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The importance of the magnetoelastic effects in the cubic rare-earth intermetallic compounds

motivates one to look for their microscopic origin. The magnetoelastic coefficients appear to be

the strain derivatives of the cubic crystal-field parameters. As the latter ones, they originate

from two contributions, the ligands and the conduction electrons. The aim of this paper is to

study thoroughly these two contributions to the second-, fourth-, and sixth-order magnetoelastic

coefficients associated with the tetragonal and trigonal symmetry-lowering modes. In particular
j

the expressions of the direct and exchange Coulombic contribution of each type of conduction

electron (p, d, or,f character) are derived. Numerical results are deduced for compounds DyZn

and DyCu starting from self-consistent augmented-plane-wave functions. We verify that the

magnetoelastic modifications of the cubic fourth- and sixth-order parameters are negligible in

these intermetallic compounds and that the second-order magnetoelastic coefficients result from

the competition of numerous opposite contributions. Comparisons are made with experimental

data in the two isomorphous series of rare-earth compounds with zinc and copper.

I. INTRODUCTION

The magnetoelastic interactions have been exten-
sively investigated over the last few years in rare-
earth intermetallic compounds having in particular
the cubic symmetry. Their effects are usually re-
vealed by the spontaneous magnetostriction, i.e., the
lattice distortion occurring simultaneously with the
magnetic ordering. In some cases such as the rare-
earth. Laves phases with iron the corresponding
strains are large enough for suggesting technological
applications. ' Other series have been also particularly
investigated such as the rare-earth antimonides
(R Sb) (Refs. 2 and 3) and the CsCl-type structure
compounds with zinc or copper, where tetragonal
spontaneous strains of typically 10 ' may be ob-
served. 4 In these favorable systems due to the high
symmetry of the rare-earth site, the magnetoelastic
effects may be studied about the two symmetry-
lowering modes: The tetragonal and the trigonal
strains which have been systematically measured, for
example, throughout the rare-earth zinc (R Zn)
series. For these studies, three experimenta1
methods have been used: measuring the spontane-
ous magnetostriction, ' the elastic constants, 6 and the
parastriction, i.e., the anisotropic strain induced by
an applied magnetic field in the paramagnetic range.
From these studies, it appears that the two-ion mag-
netoelastic coupling, modulating the exchange in-
teractions between magnetic ions, contributes only
weakly to the symmetry-lowering modes in the 8 Zn
series.

As a consequence we will restrict ourselves in this

paper to the study of the only one-ion magnetoelastic
effects lowering the cubic symmetry. They are relat-
ed to the coupling of the rare-earth ion with its en-
vironment due to the large asphericity of the 4f shell.
However, in these compounds the presence of strong
crystalline-electric-field (CEF) effects requires to use
a quantum treatment for describing the magnetoelas-
ticity as well as all the magnetic properties. 4 The
relevant one-ion magnetoelastic Hamiltonian, linear
in strain (harmonic approximation) is usually limited
to second-order Stevens operators, the fourth- and
sixth-order magnetoelastic coefficients (modification
of the fourth- and sixth-order cubic CEF parameters)
being generally assumed to be negligible. "'

As the magnetoelastic coefficients are defined as
the strain derivatives of the CEF parameters9 it is

necessary to have a model of how the 4.f shell of the
rare earth is connected to its strained surroundings.
The CEF parameters have been extensively studied
in the literature; they have been shown to originate
mainly from two contributions: the point charges and
the conduction-electrons contributions. In metallic
rare-earth systems with the cubic symmetry, the ef-
fects of the conduction band have been found
preponderant, ' " due to the strong anisotropic orbi-
tal character of the conduction electrons, as shown
for instance by augmented-plane-wave band calcula-
tions. " It is therefore necessary to study the
behavior of the strain derivatives of these two CEF
contributions.

Our starting point is the cubic paramagnetic crystal.
In the presence of a weak strain we apply a first-order
perturbation theory. At first the localized charges are
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displaced from their previous cubic arrangement,
generating a new potential having the new symmetry
(tetragonal or trigonal) of the lattice and proportional
to the strain; this potential gives the point-charges
contribution to the magnetoelastic coefficients. On
the other hand and to the first order of perturbation
this new potential only shifts the energy of each
conduction-electron state. In particular, it Hfts their
cubic orbital degeneracy according to the Fermi statis-
tics that leads to a redistribution of the conduction
electrons in the band which gives rise to a new CEF
contribution, i.e., the band contribution to the mag-
netoelastic coefficients.

The aim of this paper is to evaluate the various
contributions to the second-order magnetoelastic
coefficients as well as to the modifications of the
fourth- and sixth-order cubic CEF parameters. In
Sec. II we develop the formalism for calculating all

the one-ion harmonic magnetoelastic coefficients in

the point charge and the band models. A numerical

application of these theoretical results is given in Sec.
III, starting from "augmented-plane-wave" band cal-

culations.

II. THEORY-

A. Hamiltonian

In the nonstrained lattice the basic Hamiltonian is
the usual crystalline-electric-field (CEF) Hamiltoni-
an"

the ~,J's being the tensor components of the strain.
It appears then two second-order harmonic magne-
toelastic coefficients B~ and 82, associated, respec-
tively, to a tetragonal and a trigonal strain.

(ii) The second part is the modification of the
fourth- and sixth-order cubic CEF terms [Eq. (1)] by
the strain. It is written in the case of a tetragonal
strain:

and

X~g = 8) [63(06 —704 ) 44—36306 ] (5)

X (6) 8(6) [& (00 + 304 )

+ ', v 3—63 (0,' + —"
, 06 ) ] (6)

o ~ o8$ = — (A3 (r ))
ClJ

(g)

the expressions being more complex for a trigonal
strain in this fourfold axes system.

Another expression of the magnetoelastic Hamil-
tonian consists in starting from the Stevens-notation
for the cubic CEF Hamiltonian':

XcEF X'4L (" )OLOL
LM

where (rL) is the average value of rL for the 4f shell
and where OL are the Stevens's coefficients (03 RJ,
04= pJ 06 yJ). Comparing with Eqs. (2), (5), and

(6), we obtain for the magnetoelastic coefficients as-
sociated to the tetragonal strain mode

XcEF=xBL OL -86 (04 + 504 ) +86 (06 —2106 ) 8 (4)

PJ
o ~ o 484 ——— (A4 (r ) )

PJ ()63 863

which is written in the fourfold-axes system.
In the present paper we restrict ourselves to the

analysis of the one-ion harmonic magnetoelastic cou-
pling lowering the cubic symmetry. The correspond-
ing Hamiltonian consists then of two parts.

(i) The first part includes the second-order CEF
operators which were absent in cubic symmetry4

(where, for instance, 8f =0):

X"' = —8((630 + v 3630' )

Bi' '
1 9 o ~ o86 ——— (A 60 (r ) ) . (10)

QJ fJ 863

In the case of a trigonal deformation, it is more
convenient to consider the threefold-axes system,
where the [111]direction is the new z axis. The cu-
bic CEF Hamiltonian is written in this new system"

X' „=XB™0/=8'0(00 —20&203)
LM

+86 (06 + —4206 + —06 )

with

—83(6~P~+syzPy, +6~P~) (2)

Xg IM(„L)O OM
LM

Of 3J,2 —J(J+1), 033 = J„2—Jy2

P~ =-(J„Jy+JyJ„), . . . ,

%'e use here the symmetrized strains

(3)

with 84 = —384 and 86 =
9 86. The second-

order magnetoelastic Hamiltonian [Eq. (2)] may be
written in this new system, taking into account a pure
trigonal strain (63=63=0; 6~=6y, =s =6&):

1
63 (2szz 6~ 6yy ) +me 2 826iJO2 ~ (12)

163= ~(e —6~)
(4)

That leads to the following expression for the
second-order magnetoelastic coefficient associated with
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the trigonal strain mode

B,'0=-2 (~ 0(r'))
AJ AJ 86jj 86I'j

and by extension for the fourth- and sixth-order
coeff tcients

TABLE I. Some va}ues of the sums 51' 2 3 ~Eq. {20&~ for
Ip 112/3

the simple cubic {sc) and body centered cubic {bcc) lattices.

g (4)
840 = — (A60 (r6) ), (14)

PJ /3J 0arj 06rj

B6 =- (360(r6)) . (15)

The evaluation of all these harmonic magnetoelas. -

tic coefficients requires therefore to calculate the
derivatives of the cubic CEF parameters AL0(rL) suc-
cessively with regard to 8 tetragonal and 8 tr1goAal

strain mode, and within the point charge (PC) and

the band model.

g 400 3g 220

5g 600 47g 420 +66' 222

S 600 22S 620 + 5 IS 2I2

g 800
15

g 620
15

g 440

g 422

1.5S6
2.353
0.7577
2,083

. 0.0275
0.0259
0.0026

lows to obtain their strain der lvatlvcs

g yhf
(g M(rL) ) }e}6M(rL)

—0,960
22.298
19.007
2.473
0.3128
0.3013
0.2752

8. Tetragonal Strain mode

First wc consider 8 pure tct18goAal dcfofmatioA,
where the c axis remains 8 fourfold axis. The only
noAzero strain parameter is then

(2 )ii2
3 g

The ligands charges of the strained lattice generate
an eiectric potentiai V{r ) which is written as

g phd

y( r ) XrL yM+ 6 yM(r)

where the coefficient in parentheses includes the
summation over all the neighbors j (charge q, , posi-
tion fj):

A@M
VL~+

r

yM (ri) 0 yM (r~)

2L + I J r'+' 86 rL+'q + 62

The ftrst part leads to the usual expression of the cu-
bic CEF parameters ALM(rL) while the second one al-

~2~~3

s, ' ([j})=rr~rr2p2 . ~ rr~ rr2 rr2

X
XJ' JJ 2J

ti} fj
(20)

Table I collects some values of these sums for neigh-
bors belonging to simple cubic (sc) or body centered
cubic (bcc) lattices. In the cubic CsCI-type structure
the summations will bc written, respectively, for thc
rare-earth (R) and the alloyed metal (M) neighbors

Sr tr 2r 2 (g) Sr'ir222
( )

Sr 82~2 (M) Srir2r2 (b c) Srtr2~2 (sc)

In thc present case we need the summations in Eq.
(19) for {I.,M) = (2, 0), (4,0), and (6,0) (see Table
II). The final expressions for the PC contribution to
the magnetoelastic coefficients are then

where eL~ is the numerical coefficient of
yM [6'= (5/rr)' ' 60—= (—)'j'6 +'=3/16M-7r

66 = —'(-') 'j'66+-'= —'( l 3/rr) 'j2] The summations

over j can be expressed for each type of neighbor [j}
as a function of the following elementary sums which
are independent of the cubic lattice parameter'" a:

81

PC

g (4) '

J
~PC

14 lri 7
(S400 3S220 )

a

546 e2(r6) {5S600 47S420 +66S2p )

7~6 e2 jr6l
g q 1,1 (7S,'00 -19OS,',"+ 2Z5S,'40 + 30S,',22 )„,0 Q}
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TABLE II. Expression of some strain derivatives of CEF summations [see Eq. (19)).

'4 (i) ~'3

~2 (J) ~'~&

V,0 (r, )

lg
3

F40 (r~)

fg
5

V60(r., )
7

fg

Y20 (rj )

fg
3

F40 {r~)

rg
5

3Jg($400 3$ 220)

—
3 %6(5$) joo —47S)4)20 +66S)2P )

746 (7$ &0500 190$020 + 225$ 440 +30$ 422 )

12(S400 3S220 )

80 (S600 22S 420 + 51S222 )

where qual is the effective charge of the rare earth or
the alloyed metal in ~e ~

unit; In insulators these ef-
fective charges are the ionic ones; in metallic com-
pounds they have to be evaluated taking into account
the conduction-electron density, as explained in the
following (Sec. III A).

2. Band model

Band-structure calculations have been previously
carried out in some rare-earth intermetallic com-
pounds having the CsCI-type structure, using the
self-consistent augmented-plane-wave (APW)
method. ' In this APW method the space is divided
into contiguous spheres centered on each ion. The
calculations have evidenced a strong anisotropic orbi-
tal character for the conduction electrons, essentially
of p and d type, with a small amount of f type, in

particular, inside the rare-earth APW sphere. Start-
ing from these results crystal-field calculations have
showed that the d and f type orbital character of the
conduction electrons around the rare earth has a
predominant influence on the cubic CEF parame-
ters. '0 " In particular, the Coulombic exchange con-

tributions have been evaluated: if they cancel partial-
ly the direct ones for d electrons, they have been
found to be preponderant for 5f conduction elec-
trons, explaining the experimental order of magni-
tude of the sixth-order CEF parameters.

In presence of a given deformation, the problem is
to know how the electronic states of the conduction
band are modified by the strain; Our hypothesis will

remain very simple: The orbital degeneracy of the
conduction electrons is lifted by the only potential
V2( r ) originating in the shifted ligands charges and
which is written [Eq. (17) with V2 =01 as

A@0
V2( r ) = r' 02 Y2 (r" )

f63
(25)

8 V2 /803 being given by Eq. (19).
The group theory forecasts how an orbitally degen-

erated state of a conduction electron, belonging to a
given cubic representation I, is split by a tetragonal
deformation (see Table III, with the notations of Ref.
15). If we define the wave function of a conduction
electron having the orbital character A. and symmetry
I

TABLE III. Reduction of the cubic representations (of dimension mr ) in a tetragonal and trigo-
nal symmetry.

Symmetry
group

Cubic representations
Tetragonal representations
Trigonal representations

a(
a(
a(

f2

b2+e
0) +e

0
D4
D3
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p varying from 1 to the degeneracy ml of the I
representation (mr =2 or 3), the shift in energy iLf, „
of the corresponding electronic state will be

(p 2, 3) with 5„' r= —24'„r= —2h'„r and the
difference ~n), 1 which will be needed in the follo~-
1ng 1s wrlttcn hcfc:

1

~ng, r=ni, r 2 (nz, r +nz. r }

with

&r')), = JI r'[R), (r) ]'r'dr

and on condition that the V2( r ) perturbation is diag-

onal in the Pf, r basis (&01 rI Yq IWf, r) =0 if p &p').
The tetragonal strain modifies thus the population

nf, r of each resuiting "subband"

%e note that only the partial density of states at the
Fermi level occurs in Eqs. (30) and (31).

%C have now to calculate the contribution of each
subband to the CEF parameters. Previous work
showed that these contributions, reduced to one con-
duction electron of character X and symmetry I" in

the strained state, may be written as1'

(29)

EF being the Fermi energy of the cubic lattice and

N„r(E) the partial density of states associated to the
character A. and the cubic symmetry I .

For a twofold degeneracy (mr —-2), the representa-
tion is split in two singlets (see Table III) with an op-
posite energy shift (di. r =—hx, r) and the difference
of population between both "subbands" may be writ-

ten as

WhCre E r and J '
r arC numC11Cal COCff1C1CntS

X, l'

depending only on the angular part of the wave func-
tions, and F«and G~« the direct and exchange
Slater's integrals depending only on their radial part.

Symmetry rules (see Ref. 10) imply some relations
between the angular coefficients corresponding to the
different representations issued from a cubic
representation I (I' I'~+I'2 where I'~ is a singlet
and I 2 a singlet or a.doublet), leading to

For a threefold degeneracy (mr-3) the representa-
tion is split into a singlet (p = 1) and a doublet

The resulting CEF parameters will be obtained by
summing the contributions of each subband:

I+(mr —1)oLr m„—I
Xn„„+ (I —a~L r)d n„r, (34)

mr I' r
' mr

where n„„r is thc population of the subband I and m1-=2 or 3. The first part of this expression gives the

contribution of the conduction electrons of symmetry (X, I') to the cubic CEF parameters while the second part
proportional to b, n~ r then to e3, gives their contribution to the magnetoelastic coefficients. Using Eqs. (27},
(30), and (31), we obtain finally

The Tables IV. and V summarize the different coef-
ficients involved in the Eqs. (32) and (3S), for each
type of conduction electron. In particular, starting
from Eq. (34) we can verify that the totai contribu-
tion of each type of cubic orbital (X, I'} to 3 20 (r') is
zero, whilst their fourth- and sixth-order contribu-
tions previously obtained'0 " are found again. The

angular coefficients E zr and JL' were calculated as
A„ l' z, l

in Ref. 11 by a numerical integration of thc electro-
static (direct plus exchange) interaction between the
wave functions of one conduction electron and of the
whole 4f shell. They are listed here in the form of
the nearest fraction with a relative accuracy better
than 10 8.



TABLE IV. Value of the coefficients q.xL ~ and ox ~ (see Eq. (33)) corresponding to the tetragonal and trigonal strain modes.

o'x, I'2

Tetragonal
strain mode

0'x, r

Trigonal
s'train nlodc

r4
~x. r

( I,I 1„)

(2,eg)

(2, t2g)

(3,&1„)

(3,&2„) No splitting

No splitting

3

10

23
2

TABLE V. Expression of ALo(rL) for one conduction electron of character h„wave function Pz r, and tetragonal symmetry 1't

issued from the cubic m&-fold degenerated representation I' )see Eq. (32)]; the corresponding matrix element of Y2 is also
given.

Ata&r~&[
1

1~2 9 61 11 63 125 65
7 98 588 6468

99 61 11 g3 5
28 3920 980 8624

(V2 —V 2)
V2

1/2

7

——'Z2+ —'6'- —6'+
98 588 6468

168 7840 5880 51 744

y0

—F2 ——G'- 6'+—'6' — "' g6
15 28 1260 308 36036

9 ~0+ 3 62 97 64 75 66
44 112 280 13 552 88 088

1716 224 2016 27 104 3 171 168

No contribution to the magnetoelastic coefficients
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C. Trigonal strain mode (13) and (14)1:

In this section we consider a pure trigonal deforma-
tion where the only nonzero strain parameters are

(" ) Xq (g400 3g 220 )
Pc a Ij}

(3S)

CU

Exy 6yz Czar Nij v'2
(36)

co being the angular displacement of each fourfold
axis. As seen above it is more convenient to use the
threefold axes system where the [111]direction is the
new z axis.

gg
(4) 2 4(" ) X (g 600 2 g 420

p~ 12 a' ll 2 II
Pc (Jl + Sip 222 ) {39)

2. Band model

Point-charge model

The ligands charges of the strained lattice generates
an electric potential which may be written, in the new
axes system, as

V'( r ) XrL V'M+ L
& yM(r")

LM, +iJ

As in Sec. II Bl the PC contribution of the trigonal
magnetoelastic coefficients can then be derived using
the expressions of Table II, for example [see Eqs.

As in Sec. II82 we suppose that the orbital degen-
eracy of the conduction electrons is lifted by the only
potential V2 ( r ) originating in the shifted ligand

charges

yrp
V2(r)=f e; Y2 (r.")

Ii).
(40)

The same formalism is then applicable for evaluat-

ing the contribution of the conduction band to

AL (r'). The degenerate cubic representations I are
split by the trigonal symmetry (see Table III) and the
perturbation potential V2 (r ) shifts the energy of the

TABLE VI. Expression of A L(ra)Lfor one conduction electron of character X, wave function tp'„'r and trigonal symmetry I'I

issued from the cubic m&-fold degenerated representation I [see Eq. (32)]; the corresponding matrix element of Y2 is also given.

»r r ~,'a(.L)
~

I

t lu a2u yp

y2+ y;2

l

Jsm
IF2 9 G2 5 G4
5 140 252

eg
Y2 —Y2

'

+
0 No contribution to the magnetoelastic coefficients

If 2g 0 lg
yp

' I/2

7 7r

2 —F2 ——G'+ —G — G
I 9 ll 3 125

7 98 588 6468

—F — G ——G — G
I 4 99 I II 3 5

28 3920 980 8624

2u

2 yp
3 3

'5 '
I/2

(Y, —Y; )3, 2,

1

645m

30 112 5040 1232 144 144

792 224 1680 243 936 40 656
125 6 65 p 65 2 65 4 125

20 592 2688 24 192 325 24& 38 054 016

f2u a lu ~(Y33+ Y33)
42

I 2 + 25 p 19
G 2 25 4 3125

6 112 1008 1232 144 144

F4 Gp+ G2 " G4 G6
88 224 560 27 104 176 176

5 6 13 p 13 2 13 4 5

6864 4480 . 40 320 542 080 12 684 672
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corresponding electronic state. The only differences are that: (i) the V2 (r ) perturbation must be diagonal for
each representation I" in the threefold-axes system, that gives new wave functions rp'„'r, and (ii) the values of
o „'Lr are therefore different (see Table IV), as also the values of the angular CEF coefficients E~ „,and JL'„[Eq.
(32)]. Except for these modifications the parameters AL (r & have the same expression in the threefold-axes
system as the parameters Are(rL& [Eq. (34)] in the fourfold axes one. We can deduce the contribution of the
conduction electrons of symmetry (X, I") to the trigonal magnetoelastic coefficients

ro

(~L'(r'& li r) =— (I —~l'. r) (r'&.
B

(+i rl)'2']+i r&&i r(EF)(~i'(r'& I

86(y w r A., l [

Table VI summarizes the values of all the coefficients involved for this trigonal strain mode and for each type
of conduction electron. Particularly we note that the expression of the eave functions 0'], r is different from the
expression of Table V due to the different axes system. %e can also verify that the total contribution of the
conduction electrons of a given type (A., I') to the cubic CEF parameters ALo(rt& [Eq. (11)] leads to the same
conclusion as in Sec. II 8 2, after returning in the fourfold-axes system.

TABLE VH. Average value (r2) „, partiai density of states N„r(EF), and direct F~ and ex-
change G' Slater's integrals at the Fermi level, for conduction electrons of character A. and cubic
symmetry I', in the compounds DyCu and DyZn. The cubic lattice parameters a and the effective
charges q& are also given (R, rare earth; M, alloyed metal).

(r2) „(A2)
1

1.70
2

1.36

(10-5 X-')

2.15 (eg)

2.93 (t2g)

0.007 (t]„)

0.113 (t2„)

DyCu
ia -3.455 A

qg =3.44

q~ = 1.49)

F' (K.)
F4 (K.)
r' (K)

Goor 6[
G2or G3
G" or G5

G6

41 100

14 800
13000

36300
16 500

14800
12 000
9 120

24400
ll 200

7 360
19500
13 300
8 960
6610

x„&(zF)

(10-5 K-[)

4.39 (eg)

1.90 (t2g)

0.009 (t)„)

0.080 (t2„)

DyZn
(a =3.565 A

qg
'2 98

q~ = 1.60)

z2 (K)
F4 (K)
z' (K.)

Goor G'
G2or G3

G~or G'
G6

40600 37 100
16 500

15200
12 350
9400

23 800
10800
7 000

18 300
12 600
8 500
6 300
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III. APPLICATION TO CsCl COMPOUNDS

A. Numerical results

qg
= Zg —ng+ Vjp, x (42)

where n& is the total number of conduction electrons
within the APW sphere j of volume V& and p,„, the
mean electronic density outside the AP%' spheres.
The used values are given in Table VII for both

%e present now a numerical application of the
theoretical expressions derived in the preceding sec-
tion using the results of self-consistent AP% band
calculations carried out for the two CsC1-type struc-
ture compounds DyCu (Ref. 16) and DyZn. '2 These
compounds represent two peculiar cases of band
structure: in the former case the copper 3d shell is

located in energy within the conduction band and is
therefore hybridized with it; in the latter case the zinc
3d shell is oppositely located below the conduction
band. The main consequence is a strengthening of
the d-t2, character of the conduction electrons in

DyCu (Ref. 10) to the detriment of the eg character.
Starting from the band-structure results the evalua-

tion of the effective charges q, inside the ligand APW
sphere j is made as following, in order to take into
account partially the conduction electrons which

modulate the charge Z, of the ion (ZR ——+ 3,
Zc.=+1, Zz. =+2).

compounds.
Table VII provides also the numerical values

of the partial densities of states at the Fermi level for
each type of orbital character (from Ref. 10), as well

as the average values (r')„and the Slater's integrals
F and 6' obtained starting from APW radial wave
functions. The main difference between DyCu and

Dyzn is the inversion of the type of d orbital at the
Fermi level, the predominant one being the t2g type
for DyCu and the eg type for Dyzn.

Tables VIII and IX summarize, respectively, the
numerical estimation of the tetragonal and trigonal
magnetoelastic coefficients for both compounds. The
PC estimation was made using the values given in

the Tables I and VII.
About the conduction band contributions the

Coulombic exchange and direct parts are always op-
posite to each other. However, the larger the L and
A. values, the more important the exchange contribu-
tion relatively to the direct one: For example, the ra-

tio exchange over direct contributions reaches —15%
for L = 2 and p electrons (h, = 1), —25% for L = 2

and d electrons (h. =2), —.88% for L =4 and 'X =2,
and —1200% for L =6 and Sf electrons (h. =3). e
find thus again the ratio previously evaluated for the
cubic CEF parameters, "' that is correlated with the
expressions of the Tables V and VI in terms of
Slater's integrals and angular coefficients [see Eq.
(32) t.

If we compare now the conduction band contribu-

TABLE VIII. Calculated tetragonal magnetoelastic coefficients arising from the point charges (PC) and from the conduction
electrons of symmetry (A, , I ) for the compounds DyCu and Dyzn (the total represents the sum of the conduction-electron con-
tributions) .

Origin
B)/aj (K)

Direct Exchange
B,~4i/P, (K)

Direct Exchange
B '

/& (K)
Direct Exchange

PC -2610 -122 —20.3

DyCu
(1, t)„)
(2, eg)
(2, t,g)

tl| )
To~al fa» (~, r)]

420
1040
705

1.5
2166

—62
-261
-178

—1,7
-503

49
—44

0.05
5

—43
38
—0.29
—5.3

0.04
0.04

—0.49
—0.49

-907 -100 —15.3

Dyzn
(1, ti„)
(2, eg)
(2, i2 )

t&u)
Total fall (a, I') 1

197
749
162

0.65
1109

—29
-191
-41
—0.71

-262

35
—10

0.02
25

—31
9

-0.12
—22

0.02
0.02

—0.21
—0.21



23 ORIGIN OF THE MAGNETOELASTICITY IN CUBIC. . . 2287

TABLE IX. Calculated trigonal magnetoelastic coefficients arising from the point charges (PC)
and from the conduction electrons of symmetry (A, , I ) for the compounds DyCu and DyZn (nc not
calculated; the total represents the sum of the conduction-electron contributions).

Origin
82/eJ (K)

Direct Exchange

a' 'IP (K) B' '~v (K.)
Direct Exchange Direct Exchange

PC 8540 -497 nc

DyCu
(1, t)„)
(2, t2g)
(3, t)„)
(3, t2„)

Total [all (A, , I')]

-1370
—2300

—0.31
-123

—3793

202
581

0.34
139
922

-96.8
0.05
1.44

—95

84.5
—0.31
—8.39
76

0.004
0.57
0.57

—0.045
—6.49
—6.53

PC 2960 -449 nc

DyZn

(1, t)„)
(2, t2g)
(3, t,„)
(3, t2„)

Total [all (X, I ) j

-642
-529

—0.13
-29.6

-1201

94
135

0, 14
32.0

261

—21.8
0.02
0.34

—21

19.5
—0.13
-1.94
17

0.002
0.13
0.13

—0,019
-1.50
—1.52

tion to the PC contribution the following remarks can
be made.

(i) The Sf conduction electrons contribute only
weakly to the modification of the sixth-order CEF
parameter, due to the small amount of such electrons
present at the Fermi level.

(ii) The PC contribution to the fourth-order mag-
netoelastic coefficients is also predominant: That
results here essentially from the cancellation of the
direct and exchange part of the band contribution.
%e have to recall that the situation is opposite to the
case of the cubic fourth- and sixth-order CEF param-
eters which originate mainly in the conduction
band. " That has to be related to the mechanism by
which the conduction band is split for generating the
magnetoelastic coefficients, that implies only the elec-
tronic states near the Fermi level are involved while

the whole conduction band contributes to the cubic
CEF parameters.

(iii) The predominance of the PC contribution
vanishes in the case of the second-order magnetoe-
lastic coefficients 8~ and 82 for which the two contri-
butions (PC and band) have the same order of mag-
nitude but are however opposite in sign. It can also
be noticed that the p type conduction electrons
contribute here contrarily to the situation in cubic
symmetry.

The comparison between DyCu and DyZn reveals
only small differences which are mainly due to dif-
ferent values for the effective charges and the partial
densities of states. In particular the antagonism
between the eg and t2g contributions (see the begin-
ning of this section and Ref. 10), which produces an
inversion of the sign of 340 (r4), has a much less pro-
nounced effect on the magnetoelastic coefficients: a
similar behavior in the vicinity of the Fermi level ex-
plains finally similar results for both compounds.

8. Comparison with experiment

Fourth- and sixth-order

rnagnetoelastic coefficients

%e want first to estimate the amplitude of a possi-
ble shift of the cubic CEF parameters A q (r ) and
360 (r6), due to the magnetoelastic coefficients 8; ~'

and 8 (i6=1, 2). This shift is equal to
B~'L' e3(L =4, 6) in the case of a tetragonal distor-
tion, and to B2 '

~& in the case of a trigonal one. In
the rare-earth zinc and copper series we find the pos-
sible typical values e3 —10 and ~» —10 . That
gives a shift of the order of 1 K for 240 (r ) and less
than 1 K for 360 (r6) in the case of a tetragonal dis-
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tortion, the situation being analogous for a trigonal
distortion. Comparing with experimental typical
values" (A40 (r4) ——40 K, A'6~ (r6) ——20 K) leads
to neglect their variation due to magnetoelastic ef-
fects. That confirms a posteriori the hypothesis usual-

ly assumed to consider the only second-order magne-
toelastic coupling in these intermetallic systems.

2. Second-order magnetoelastic

coefficients: R Zn series

In previous papers5* we reported experimental
values for the second-order magnetoelastic coeffi-
cients 8~ and 82 from spontaneous magnetostriction
and parastriction measurements performed on the
heavy rare-earth zinc series and the conclusions were:
(i) the ratio Bi/aj remains of the same order of mag-
nitude, varying from ——1000 K/at. in TbZn to——3000 K/at in T.mZn; and (ii) the variation of
8t/uJ is more erratic (-+2000 K/at. in Ho- and
TmZn, but —0 in Dy- and ErZn and ——1S00 in

TbZn).
Comparing with the present theoretical predictions

for the only compound DyZn, we find a rather bad
agreement with the experiment. Indeed, if the vari-
ous contributions are of the same order of magnitude
as the experimental values, it is not the case for the
total. This is reminiscent of the evaluation of the cu-
bic CEF parameters" which led to the same conclu-
sion: a possible explanation was the failing of the
AP% model for describing quantitatively with accura-
cy these parameters. The theoretical results for
DyZn have then to be taken as a starting point, more
qualitative than quantitative, for estimating the possi-
ble order of magnitude of the magnetoelastic coeffi-
cients throughout the R Zn series.

Concerning the variation of the magnetoe)astic
coefficients in the series, the following remarks can
be made.

(i) The PC contribution is an important term;
however obtaining a reliable theoretical value for
each compound remains delicate: taking for example
qq = 3.10 and q~ =1.50 for the effective charges in
DyZn instead of 2.98 and 1.60 leads to strengthen the
PC contribution by more than 50'k.

(ii) The band contribution is far from negligible;
in addition to the above source of variation [via
8 Vp /Bag or t) &2'/Bed~ in Eqs. (35) and (41)], it may
vary through another way. Indeed the contribution
of each type of conduction electrons, proportional to
the corresponding partial density of states at the Fer-
mi level, is susceptible to alter drastically from a
compound to another, in particular when the Fermi
level lies near a peak of the density of states, that is
the case in DyZn or in isomorphous compounds. '2

(iii) The last uncertainty arises from the oversim-
ple starting model for the conduction-electrons con-

tribution, in which no self-consistency of the effect of
the distortion on the' band structure itself was taken
into account. Such a modification of the band via the
self-consistency may lead to a noticeable diminution
or reinforcement of the magnetoelastic contribution
of each type of conduction electrons,

3. Second-order magnetoelastic

coeffjcient: Rcu series

Few experimental informations are available unfor-
tunately for this series. The only known value is

Bi/aj ——3000 K/at for T. mCu (Refs. 9 and 19); in

addition the spontaneous tetragonal distortion ob-
served in TbCu (c/a —1 =1.14% at T =4.2 K),"a
little larger than in TbZn, would lead to a 8i/nj
value of the order of —2000 K/at. The magnetoelas-
tic coefficients 8~ seem thus to be of the same order
of magnitude in both series, awhile no information is
available for the coefficient 82.

The main remark concerning the theoretical predic-
tions in the rare-earth copper series is that the ex-
pected values for B~ and 82 are larger than in the
zinc series: this is related principally to a larger PC
contribution due to different values of the effective
charges. That confirms the possibility of noticeable
variations for the magnetoelastic coefficients from a
compound to another one.

C. Conclusion

In this paper we studied thoroughly the origin of
the one-ion harmonic magnetoelastic coefficients in
cubic rare-earth intermetallic compounds. They may
be considered as the strain derivatives of the cubic
CEF parameters. It appears that they originate in
numerous antagonistic contributions which may be of
the order of magnitude of the experimental values
and which arise from the surrounding localized
charges as well as from the conduction electrons hav-
ing an anisotropic orbital character around the 4f
shell. In particular the p type electronic character of
the band contributes to the magnetoelastic coeffi-
cients in addition to its 1 and f type character, that
was not the case for the cubic CEF parameter.

On the other hand, contrarily to the case of the cu-
bic CEF parameters, the PC contribution is here
dominant, especially for the fourth- and sixth-order
magnetoelastic coefficients. However these latter
have a weak influence on the magnetic properties, a
conclusion asserted previously from pure PC esti-
mates3; the main effect of the magnetoelastic interac-
tions remains here the appearance of a second-order
CEF term in the Hamiltonian, which is zero for the
nonstfalned lattice.

Because of the various contributions, the magne-
toelastic coefficients are liable to vary drastically from
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a compound to another. This variation may occur
via a shift of the values of the effective charges
for the PC contribution; for the conduction band
contribution the variation may be related to the
modification of the Slater's integrals as well as of the
partial densities of states at the Fermi level. This
latter source of variation was not present for the cu-
bic CEF parameters which originate in the whole con-
duction band", it is all the more important since the
Fermi level lies near a peak of the density of states.
This complex behavior explains the absence of scale
law for the 82/al variation through the R Zn series
for example, the smooth 8|/ai variation being prob-
ably purely accidental.

This drastic dependence on the behavior of the

conduction band at the Fermi level is reminiscent of
the magnetic exchange integrals which have been
found to clearly vary between two isomorphous com-
pounds without any scale law '; that may also be
related to the change of magnetic structure within a
given rare-earth series, for example, in the R Zn
series" from a (F00)-type antiferromagnetic struc-
ture (Ce-, Pr-, NdZn) to a ferromagnetic one (Sm-,
Gd-, . . . , TmZn).

It can be noticed that in series where the metallic
behavior is less obvious, as in rare-earth an-
timonides, we can expect a better agreement of the
magnetoelastic coefficient with the PC predictions, as
for the cubic CEF parameters, that is effectively the
case 3, 24, 25
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