metamagnet, but is modified on the normal side due
to the effect of phase fluctuations. However, the
work of formation of the critical droplet which enters
the expression for the imaginary part of the free en-
ergy has a universal form for' both Ising-like critical
systems and these tricritical models.

We should also note that although our analysis is
mean-field-like, certain of our results for the three
dimensional case should be valid, up to logarithmic
corrections, in the tricritical region. This of course is
due to the fact that the borderline dimensionality
above which mean-field predictions for exponents are
valid is 3 for tricritical systems. The earlier analysis
of critical systems does not give correct critical ex-
ponents, due to the fact that the borderline dimen-
sion is 4 in this case.

The outline of our paper is as follows: In Sec. II
we define the models and summarize some relevant
predictions of mean-field theory for the tricritical re-
gion. We also discuss what metastability is for this
model and note that there are two types of possible
metastable behavior. One corresponds to a field con-
jugate to the order parameter %' which is usually not
experimentally accessible (in contrast to the critical
case). The other corresponds to the field (e.g. , the
magnetic field) conjugate to the variable c (e.g. , the
magnetization). It is this type of metastability which
we analyze in this paper, as it is of greater experi-
mental relevance. Section III contains a calculation
of the work of formation of the tricritical droplet,
which involves a solution of the coupled saddle-point
equations for + and c. We solve these equations by

analyzing an equivalent problem in which the
saddle-point equation for V is given in terms of an
effective Hamiltonian for %" which results from ex-
actly integrating out c in the original Boltzmann fac-
tor. This yields a nonlocal kernel in addition to the
usual Ginzburg-Landau terms. We develop a pertur-
bation solution to handle this nonlocality in which
the zeroth-order effective Hamiltonian is of a Riedel-
Wegner-type, ' i.e., a sixth-order polynomial in O.
The perturbation scheme is essentially an expansion
in powers of the inverse correlation length. To
lowest order we find a critical droplet solution dis-
cussed above. There is an associated bulk and inter-
face surface energy. The latter yields a surface ten-
sion which agrees with an earlier phenomenological
theory for the surface-tension exponent, 9 but con-
tains as well a correction term to the leading singular-

ity, evaluated in Appendix A. A general scaling
theory for the activation energy is also given for the
d-dimensional case. In Sec. IV we calculate the imag-
inary part of the free energy for the metamagnet.
This corresponds to the continuation of the stable
free energy across the coexistence curve. This calcu-
lation follows the earlier analysis of Langer4 and of
Gunther et at. , as discussed above and leads to an
explicit prediction for the essential singularity in d-

dimensions for this tricritical model. In Sec. V- we
extend this analysis to the He- He model, where one
has to deal with fluctuations of both the amplitude
and the phase of the complex order parameter. In
Sec. VI we present some brief concluding remarks.
In Appendix A an analysis of the correction terms for
the surface tension is presented. Appendix 8 con-
tains some mathematical details concerning the eigen-
value problems appearing in Secs. IV and V.

II. METASTABILITY IN A TRICRITICAL MODEL

A. Mean-field statics

As a model for symmetrical tricritical systems ex-
plicit enough to study dynamical problems we consid-
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er the Hamiltonian used in earlier studies of tricritical
dynamics '

H [W,c]= Ji d7[-,' )9%'(x))'+-,' I(~) [Oc(x)1'

for the disordered phase, and

(2.10)

(2.1 I)
+f [O(x),c(x) j ) (2.1)

I+I'+ul+I'+ I+I'+ —,'x„' '

+pc(e(' —ac . (2.2)

The variabie 4( x ) is the order parameter (the one
associated to the order-disorder second-order phase
transition) and c(x) is a subsidiary order parameter
which is a conserved variable and undergoes phase
separation below the tricritical point. For simplicity r,
u, e, X„, and y arc considered to depend only on the
temperature and 5 is the field conjugate to e. For a
metamagnet %' is a real scalar order parameter, the
sublattice magnetization, e the magnetization, and 5
the applied magnetic field. For a He- He mixture,
4 is the complex superfluid order parameter, c is the
local concentration of 3He, and 5 is the difference in

chemical potential of the two species up to an addi-

tive constant.
The mean-field statics of this model has been dis-

cussed by many authors. '3'4 %e summarize the main

results of this analysis in the following, as it is need-
ed in our treatment of the nucleation problem. The
properties of homogeneous equilibrium states only

depend on the amplitude of the complex order
parameter for 3He-4He mixtures. Thc symbol 4' will

then stand in the remainder of this section either for
the real order parameter of the metamagnct or for
thc amplitude of the complex supcrfluid order param-
eter.

There exists a A. line corresponding to second-order
phase transitions for

r =-r +2hyX„=O,

c = x„(h —y%'), (2.1 3)

f(%') =-I'p2+uO +uWp ——x 5 (2.14)

and 5 = hp. From Eq. (2.6) we have that u —e
where a - (T, —T )/T, so that

(2.15)

(c„—cg )

(2.18)

These and thc following exponents are thc well-

known mean-field trieritical exponents. '2'~ ' (ln
general we shall follow Griffiths's notation. ' ) The
correlation length in the disordered phase is given by

' -1/2
—[/2=r0

2
'-I/2

u

(2.19)

c =c, ~x„(hp —y% 2)

for the ordered phases. The values of 4 correspond
to the three minima of the effective density .f(%')
obtained from f( P,c ) by setting c eqgal to its
minimum value as a function of 0'

I
u -=u ——y X„&0 .

2

The tricritical point is characterized by

and the line of first-order transitions occurs for

u &0
2

r ro=-
2U

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.21)

The c variable susceptibility" in the disordered
phase is the parameter X„ in the original Hamilton-
ian, awhile in the ordered phase,

u+ [ui
'

X, =x„ 1+2—

This last equation fixes the value of 5 ho for
which, for example in the metamagnet, the ordered
phases of opposite symmetry and the disordered phase
coexist. The equilibrium values of 4 and e are given
by the degenerate minima of,f ("P,c ):

0, (2.9)

The fact that X„remains finite on the disordered
branch of the coexistence curve is an artifact of the
mean-field approximation. A renormalization group
analysis shows that the true e variable susceptibility
has the same divergence, y„= 1, on both sides of the
coexistence curve. '2
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B. Mean-field analysis of metastability

0 =%„=0,
—4u + (16u —24vr )'I'

12m

(2.24)

(2.25)

We thus have five different regions summarized in

Fig. I: (I) u & 0, F & 0; u & 0, F & F
~

= 2u /3v is

In a description of a system in terms of fields
(Gibbs free energy) metastable states associated with
a first-order phase transition can exist for values of
the fields between their coexistence and spinodal
values for a given temperature. In our problem we
have in principle two different kinds of metastability
related to the two available fields: The field H, con-
jugate to 0 and the field lL conjugate to c. Coex-
istence of phases occur for 0, =0 and b = 50. Meta-
stable states for H, ~0 and 5=50 are associated
with a "cascade" of local minima of f(p). This
kind of metastability is the mathematical analog of
the one studied in critical systems, in which only the
field conjugate to the order parameter exists. Since
H, . cannot usually be controlled experimentally we
shall not discuss these metastable states; rather, we
shall focus on those which originate for b, & 50 and
H, =0. These states are associated to the nonabso-
lute minima of f(%,c). These minima can be
analyzed by means off(%') (with r ,A ro). The value
of c at the minima is then given by Eq. (2.13) with 4
replaced by its corresponding value at the minima of
f(4). The extrema of f(P) are located at

the disordered stable phase. (11) F & 0, is the or-
dered stable phases with 4'= (%'+)'. (111) u & 0,
r =F0 is the coexistence line discussed above. Note
that 4,'= (4+)'. (IV) u & 0, 0 & r &F 0 represents
the metastable disorderd phase and stable ordered
phases with 4'= (4+)'. (V) u & 0, Fo &F &F

~

represents the stable disordered phase and metastable
ordered phases with 4'= (4'+)'. Later on we shall
use the notation +h and c~ for the values of I and c
in regions IV and V, so that (Va)'-%'
= 4, = 0, cP = X„[lL—y(VP)'j, and cP = X„E. The
values of 5 at I = r ~ and F = 0 fix, respectively, the
two limits of metastability or spinodal values h~ and
Ap or lL:

1 2 u5) = ———I'

2yx„3 v
(2.26)

I'

2VXn
(2.27)

(a)

In terms of b, the five regions are characterized by
(I) 5 & h„(II) d & 5,, (111) 5 = 5,, (IV) 5& & 5
& dp, (V) 5, & g & &0.

From this discussion we can obtain the stable, me-
tastable, and unstable branches of '0 with respect to
h, These are shown in Fig. 2 by plotting 5 as a func-
tion of 4' from 8p(%')/1)% =0. Figure 2(a) corre-
sponds to an isotherm below the tricritical tempera-

HV

fo

~I~0
~ ~ 0

~ ~
~ ~

~ ~
~ ~

h~ ~, ho
~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~

rr

hi

(b)

FIG. 1. Form of p(O) in the different regions of the I, u

plane. The dashed line at fixed u ( 0 corresponds to the
isotherm of Fig. 2(a). For 3He-4He mixtures the well struc-
ture displayed corresponds to a cross section of fixed phase
of the complex order parameter. The same is true for
Fig. 2.

FIG, 2. Full lines represent stable states, dashed lines
metastable states, and dotted lines unstable states. The
4 =0 line corresponds to disordered states. (a) Isotherm
below T, (u ( 0); (b) isotherm above T, (u & 0).
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ture T, . As we approach T, (u =0) the values of hq,
5, , h, 2 approach the tricritical value 6,, fixed by F =0
and T = T, . Figure 2(b) corresponds to an isotherm
above T, (u )0). The bifurcation value d2 goes to
5, as we approach T, from above. The equation of
state giving the branches of c with respect to 5 can
be constructed from Fig. 2 and Eq. (2.13).

In the remainder of this paper we shall discuss
some features of the decay' of the metastablc states in

regions IV and V for smali deviations (55) =d —b,o.
%e shall develop a LCH' ~ type of theory which is

meant to be valid for near-equilibrium situations and
which is based in part on equilibrium concepts. In
particular we are using a description in terms of thc
fields T, d whereas thc experimental situation often
corresponds to a description in terms of T and c,
since the variable c is kept constant. '7 No Legendre
transformation exists between these two descriptions
in the nonequilibrium situation, but they can be ap-
proximately related near equilibrium (see Sec. III E).
Experimentally we can envisage three different
quenches that bring the system to a nonstable state
(Fig. 3). Quenches I and 2 correspond, respectively,
to bringing the system to the ordered and disordered
metastable states discussed above and sho~n in Fig.
2(a). Quench 3 brings the system to a disordered
unstable situation. In thc very carly stages of the
process the system will presumably decay to a meta-
stable ordered state analogous to the one correspond-
ing to quench 1. This decay will occur in a short
time scale in which the nonconservcd order parame-
ter 0 relaxes from 4„ to 0",~ while thc conserved c
remains constant with c = c,. This early time dynam-
ical process is beyond the framework of the present
near-equilibrium theory, but the real decay of this
metastable state by a nucleation process occurs in a
later time scale and corresponds to the description we

present for thc ordered metastable state. Moreover
the nucleation process wc describe for the three

quenches is a local one and the role played by the
global conservation of c, which drives the system to a
coexistence final state, would appear in B later stage
of droplet growth and coagulation. '2'"

III. CWORK OF FORMATION OF THE
CRITICAI. DROPLET

It is our aim to describe nucleation for a tricritical
system in terms of a "classical" droplet picture. 6 In
this picture of nucleation a key quantity to be dis-
cussed is the work of formation of the critical droplet
nucleating the stable phase. This is given by the ex-
tfcma of

aH =e[q (x),c(x)]—0[q',c'], (3.1)

A. DropIet configuration

As a first step we have to identify the droplet con-
figuration [q"( x ),c ( x ) ]. This is associated with a
saddle point of thc Hamlltonian BAd is given by thc
solution of the saddle-point equations

where [W,c ] represent the homogeneous meta-
stable state discussed in Sec. II in which we have
prepared the system and [%(x),c(x) ] is the droplet
configuration. For a metastable ordered state, with
('Pa)'= (p, )', c = ca, Eq. (3.1) can be written as

aH = {@[ca,cp] —H [q p, c,a] }

+ {H [0"( x ),c ( x ) ] —H [4'a, cP ] } . (3.2)

The first bracket is associated with the bulk energy of
the droplet and the second one with the interface en-
ergy. %C discuss in the following the different in-

gredients of this expression. For simplicity we only
consider in this section a real order parameter ap-
propriate for the metamagnet and we shall show in

Sec. V that our results also apply to 3Hc-4HC mix-
tures.

l.C.,

0=9 0'(x) —r%'(x) —4u+ (x)
—6m+ (x) —2yc(x)q (x) (3.3)

0 = io 9 e ( x ) —X„'c( x ) —y'P ( x ) +5, (3.4)

with the boundary conditions (r = { x {)

FIG. 3. Phase diagram of the system: (I) disordered

states, (II) ordered states, (III} region of coexistence of
phases. The dashed lines represent the spinodals. Three
different quenches are shown.

% (x) —%2, %(x) —0, — —0,
f ~co r~0 df r~0

C +DO

c(x) c„ c(x) c„, — 0 .dc
p~ao I ~0 jjff r ~0

(3.5)

(3.6)
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A solution with spherical symmetry of Eqs.
(3.3)—(3.6) represents a droplet of disordered phase
being nucleated in a homogeneous metastable phase
near the ordered side of the coexistence curve. One
way to analyze these equations is to consider an
equivalent equation for W(x) in which the coupling
with c (x) is absent. Such an equation determines
the saddle point of the effective Hamiltonian H [%']
defined by

e "'~'= Jt Dc(x)e "'~" (3.7)

H[+]=~ dx —,
' [0+(x)]'+-,'r%'(x)

+e'(x) Jtdx'u(x —x')0'(x')

+u4 (x) ——4 X„ (3.8)

Since the Hamiltonian H [V,c] is quadratic in e (x ),
a straightforward integration of c(x) can be done
and we obtain

( z exp(-Ix —x'I/X' '/ )
Go(jx x I) = '

Ix —x'I
(3.10)

An exact solution of the saddle point of the nonlocal
H [Vl is at least as difficult as solving Eqs. (3.3)
—(3.6). Nevertheless we shall argue that near the tri-
critical region 6 is a rapidly decayirig function so
that a systematic expansion of the nonlocal term can
be performed. To see this more clearly we introduce
dimensionless variables

m(x) =O(x)/0,

z=g 'x

(3.11)

(3.12)

Furthermore we shall fix the value of b, = b,o for
which phase coexistence is possible and thus accord-
ing to Eq. (2.19), r = g z. In these circumstances

where r is defined in Eq. (2.3) and the nonlocal ker-
nel u(x —x') is given'by

u ( x —x') = u 8( x —x') ——,y'G'(
I x —x'I ), (3.9)

1

H[m]= J~ dz [0m(z)] +m (z)+ — m4(z)+m (z)
2 2v 2v

2I —2 3

m ( z ) JI d z' Go(j z —z'I ) m ( z') —X„$3hozJ2v
21P

exp( —
I z —z'I/g )

G jz —z'
4rr

I z —z'I

g X 1/2( /g

(3.1 3)

(3.14)

(3.15)

Sufficiently near T, we can assume that g (( 1 and expand m'(z') in a Taylor series around z'= z in the nonlo-
cal term of Eq. (3.13). Keeping the first two terms in this expansion we get to order g4:

Il[m) =
&

dz [Vm(z)]'+m (zz) —2m4(z)+m6(z)+ [Omz(z)]' —X„('lho~~2t/ . (3.16)
2 2Q 2tp

The quartic term comes from the m4 term in Eq.
(3.13) and from the first term of the expansion. It
contains the main contribution of the nonlocal term
and it is negative, corresponding to being in the coex-
istence region. %e note that if one neglects the
(Vmz)z term's Eq. (3.16) reduces to the Hamiltonian
used to study the statics of a ternary fluid mixture
with symmetrical tricritical point. " The saddle point
corresponding to Eq. (3.16) is determined by

2ug

=m(z) —4m (z)+3m (z) . (3.17)
~2 2If the m V m term can be neglected, the solution of

the one-dimensional version of Eq. (3.17) ("surface

profile" problem) is known to be'9

m 0(z) = —,
' (1+tanhz ) (3.18)

where we have written m = mo+ m ~, m ~ being the~ 2
correction arising from the m V m term. This one-
dimensional solution allows us to evaluate the surface
tension of the droplet in the limit of a very large ra-
dius. It is worth noticing at this point that both Eq.
(3.17) and our solution (3.18) preserves the basic
symmetry of the Hamiltonian (4 —%') and that all

our subsequent results are always expressed in terms
of 'O2. The two values + 4, represent two phases
with the same thermodynamic properties that could
only be distinguished by applying a field H, . Preserv-
ing this symmetry means that we are in fact studying
nucleation processes related to the two different ther-
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modynamic phases: ordered phase characterized by

%,2 and disordered phase (4' = 0).
An approximate solution for c(x) is obtained by

comparing Eq. (3.3) [rewritten for m(z)] with Eq.
(3.17)

the one dimensional version of Eqs. (3.3)—(3.6).
Under these circumstances it is easily seen by a for-
mal integration of Eqs. (3.3)—(3.6) that

f(%'(x),e(x)) = —' io —+-
dx 2 dx

(3.19) (3.26)

To check the consistency of this result we substitute
Eq. (3.19) into Eq. (3.4). The latter equation is then
satisfied if

and thus the interfacial tension becomes

(3.20)
foo

(F = ' dx
& -eo

d%" +I2 dc
dx dx

(3.27)

Since the coefficient of the left-hand side of Eq.
(3.20) is g4, we see that our solution (3.19) is valid

to order g . Similarly, to first approximation c and 4
are related by the same expression as in equilibrium,
i.e., Eq. (3.19) reduces to

(3.21)

B. Bulk energy

The bulk energy density can be evaluated in terms
of the effective density j(O)

The main contribution to cr comes from the solution
(3.18) which results in the value

a =0, /4g (3.28)

Corrections to this result arising from m] and the c
solution (3.19) are discussed in Appendix A.

Equation (3.28) gives a prediction for the surface
tension of a symmetrical tricritical system in agree- .

ment with the scaling law9 derived on phenomenolog-
ical grounds8-]o and experimentally checked'

Since we are interested in the region near the coex-
istence curve we calculate j(%p) to first order in 85.
This means that we approximate

P =Fo+2yX„(56) (3.23)

in both the expression for p and 9',~. To first order

(3.24)

= —(c„—c, )(86) . (3.25)

Therefore we have obtained the classical result for
the bulk energy of a droplet characterized by the sub-

sidiary order parameter in a phase separation below a
critical point. 6

C. Surface energy

The interfacial tension is calculated under the two

approximations normally made in the analysis of criti-
cal systems. First we fix 5 to its coexistence region

do, second, we consider a very large droplet so that
we can work with a planar interface characterized by

o. —A a (1+8&) (3.30)

with an undetermined amplitude B.
It is worth noting that our calculation for o. follows

closely that of Langer" for a critical system. He also
finds that a is proportional to the ratio of the square
of the order parameter to the correlation length.
Nevertheless as he implicitly notes, his result @,= —,

does not hold near the critical point since it follows
from a mean-field calculation in d =3, while our
result for p, is fortunately presumably close to correct
due to the fact that d =3 is the border dimensionality
for tricritical systems.

for d =3, p„= 1, and p, =2. Equation (3.28) gives
the same exponent since we have seen in the second
section that 4, —a'~' and g

—a '. lt should be noted
that Eq. (3.28) is an expression for o (including the
ampiitude) in terms of the order parameter of the
problem. It represents an explicit derivation based
on the model Hamiltonian Eqs. (2.1) and (2.2) and
on the droplet picture. The earlier phenomenological
argument9 ' relies on the existence of a single corre-
lation length and applying the scaling law Eq. (3.29)
derived for a critical system. In our derivation the
natural variable is the order parameter whereas in the
phenomenological theory it is the subsidiary variable
c. The first-order correction to Eq. (3.29) worked
out in Appendix A gives
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D. Critical radius and activation energy way to d dimensions. In this case we will have

For a spherical droplet of radius R, the activation
energy that foilows from Eqs. (3.2), (3.25), and
(3.28) is

ae =--", ~~'(8~) q, 2yx„+~~2q 2/g . (3.31)

Thc cxtrcfnum of AH occurs at thc critical radius

2a +s'

(W) (c„-c,) 2$(83 ){c„-c,)

= [2gyX„(sw) ]-'=, (3.32)
2 22)7 x„sh

I6m a
3 (W )'(c„—c, )'

@6

» g'i(8&)(..—;)1'

w"'(d —1)'-'
5H, =

I (-(d+I) l(c. —c, )(W)ld '

&d/2(y 1)d-l

I'{—,
' d +1)

which in terms of the original parameters of the
theory is

~d/2(1 d )d-I -3-d
Q

2(5d+2)/21 ( l
d + I ) l)(4—d)/2 vyX„(8&)

2.

~d/2 &d+( ( I d )d-l

2(5d+2)/2I (
l

d +1) 2)"-d)/2 l)yX„(85)
2

(3.37)

(3.38)

The first expressions for both R, and hH, are just
the classical results for a droplet described as a fluc-
tuation in the c variable. 6 This just sho~s the validity

of the intuitive droplet picture of nudeation, which is

independent of our model of the system in terms of
the order parameter 0" and the subsidiary variable e.
The equivalent expressions of R, and hH, which will

bc used later OA, arc obtained by substituting Eg.
(3.28) and using the relations (2.10), (2.12), and

(2.19).
Our approximation for 0 restricts us to a region in

which

(3.34)

which according to Eq. (3.32) is

(3.40)

(3.41)

we can write Eq. (3.37) as

hH, =
I'( —,1+1)4d

', d-I
N Q

(ac,)d-', (8&),

This expression for AH, will bc used in thc Acxt sec-
tion.

Using the exponents introduced in, Sec. II and de-
fining unknown amplitudes by

q,'=(q,2),a ',

{86)«(2yx„g') ' . (3.35)
(3.42)

This is consistent with our approximation for the
bulk energy since we have evaluated (q)'a)2 to first
order in the parameter yX„$2(86).

2p, +2„={d—1)l „„
d&u PN=Pusu . —

(3.43)

(3.44)

E. Scaling form of the activat&on energy

riting Eq. (3.33) in terms of the original parame-
ters of the theory and recalling from Eq. (2.6) that
M = pf, wc have

(3.36)

This result can be generalized in a straightforward

For d =, 3, P„=1, 8„=2 (Refs. 12, 15, and 16) and
we recover the scaling form Eq. (3.36) which we de-
duced from our model. It is interesting to remark
that Eq. (3.42) has the same scaiing form as for an
ordinary critical system with the appropriate choice of
exponents p„and 8„. This result should become ob-
vious from the first equality in Eq. (3.37) once that it
has been show'n that the exponent wc obtain for a-

colncldes wltll (t4 = (d —I )v„. It ls also woftll notic-
ing that Eqs. (3.36) and (3.42) are valid as well for
metastable states near the disordered side of the
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coexistence curve in which an ordered droplet will

nucleate the ordered stable phase out of the meta-
stable disordered phase.

Experimental results for fluids are not given in
terms of (Sh) but in terms of (ST) = T —T„,„. By
the usual argument, " "near the coexistence curve
we shall relate linearly these two quantities. For
quenches near the ordered side of the coexistence
curve (metastable ordered phase),

earlier the normal susceptibility X„has the same ex-
ponent y„although this does not come out of the
mean-field analysis of our starting model.

IV. IMAGINARY PART OF THE FREE ENERGY
FOR THE METAMAGNET

(3.45) The nucleation rate is thought to have the general
form'"

According to Eqs. (2.22) and (2.23) we write,

x, =(x, )oa
"" (3.46)

1 =—ImF
7r

(4.1)

The quantity Bc,/r)T is evaluated from

cg —cg
——(theo) t&u (3.47)

where F represents the free energy density of the rne-

tastable state. Equation (4.1) can also be written as

(4.2)

where c, is the tricritical value of c. We then have

(x, )oT,
X

p. (~co)' (sT)

and Eq. (3.42) becomes

rr '(1 —. d)~ ' (%,')
AHc =

1'( —,d + 1)4',
' d-1

(3.48)

(3.49)
i fmF —Z)/Zo (4.3)

From a numerical point of view the dominant factor
is the exponential of the activation energy calculated
in the previous section. In this section we calculate
the statistical prefactor Op. in d dimensions, therefore
completing the calculation of the imaginary part of
the free energy for the metamagnet. The dynamical
prefactor K will not be discussed. For a general Ham-
iltonian which depends on a set of variables
g(x) = [rl~(x), . . . , g~(x) } one can write '

where we have used

(3.50)

An analogous expression holds for metastable states
near the disordered side of the coexistence curve. In
this case. one has to use X„ instead of X, . As noted

where Z] and Zp are, respectively, the main contribu-
tions to the partition function Z at the droplet config-
uration r)q(x) and metastable state 7)o(x), where

Z = ~t D r) ( x ) exp [ H[ r) ( x ) ] } . — (4.4)

A saddle-point integration for Z] and Zp gives

i ImF—
exp[ —H[gq(x)] } J~ Dr) exp[ ——,

'
(g —r)q);Mo(q —q„),. ]

r~

exp( H[go( x) ] }„Dr) ex—p[ ——,
'

(r) —go);M;, (q —r)o), ]
(4.5)

=ie 4"Op, (4.6)

where

1/2
detMp

detM,
(4.7)

(4.8)

V is the volume in q space coming from the func-
tional integration of the eigenfunctions corresponding

to the possible vanishing eigenvalue of Mp and M,
which are excluded in (detMo) and (detM). The
factor V contains the contribution of the vanishing
eigenvalues corresponding to the translational modes
of the droplet and (detM ) contains the negative
eigenvalue associated with the droplet instability giv-

ing rise to the formation of a new phase. This is the
eigenvalue which introduces the imaginary part of F.

The interest in the calculation of IrnF arises be-
cause of the information it gives about the singularity
at the coexistence curve. Therefore we can work in

the limit of vanishing field and substitute qp by its
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equilibrium value in the calculation of Oo. In our
case this means that we can work in the limit
(55) 0 and we will evaluate the eigenvalues enter-
ing Oo from the zeroth-order approximation to the
Hamiltonian Eq. . (3.16) which was obtained for
5 = Ao. This Hamiltonian reads in the original vari-
ables

r

H[%']=„I dx —,
' [OO(x)]'+" qr'(x)+uO"(x)

d P(r)/dr is an eigenfunction of Eq. (4.5) for / =1
(with degeneracy d) and vanishing eigenvalue. These
modes are naturally associated with the translational
modes of the droplet and are contained in thc factor
'Qwhich is proportional to the volume V of the sys-
tern' '

(4.16)
d/2

J= —
J~ dx['7%'(r)]2 =(/tH, )~/' . (4.17)

+ vq'(x) ——,
'
X„h,' (4.9) Recailing Eq. (3.38)

Our calculation follows closely the one of Gunther,
Nicole, and Wallace for Ising-like systems: for the
Hamiltonian Eq. (4.9)

s'H[q ] A 2

sq '(x)
=—0 + +12u%"+30vqr' . (4.10)

2v

(4.11)

Considering the ordered state to be metastable, Mo is
given by Eq. (4.10) with V' substituted by (V~)2. ln
the limit we are interested in of (M ) 0, %P =4', .
The eigenvalues of Mo are then given by

'd/2 '

u
~(4-d)/2

' (d-1)d/22
u

uyx„(sh),
(4.18)

The evaluation of the term (detM) in Eq. (4.7) re-
quires the knowledge of the nonvanishing A.„l of Eq.
(4.15). Since we are concerned with bound states
that have to be localized near R, and we have as-
sumed a large critical radius, an approximate analysis
of the spectrum can be made4 by neglecting the
(d —1)/r and i(/+ d —2)/r' terms in Eq. (4.15) and
taking for V(r) the expression (3.18) with the inter-
face at r =R,

In the infrared limit

2

=4/2u
5'

(4.12)

r

+ (r) = 1+tanh
4v

(4.19)

For a disordered metastable state

(4.13)

This leads to the following one dimensional
Schrodinger-like equation with highly asymmetrical
potential:

The operator M is obtained from Eq. (4.10) by sub-
stituting "(II by a spherical symmetrical saddle point 4
of H which would satisfy

d%(r ) d —1 d% (r)
dr r dr

+ " T(r) + "
q (r) + ", q '(r) = 0 .

u u

(4.14)
The eigenvalues of M are then determined by a
Schrodinger-like equation whose radial part becomes

d —1 /(/+d —2)
dr2 r r2

u 5 3 r ~c+ ——+—tanh
dr2 2v

I
4 2

2r —Rc+ tanh' '
t (r) = Zv(r)

4

(4.20)

This equation is the one appearing in the related in-

terface profile problem'~ 24 and it is discussed in Ap-
pendix B. %'e show there that the only bound state
is the one with A. = 0 discussed above. %e then argue
(following Langer4) that the main contribution to
(det M ) comes from the rotational band in the
neighborhood of X„oI ] =0. These excitations
represent deformations of the critical droplet which
have encrgies3

u u
(/ —1)(/+d —1)

OI= R2c
(4.21)

=),Iv„,(r) . (4.15)

Differentiating Eq. (4.14) it becomes obvious that

For I = I we have thc translational zero energy
modes and for I = 0 we have the negative eigenvalue
governing the droplet instability.

From Eqs. (4.7), (4.12), (4.16), and (4.21) we
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have for an ordered metastable state

g-(d+1)
i Ao=iJV, I, R,i/2

and for d =3

„l/2
ImF —V 3/4 u

uyx„(86)

' 7/3

(I —1)(I + d —1)x exp ——,
' Xal in

I 2 R,2$, 2 , (4.22) &exp constr ' ' u

vyx„(85)
(4.27)

where al is the degeneracy of the d-dimensional
spherical harmonics

r(I+d) r(i+d —2)
r(d)r(I+1) r(d)r((-1) '

and the upper limit L is given by

R 'u2L'-
'U

&u'u

chal
( I)) (4.28)

Substituting this in Eq. (4.24) and using Eqs. (3.42)
and (4.17), we obtain

Likewise we can write down the scaling form of ImF
in terms of the tricritical exponents in d dimensions.
From the second expression in Eqs. (3.32), and
(2.15)—(2.21) we have

where the approximation (4.21) breaks down. An es-
timate of the order magnitude for L comes from con-
sidering the I-dependent term in Eq. (4.15) as a per-
turbation to the remaining part of the potential which
is of order u /v, since according to Eq. (4.19)
4' —u/v. The precise value of L does not affect the
form of the essential singularity at the coexistence
curve that we wish to describe. Being in a domain in
which R, g,

' )) 1 the sum over I in Eq. (4.22) can
be calculated by using the Euler-MacLaurin formu-
la. One finally has

(d-3)d/2
-dy

ImF —e
(8I), )

and analogously in d = 3

' 7/3
3y ~ u u

ImF —e
, (8S),

l, d-l'
u u

exp const
85

(4.29)

&uu

exp const
8i),

(4.30)

I&o —iJV(, (R,g, ') 'I' exp[const(R, (-')']

(4.25)

The dominant exponential term comes from the in-

tegral approximation to the sum over I and the pre-
factor arises from logarithmic contributions in the in-

tegral and correction terms of the Euler-MacLaurin
formula. The obtained form of 00 has the same
structure and dependence as for the critical Ising
model.

From Eqs. (3.32), (4.1), (4.2), (4.12), (4.18),
(4.24), and (4.25) we finally have

l/2
" -3-d

'U uImF —V
/u uyx„(85)

' (d-3)d/2

i Qo —iJVg, ~(R,(, ') ~ exp[const(R, $, ') ']

(4.24)
and for d =3

which with the appropriate values for d =3 (v„= 1,
P„=1, 8„=2) coincide with the result (4.27) in
terms of the parameters of the model (u —e).

The results (4.26) —(4.30) aiso apply to the disor-
dered side of the coexistence curve since the only
modification needed in the above analysis is the re-
placement of g, by g in Eqs. (4.24) and (4.25).
Comparison of the form of Ao and Eqs. (4.26)
—(4.30) with the expressions' for Ising-like systems
shows a universality of the essential singularity at a
first-order phase transition. This universality for sys-
tems described by a Hamiltonian having a discrete
symmetry (%' —4) can be understood in terms of
the geometrical Hamiltonian' for the droplet defor-
mations which is independent of the critical or tricrit-
ical character, as becomes clear when using geometri-
cal quantities such as R, and g, . As we shall see in
the next section this universal singularity can be dif-
ferent for tricritical models with different symmetry
properties.

3-d 2
u ux exp const
&4 d&i,

' d-l'

(4.26)

V. IMAGINARY PART OF THE FREE ENERGY
FOR 3He-4He MIXTURES

The basic difference in the model Hamiltonian for
a 'He-"He mixture as compared with the rnetamagnet
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and the complex conjugate equation. These equa-
tions can alternatively be written in terms of the
modulus and the phase Q as

&'I q'I - I q'I ' I '- r I q'I - 4u I q I'

—6vlq I'-~el' I =O, (5.2)

~ J=0 (5.3)

~here

J = Iq I'&d (5.4)

If we consider the particular case in which $ is in-

dependent of the position x (and thus constant
across the interface) we reobtain Eq. (3.3) for I%"I,
with the same boundary conditions. As a conse-
quence, all the analysis of Sec. III remains un-

model is the complex nature of "0 which introduces
the phase as a new variable in the problem; As a
first step in the evaluation of ImF for this case we
show that the work of formation of the critical drop-
let calculated in Sec. III for the metamagnet applies
as well to ~'He-4He mixtures. That calculation was
based on the droplet configuration solution of Eqs.
(3.3) and (3.4). In this new case Eq. (3.4) remains
unchanged (where we understand %' as I%'I') while

Eq. (3.3) has to be replaced by

4u IVI -q"-6vlq
I
q"-&cq'=0

(5.1)

changed. Our particular solution corresponds to
J =0. Different boundary conditions and solutions

for $ lead to J W 0 and they would be appropriate for
studying the onset of superfiuid motion2' (or the
analogous problems of superconducting states" 29)

which is an essentially different physical problem
from the one considered here. Nevertheless we shall
allow for space-dependent phase fluctuations in the
evaluation of 00. These fluctuations are associated
with local superfluid motion which is undoubtedly
present in the nucleation process.

The basic, continuous symmetry of the Hamilton-
ian is now the invariance under a constant shift in

phase. This symmetry is preserved in Eq. (5.1) and
in the solution (3.18) for the normalized modulus of

Different values of the phase could only be dis-
tinguished by applying a field H, and, as in the
metamagnet case, the fact that our solutions only
depend on IVI means that we are studying nucleation
associated with the two different thermodynamic
phases: normal and superfluid.

The calculation of 00 follows the general formula-
tion given in Eqs. (4.5)—(4.8), where g (x) stands
now for the two independent variables 4'(x) and
4'(x). Although the results can be generalized to d
dimensions we shall restrict ourselves to d =3 since
in the other physically interesting case of d = 2 no su-
perfluid transition exists. Writing 0 for either the
droplet configuration or its metastable value and v

for the fluctuations around either of these values, the
quadratic forms in Eq. (4.5) are expressed as

5+2 5+ 2

2

= —(2u@"'+6v'O' I%'I')v + ——'0 + +4ul+I +9vl+I v" +cc. . (5.5)

A particular value of 4' is charactet'ized by its modulus and an arbitrary constant phase @«. Setting

i/0

igloo

v=«)e «=(«))+i««2)e

the arbitrary phase $«cancels out in Eq. (5.5). Upon changing variables from (c«, co') to the real functions

(co~, r«2) the functional matrix in whose eigenvalues we are interested becomes

(5.6)

2

—r7'+ u +12u Iq I'+30vlq I4
2v

—V + + 4u I e I'+ 6V I
O'I'2'

(5.7)

The problem is then reduced to the evaluation of the
eigenvalues of the operators in the diagonal elements
of the matrix. The eigenvalues associated with the
first operator will give contributions to the free ener-

gy arising from fluctuations in phase with 'P. This
operator coincides with Eq. (4.10) where no phase

freedom existed. The eigenvalues of the second
operator are associated with fluctuations —,m out of
phase with 0". These last contributions will then
modify, in principle, our results of Sec. IV by some
multiplicative factor.

Let us first look at the eigenvalue problem at the
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saddle point, or droplet configuration, when ~V ~

stands for the solution of

8H[e, q'j
5%

A. Superflufd phase metastable

The matrix Mo is given by Eq. (5.7) with 4 re-
placed by 4, . For the second operator, the eigen-
value problem becomes

—v o)p =
Acorn (5.10)

which becomes Eq. (4.14) for ~%'~ when 5 is taken
to have, as discussed above, a constant phase. The
equation for the radial part of ~~ reads

I(I +1)
df~ r df f~

12m~+" 1+ "fq ['+ "
fq [4 ~y'(r)

u u

An obvious eigenvalue is A. =O associated with cu& =
constant which should be chosen, up to normaliza-
tion, as r«q = ~V, ~. This eigenfunction has the same
meaning as the one discussed after Eq. (5.8) and it is
the bottom of a continuous band with A, = k'. This
band and the one coming from M will contribute
some irrelevant constant to 0«, while 'U in Eq. (4.16)
has to be modified to take into account the two van-
ishing eigenvalues associated to the new variable coq.

We shall have

=h, «F'(r) . (5.8)

Comparison of Eqs. (5.8) and (4.14) shows that
coq = ~V~ is an exact eigenfunction for Eq. (5.8) I and
A. =0. The existence of this eigenvalue is obviously
related to the invariance under a phase shift. In fact
writing 4= ~V~e 0, we have

(5.11)

where J' is the volume in 0' space swept out by
%'(x) when $0 goes from 0 to 2' and J" is the
analogous volume swept by 0,

'
&/&

J'=2m dxf4[' =2rrf+, f( V — rrR,')'I'—
V

8%" .
i

—
i

imp

~ o ' 1/2

J"=2m dxl'P, l' =2rrl+, f

V'I'
«V

(5.12)

(5.13)

which, according to Eq. (5.6), corresponds to
auq = ~%'~. Contrary to the translational modes dis-
cussed in Sec. IV, this eigenfunction is not localized
and represents the bottom of a continuum of states.
Since it corresponds to I = 0 no negative eigenvalue
exists in this band. The question then arises about
the existence of bound states which would necessarily
have negative eigenvalues. Such negative eigen-
values would have to be interpreted as phase instabil-
ities associated with the onset of superfluid motion
and would be of spurious nature for the problem at
hand. This question is answered following the ar-
gument of Sec. IV and considering the one dimen-
sional equation associated with Eq. (5.8):

d~ u i i r —R,2

+ ———tanh
y&2 2& 4 2

)r —R,+ —tanh' '
r«q(r) = h ~q(r)

4

(5.9)
This equation is discussed in Appendix 8 where it is
shown that no bound state exists, and a fortiori we
presume the result to hold for d =3.

We now need to consider separately the two sides
of the coexistence curve.

Neglecting the volume of the droplet with respect to
the volume of the system

(5.14)

and therefore the results (4.25), (4.27), and (4.30)
are not modified by the existence of the phase vari-
able.

B. Normal phase metastable

The matrix Mo for this case is obtained by replac-
ing 4 by %„=0 in Eq. (5.7). The two operators then
become identical and they have the eigenvalues Eq.
(4.13). Naturally, no phase invariance appears in this
case. The modifications of 00 are then twofold:
First we have a factor J' which is here

J'=2n
~ dx(q )' =2m)q, ((—,~R,')'"

(5.15)

Secondly, the continuous band Eq. (4.13) and the
one coming from Eq. (5.8) will pair in Eq. (4.7) to
give a multiplicative constant when an eigenvalue of
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Eq. (4.13) is extracted to account for the vanishing
eigenvalue of Eq. (5.8) included in J'. In summary
we have a factor

3/22

J g-I (~ (( lg3/2 "-&/4
uyx„(W)

(5.16)

or in terms of tricritical exponents

p g |3/2
N Q

y(
, (sa) (5.17)

where we have used Eqs. (2.15)—(2.20), (3.32), and
(3.43)—(3.44).

Therefore we have a different singularity on the
normal side of the coexistence curve which can be
written from Eqs. (4.27), (4.30), (S.IS), and (5.17)
as

~1/2
ImF —V v '

M

2
Q

uyx„(85)

' 23/6

2
'2

El

vyx„(Sr')
r

&u'u

exp const

~ exp constr

' 23/6
Q 8

ImF —~ (gs),

(5.18)

(5.19)

FKJ. 4. Potentials in Eq. (Bl), V& corresponds to Eq.
(4.20) and V2 to Eq. (5.9).

Some understanding of the asymmetry of the singu-
larities which exist on the two sides of the coex-
istence curve is gained by considering the different
role played by the phase shift invariance. Nucleation
is concerned with the process of overcoming an ener-

gy barrier and it is independent of the final stages of
the decay to a coexistence regime. As such it only
depends on the properties of the metastable state and
of the saddle point characterizing the barrier but it
does not depend on the properties of the stable state
to which the system decays. On the superfluid side
the metastable state and droplet configuration have

the same symmetry and their contributions cancel.
On the normal side only the droplet configuration
possesses this symmetry. These ideas become more
clear by looking at Fig. 4, where we have drawn the
projection in the complex 4 plane of p(~V~) corre-
sponding to the situations (IV) and (V) of Fig. l.
For a superfluid metastable state nucleation occurs at
a constant phase, as implied by our solution of Eqs.
(5.2)—(5.4), and the process is not essentially dif-
ferent from the one for the metamagnet. On the
other hand no phase can be associated with the nor-
mal metastable state and it is this "phase wandering"
in the nucleation process which gives rise to the addi-
tional contribution to ImF.

VI. CONCLUDING REMARKS

In this section we summarize for convenience the
main approximations on which our analysis is based.
To begin with, as noted in the Introduction, it is ob-
viously a mean-field theory, in the same sense as the
original work of Langer. 4 5 It would therefore be
useful to supplement this work using renormalization
group (RG) techniques, in order to obtain the ap-

propriate logarithmic corrections to the three
dimensional tricritical model. In addition, the
domain of validity of our calculation involves three
approximations. The first two are common to the
Langer theory of critical nucleation, the first being
that one be sufficiently close to the coexistence curve
that the critical radius be large compared to the corre-
lation length. This, of course, also justifies the dis-

cussion of the nucleation problem in terms of ther-
rnodynamic concepts. The second approximation re-
quires that the correlation length be sufficiently small
that, the saddle-point evaluation of the functional in-

tegral is valid. The third assumption is particular to
the way we handle the nonlocality of the exact effec-
tive Hamiltonian for O. It amounts to being suffi-
ciently close to the tricritical region so that our ex-
pansion in powers of the inverse correlation length
makes sense. The overall domain of validity of our
calculation is determined by a range of values of the
correlation length that compromises the third approx-
imation with the first and second ones.

As a separate matter we also would like to point
out that our explicit calculation of the interfacial ten-
sion supports %idom's picture ' based on somewhat
general grounds. The main contribution to o- in the
tricritical region comes from the order parameter
term in Eq. (3.27). This contribution is the same as
obtained from a "single-variable theory" determined

by fixing a path in which 0f(~,c)jBc =0 which

amounts to considering the effective Hamiltonian Eq.
(4.9). Moving away from the tricritical region, the
"two-variable theory" gives rise to the contributions
discussed in Appendix B.
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g —g +g +g + (A12)

, dco(x) dc, (x)
g1=2 dx lo—

dX dx

(4 X3~2

J2u f'

1

, deo(x) q,' l(~) x„'y'
oo= j dx lo~ ~, (A13)dx, ( 2ug

APPENDIX A: CORRECTIONS TO
INTERFACIAL TENSION

(A14)

The interfacial tension Eq. (3.27) has two different
terms related, respectively, to O(x) and c(x). With
an obvious notation we write

, de]
g2= dx (04 -oo dx

t

+2 (6 X4y2

J2ug'
(A15)

g=g +g

We further write

(A1)
It should be noted that

C Cgo
tx: oc g~C ~C

(A16)

2vg
(A3)

where f (x/g) is some function of its dimensionless
argument.

From Eqs. (3.19) and (A2) we have

c (x) = co(x) + c] (x) + cg(x) +

c,(x) = X„[to—yq, (x) j,
, d'q o(x)

c((x) =—yl(~) x„'
dx

(A4)

(AS)

(A6)

(A2)

where 9'o ——V, mo, mo being given in Eq. (3.18) and
where O1 is the first correction to %0 obtained from
Eq. (3.17) by treating the m'7 m term as a perturba-
tion:

P, l()y X„a. = ' 1+D A e (1+Be)
4g 2wg

(A17)

The singular behavior of the second term comes only
from the correlation length g. This can be seen by
noting that the coefficient of the irrelevant' term
]0m~]' of the Hamiltonian Eq. (3.16) is proportional
to lo y X„when this is written in terms of the original
variable 4( x ).

Nevertheless, since the expansion for 0 is not pre-
cisely in powers of g and this is reflected in c through
Eq. (3.19), the systematic expansion for a' breaks
down when corrections arising from 01 enter in e.
The main contribution to g. comes from g.o~ and the
first correction term comes both g-+1 and gp which are
of the same order. Thus

c~(x) = —yX„'9'~i(x) . (A7) APPENDIX B:.SPECTRUM OF BOUND STATES

g~ = g-(~)+ g-~1+ g.~2+ (A8)

dco(x) q,~

dx, 4f

The above corrections to Vo(x) and co(x) lead to the
following results for g..' In this appendix we give some mathematical details

concerning the spectrum of bound states of Eqs.
(4.20) and (5.9) following the analysis of Ref. 32.
Scaling the position variable with the correlation
length both equations have the general form

1

d2 + V(x) p(x) = Xp(x)
dx2

dOo(x) d%'&(x) 4,' Io y X
go=2 dx OC

dx dx g J2wf

(A10)

V(x ) = n +P tanhx + y tanh~x

The seg

d'p, (x) O' I'y X„
dx CX,

'

dx g J2vg
(A11)

5
CX1= 4,

1

CX2 =

3 15
Pi

1 3P~= —
—, ~

(B3)

(134)
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This suggests the solution

v (x) = e sech~xF (x) (85)

~ ~

(b)

which leads to

dF dF—2(a + b tanhx)
dx dx

FIG. 5. Asymmetry of the superfluid (a) and normal (b)
sides of the coexistence curve. The figurc shows the com-
plex 4' plane. The radial arromed lines represent the nuclea-

tion processes. The dotted circumference represents the un-

stable states or energy barrier. The dashed circumference in

(a) represents the superfluid metastable states and the full

line circumference in (b) represents the superfluid stable
states. The center of the circumferences represents the nor-
mal stable state in (a) and the normal metastable state in

(b).

correspond, respectively, to Eqs. (4.20) and (5.9).
The form of the two potentials Vl and V2 are shown
in Fig. 5. To give a simultaneous discussion of both
cases it is convenient to change the variable x to
x = —x in the second case. This amounts to replacing

p2 by p2 = —p2. In the following x and p should be
understood as x' and p' when referring Eq. (5.9).
Vfe know the eigenfunction associated to A. =0 in

both cases, as discussed in the text. Both eigenfunc-
tions can be written in the form e ""sech'. The
choice 0) = 2, b) =

2
corresponds to Eq. (4.20)

3'

[vo = (d/dx ) (1 + tanhx ) 'f'] and the choice a 2
=—,

b2- —, corresponds to Fq. (5.9) [~0= (I —tanh

+ [u'+ b' (a+—y) + ) + (2ab —P) tanhx

—(b'+b -y) sech'x]F(x) =0 . (86)

Choosing a, b such that

a'+b' —(~+y)+) =0,
2ab —P =0

and changing val lables to

u = —, (1 —tanhx)I

we arrive at the hypergeometric equation

u(I —u) +[a+b+I —2(b+l)u]
'd2F dF
dQ dQ

(89)

-[b(b+I) -y]F(u) =O . (81O)

Real solutions of Eqs. (87) and (88) for a and b ex-
ist for the two sets of values Eqs. (83) and (84) for
the possible bound values of A, ln which we are ln-

tcfcstcd: )t ( I fof Eq. (83) and A. ( 0 fof Eq. (84).
The two independent solutions of Eq. (810) regular
at u=0 (x=~) are

F(b+
2

—My+ I/O, b+ —, +My+I/O, a +b+I; )u

u t'+~'F(b+ ——My+I/O, b+-+My+I/O, a+b+I;u)

(811)

v(x)—
I"(a +b+1)1 (b —a)e '

r(b+-,' -4y+ I/4)r(b+ —,
' +4y+ I/4)

r(a + b + I)r(u —b)e"-'"
+—

r (a + -,
' —4y+ I/4) r (a + —,

' +4y+ I/4)

(813)

The corresponding solutions for v(x) behave, respec-
tively, as e ~'+ '" and e'+ '~ for x ~~. It follows
from Eq. (88) that a and b always have the same
sign, which is not determined by Eqs. (87) and (88).
Choosing a, b & 0, the regular solution for x ~ is
the one associated to Eq. (811) and it behaves for
x o as

The equations (87) and (88) are symmetric under

the exchange a ~ b, so we can restrict ourselves to
b & a. In this case w(x) will only vanish for x
if the argument of one of the I functions in the
denominator of the first term is a negative integer or
zero

b„+-, -4y+ 1/4= n, —l (814)

and from (88)

2[My+ I/O —(n + —,
' )]

The existence of bound states requires the fulfillment
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of the assumed inequality h„& a„. For the set of
values Eq. (83) this means

reads

1
fl

2 2 —4n

3 3—fl +
2 —4n +6 (816)

This is only satisfied for n = 0 and the corresponding
values of a„and b„are those of the A. =0 eigenfunc-
tions. Therefore this is the only bound state that ex-
ists. For the set of values Eq. (84) the inequality

which is not satisfied for any value of p and so, no
bound state exists. For n =0 we obtain the values of
b and a corresponding to the A. =0 eigenfunetion. In
this case b = a and according. to Eq. (813), v(x) gops
to a constant for x —~ (x ~ in the original vari-
ables). The eigenfunction is the bottom of the con-
tirtuum of states v„(x) 0 when x —oo for X ( 1.
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