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Percolative conduction in anisotropic media: A renormalization-group approach
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%e apply renormalization-group transformations to a square random resistor lattice with con-

ductance anisotropy. The bulk conductance of the lattice is studied ~s the bond prob ability and

degree of anisotropy are varied. The transformations yield qualitatively correct results, although

differences from numerical simulations increase as the degree of anisotropy is increased. The

bulk conductance of the lattice becomes isotropic near the percolation threshold but only in an

asymptotic region which shrinks as the lattice becomes more ~nIsotropic. Near the percol ttion

threshold the anisotropy in the macroscopic conductance vanishes ~s (p —p, )", where

A, = 0.86+ 0.1.

I. INTRODUCTION

The transport properties of randomly inhomogene-
ous anisotropic materials have been the subject of a
number of recent studiesi These materials are a ran-

dom mixture of two components with different (iso-
tropic) transport properties, where the anisotropy
results from characteristic dimensions of the single-

component regions being different in different direc-
tions. Anisotropic superconducting-normal metal
mixtures, ' metal-insulator systems, ' and metal-metal
composites' all have interesting properties from both
theoretical and practical viewpoints.

The anisotropic continuum problem has received
some theoretical treatment, mostly through the effec-
tive medium theory (EMT).4' To consider critical

behavior, however, a lattice model is desirable as it

allows the use of fairly simple renormalization-group
(RG) techniques. 6 'o

In this paper we consider a two-dimensional ran-

dom resistor lattice in which the conductance distri-

bution rather than the geometrical correlation func-
tion is anisotropic. This is an appropriate problem be-
cause the continuum analog of this lattice model can
be transformed into a geometrically anisotropic sys-

tem with isotropic conductivities. ' This problem has
been studied using a critical-path analysis, " the
EMT, ' and analog and digital simulation, " " We
will emphasize the renormalization-group approach
here.

In Sec. II, the renormalization transformation is

defined and results are obtained outside the critical
region. These results are compared to the EMT and

to our numerical simulations. In Sec. III, we concen-
trate on the region near p„calculating the bulk con-
ductivity and estimating the extent of the asymptotic
region. .The critical exponent A. of the anisotropy is

estimated by a number of methods in Sec. IV. We
compare our results to earlier experiments and simu-
lations in Sec. V.

II. PROPERTIES NEAR p 1

Consider an infinite square lattice of lattice spacing
I, where the conductances g„and g~ between
nearest-neighbor sites are chosen at random, such
that

1 with probability p
gx ='

0 with probability 1 —p,

0. with probability p
0 with probability 1 —p . (2)

The microscopic anisotropy ratio n ranges between 0
and ~. The bond probability p is taken to be the
same in both directions so that the percolation
threshold and coherence length are independent of
the conductance anisotropy ratio. '

Following the scheme discussed by Bernasconi, we

rescale by partitioning the lattice into cells of size bf

and replacing each cell by a single conductance in

each direction. ' The rescaled conductance in a given
direction is defined to be equal to the conductance of
an isolated cell with parallel equipotentials imposed
on the appropriate sides (see Fig. l). We have
chosen this rescaling rule for a number of reasons.
When p = 1, this rule predicts the rescaled anisotropy
correctly. By contrast, schemes which calculate a re-
scaled conductance between two points are incorrect
for anisotropic lattices, as will be shown in Sec. III.
In addition, equipotential boundaries make the infin-
ite b limit of this rule equivalent to the original prob-
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FIG. 1. (a) Cell used for the b =3 RG transformation.
Equipotentials are imposed on the left and right, effectively

reducing the cell to that shown in (b), to calculate the re-

scaled conductance in the x direction.
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lem, which is to calculate the conductance per square
of the infinite lattice. The increasing accuracy of our
method as b is increased allows us to judge its relia-

bility for small b by going to the more difficult large b

limit, as we do in Sec. IV. Finally, the particular
equipotential boundary cells used here, being self-
dual, incorporate an important symmetry property of
the lattice. ' This guarantees that any properties
which result from the self-dual symmetry (such as
the value of the percolation threshold p, = —,) will

necessarily be given correctly when cells of this type
are used. s

In principle, the transformation is repeatedly ap-

plied to the lattice, giving a sequence of conductance
distributions which eventually converges to a single 5
function for each direction (provided p A p, initially).
These 8 functions are centered at conductances
G„(b) and G~(b). These conductances are only ap-

proximations to the lattice conductivity in the two

directions because b is finite. In practice, we use ap-
proximations to G„(b) and G„(b) which replac'e each
intermediate distribution of conductances by simple
double-valued distributions. All of the nonzero con-
ductances in each distribution are replaced by a single
conductance which is the geometric mean of the
nonzero conductances. This process eventually con-
verges to conductances which are labeled G„,,»„„(b)
and G» „»„„(b).We calculate G„,»„,„(b) and

G~.,»„,„(b) for b = 3 by going through all of the pos-
sible configurations on a computer. Monte Carlo
methods are employed for b = 3 to calculate G„(b)
and G~(b).

Data for a number of anisotropies are presented in

Figs. 2—4 using G„,»„„(b) for the b = 3 transforma-
tion. [We compared G,»„,„(b) to G(b) for a

number of these points and concluded that they are
essentially equal for the range of anisotropies con-
sidered here. ] The RG data are plotted with the
EMT prediction and the results of Monte Carlo simu-
lations on random 50-by-50 site arrays of resistors.
These arrays had equipotentials imposed on the left
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FIG. 2. Conductance vs concentration for + =1 from the
EMT (solid curve), numerical simulations (+), and the
b =3 RG (o).
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FlG. 3. Conductance vs concentration for e = 10 from
the EMT (solid curve), numerical simulations (+), and the
b =3 RG (o).

and right, and periodic boundary conditions on the
top and bottom. Overrelaxation of Kirchoff's law

was used. " Lattices were solved by removing a few
resistors, relaxing the voltages, and repeating the pro-
cess until the desired value of p was reached. Close
to the percolation threshold, the "insulating" ele-
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FIG. 4. Conductance vs concentration for o, =0.1 from
the EMT (solid curve), numerical simulations (+), and the
b =3 RG (0).

b = 2 RG predicts G„(b) =0.73 and the b = 3 RG
predicts G„(b) =0.69. Thus, the larger cell, which

has a higher fraction of conductors pointing in the y
direction, gives an answer closer to the truth,
although neither cell is very accurate. Since the frac-
tion of conductors pointing in the y direction is given
to first order by (1 —1/b)/2, it is reasonable to plot

G„(b) against 1/b and extrapolate to b = ~. The
b = 2 and 3 points extrapolate to 0.61, in fair agree-
ment with the numerical and EMT values, especially
considering the limited data on which to base the ex-
trapolation.

It is tempting to try to find cells which deal with

anisotropy more accurately. One could use cells in

which the top row of conductors is not cut off, but
this only increases the number of vertical conductors
to 6 out of 18 (from 4 out of 13) for a b = 3 cell.
This also sacrifices the self-dual symmetry of the
cells, so that the wrong value of p, is predicted. Oth-
er procedures, such as weighting the vertical conduc-
tors more heavily in the average, could probably be
made to work, but suffer from being arbitrary.

III. IN ASYMPTOTIA

ments were started out with a conductivity equal to
that of the conducting elements. The network was

solved by gradually decreasing the conductance of the
"insulating" elements. Convergence was slow near
the percolation threshold, even using a fairly large

computer„a DEC PDP-10.
For the isotropic (n = 1) case Bernasconi has

shown that the EMT, numerical simulations and the
renormalization transformations give essentially the
same results near p = l. In the region near p, where
the EMT breaks down, the b = 2 transformation has
been studied and agrees well with numerical simula-
tions. ' Our data for b =3 (Fig. 2) agree well with

these results.
For a = 10 (Fig. 3), the EMT and numerical simu-

lations agree well for p near 1. (Convergence prob-
lems and finite-size effects make comparison difficult
for p near p, .) However, the b =3 RG transforma-
tion underestimates the bulk conductance in this case.

When a = 0. 1 (Fig. 4), the EMT and numerical
simulations again agree outside the critical region.
The disagreement with the RG, however, is quite
pronounced. For this case, the RG overestimates the
bulk conductance.

These discrepancies are easy to understand. For
the b =3 transformation, only 4 of the 13 conductors
in an x-direction cell have value n, as compared to
one-half of the conductors in the lattice itself (see
Fig. 1). Thus, any effects due to a W 1 will be un-
derestimated for a finite-size cell transformation. For
n 0.1, p =0.9, we obtain G„=0;576 from the EMT
and G„=0.56 from numerical simulations, while the

In spite of the inaccuracies described above, the
RG is a useful tool for studying the critical region.
The method gives answers which are at least qualita-
tively reasonable, if not quantitatively correct, and it
is quite simple computationally. This last advantage
is critical close to the percolation threshold where the .

EMT breaks down and numerical methods encounter
serious difficulties as convergence slows down and
sample-to-sample variations become large. Thus, the
RG is the only choice presently available arbitrarily
close to the percolation threshold. Hopefully, infor-
mation obtained by it will be at least qualitatively
correct.

The conductance of isotropic square lattices varies
as (p —p, )' where t = 1.35 for p —p, small. 9 ~o '8 For
0 & n & ~, it has been rigorously shown' ' that, in
the limit as p approaches p„ the same critical ex-
ponent I characterizes systems which differ only in

their anisotropy ratio n. This is true because the
bulk conductance as a function of p is bounded above
and below by the conductance of isotropic lattices
where the nonzero conductances are either all 1 or a11

n (see Fig. 5). There is also evidence based on a
critical path analysis" for the stronger conjecture that
the bulk lattice conductance becomes isotropic as p
approaches p, . The renormalization group agrees
with both of these results, predicting that the bulk
anisotropy ratio A = G» ,»„,„(b)/G„„»„„(.b) ap-. '

proaches 1 as p approaches p, . This is true because
the sequence n ', n, . . . , n "' of anisotropy ra-
tios of the intermediate rescaled distributions ap-
proaches 1 for n not equal to zero at p =p, = 2.

1
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FjG. 5. Conductance in the x direction vs concentration

as calculated by the b =3 RG, (g„,gz) = (1,1), (1,10),
(10,1), (10,10) for curves a-d.

There are, ho~ever, significant differences between

anisetropic and isotropic lattices, even near p, . Fig-

ure 6 shows an effective critical exponent t (p), de-

fined as 8logG„,»„„(b)/8log(p —p, ),i for various

values of e, obtained from the b =3 transformation.
As p approaches p„ r(p) approaches r, because G

varies as (p -p, )' arbitrarily close to p, . The quanti-

ty r(p) converges to r much faster as p approaches p,
for the isotropic lattice than for highly anisotropic
ones. Thus, if we operationally define the critical re-

gion as the range of p over which r(p) is within a

given percentage of t, the critical region shrinks as a
result of anisotropy. Experimentally, this means that
one needs to be closer to p, to ext'ract a good value

of t from data on a highly anisotropic system than
from data on an isotropic system.

The quantity t(p) was first studied for isotropic lat-
tices for the b = 2 transformation. Our data for
b =3 for the isotropic case agrees well with the ear-
lier b = 2 results, supporting Bernasconi's conjecture
that numerical (non-RG) estimates of r are too low

since they must use data which typically extend to

FIG. 6. Effective exponent t (p) vs p for various anisotro-
pies o. , as calculated from the b 3 RG.

p —p, =0.1. Calculation of t(p) for larger vaiues of
b could clear up the discrepancies between the best
numerical estimate'0 t = 1.1+0.05 and the large-cell
(b = 14) RG estimate' " r = 1.35 + 0.02.

%'e can use Fig. 5 to obtain a bou d on the uncer-
tainty in t. Since the true conductanc is rigorously
bounded above and below by the isotropic results ap-
proxirnated by curves a and d, its logarithmic deriva-
tive t (p) can deviate from r by no more than roughly
log(a'~ )/log(p —p, ). In fact, the data in Fig. 6
(which are based on the b -3 RG) are well approxi-
mated by

i(p) = 1.29+ 0.4 iog (a'~')/Iog (p —p, )

for a =0.1 and 10. For r(p) to be within 0.01 of r,

this says that (p —p, ) «- (+ for « I, —«r
a ) I), which is a very stringent requirement. For
example, it requires (p —p, ) ( 10 6 if a differs from
unity by only a factor of 2.

A number of different lattice renormalization
schemes have been used. Most of them differ from
the one used here in that they calculate the conduc-
tance between two points in a lattice' (see Fig. 7).
Cells with equipotential boundar'ies, such as we use
here, correctly predict that A a at p =1. In con-
trast, the cell in Fig. 7 predicts a =a(a+3)/
(3m+ I) after one iteration at p = I, which incorrect-

ly implies that A = a only for 0. =0, 1, or ~ when

p =1.
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FIG. 7. Alternative cell for RG calculations. The rescaled
conductance is calculated between two points instead of
between two equipotential lines.

IV. CRITICAL EXPONENT A,

FIG. 8. Log-log plot of loga/)ogn' against b. The slope

of this line is A/v in the limit of large b.

timates of critical parameters. Arguments concerning
the errors introduced by small cells for calculating
other critical exponents suggest that a more accurate
version of' (6) is" '

Near the percolation threshold, it is plausible to as-
sume that A (p, a) —1 ~ (p —p, )" since the macro-

scopic anisotropy ratio approaches one as p —p, ap-
proaches zero. " When log[A (p, a) -1],as derived
from the data of Fig. 5, is plotted against log(p —p, ),
we find that h. ~0.34 (the slope increases slowly as p
approaches p,).

The exponent A. may also be calculated using a

renormalization-group approach directly. Using

logA and loge as variables, we assume that

logA (p, a) a (loga)(p —p, )' .

%e have chosen this form because it satisfies the
requirement that A (p, 1/a) = 1/A (p, a). lt also re-
flects the fact that A (p, a = 1) = 1 independently of p.
(We note that the variable a —1 could have been
used because Ina = a —1 for a neir 1.) Upon renor-

malizing we infer that

(loga')(p' —p, )"=(loga)(p —p, )" .

where p' is the rescaled bond probability and e' is the
rescaled conductance anisotropy ratio. Thus

log —,——logb +const,loge
loge

where b is the ceH size and v = log b/ log(8p'/Qp )
~ p„

is the correlation length exponent =1.34 in two di-

mensions. "" Thus, a log-log plot of loga/loga' vs b

should approach a straight line for large b, the slope
of which equais X/u.

%e calculated e'. analytically for b = 2 and numeri-
cally for b =3 using a program which enumerated all

of the possible configurations. For 'b larger than 3,
we used a program which calculated the conductance
of each Monte Carlo realization of a cell exactly.

Figure 8 contains. the data thus obtained using
e =1.1. %e note that smaller e's gave essentially the
same value for loga/loga'. The slope of the line fit-
ted from b =6 through 20 is 0.64+0.07, where the
error is an estimate of the effects of including or not
including the smaller cell data in the fit. Using
v =1.343 +0.017,23 we conclude that A. =0.86+0.1.
This estimate is larger than that obtained from (6)
because the constant in (7) is not smaH, as can be
seen from Fig. 8.

X= lim log — g, log
loge 8p

, loge, 8p
P~

where the limit is taken to ensure that we are at the
critical point. For b =2, the quantities in (6) can be
calculated exactly. Using the geometric mean of the
conductance in each direction to define e' we find
that ) =0.254 for b =2. For b =3, a program which

generated all of the possible configurations. was used
to calculate the rescaled conductances. This gave
A. =0.371 for 6 =3.

Larger cells are expected to give more accurate es-

V. COMPARISON %ITH EARLIER WORK

A system to which our model calculations apply
has recently been reported. ' The conductivities of
percolative networks produced photolithographically
from laser speckle patterns were measured. These
results are shown in Fig. 9 for various aspect ratios of
metal islands. The results of numerical simulations
on a 50-by-50 site lattice for the corresponding e's
are shown in the inset. The qualitative agreement is

striking, demonstrating that a simple lattice model is
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that n ranged between 0.3 and 3.33 in the simula-
tions of Sarychev and Vinogradoff. Equation (3)
predicts a variation in t of only 8% from t for this
range of anisotropy, an amount which could be
masked by their quoted uncertainties of +12%.

Sarychev and Vinogradoff also report that the bulk

anisotropy ratio A does not approach unity as p ap-
proaches p„ that is, that A. is 0. This disagrees with

our result that A, =0.86. Their data are not incon-
sistent with our picture, however. Figure 5 sho~s
that A approaches 1 quite slowly near p„still being of
order 1.5 for a = 10 at p = 0.501 (the smallest p that
we studied). This slow approach of A to 1 is impor-
tant since Monte Carlo data are limited by the re-
quirement that the coherence length g be much
smaller than the sample size for the sample to be ef-
fectively infinite. Using g = ~2(p —p, ) ~

", this sug-

gests the constraint

0.2
Ip —p, l » (1/2)L (8)

0.1

05 0.4 0.5 0.6 0.7
f

0.8 09
0

1.0

FIG. 9. Normalized conductance vs area fraction for an-

isotropic metal islands on an insulating substrate. The solid

lines are to guide the eye. Inset contains numerical simula-

tions on 50 x 50 site lattices with the corresponding anisotro-

pies. The aspect ratio of the islands L~/Ly is equal to cx'~,

as can be seen from Refs. 11 and 2. We note that the is-

lands have a critical area fraction of about 0.4 while the lat-

tices have a p, of 0.5.

quite good. The experimental data are consistent with

Fig. 6, in that the measured exponent depends on an-

isotropy if the critical region is assumed to be the
same for all anisotropies. When the speckle pattern
data was fit to 15% above the percolation threshold,
effective exponents t =0.85, 1.75, and 2.3 were ob-
tained for o, =25, 0.16, and 0.0016. Using t =1.3
and t( f) =t +0.4 log(n' ')/log( f f, ) as suggest-—
ed by the lattice model gives t( f) =0.95, 1.48, and
1.97. The agreement is quite good considering the
approximations made. We note that the effects of
anisotropy are again underestimated by the small cell
used.

Sarychev and Vinogradoff have reported numerical
simulations on 50-by-50 site lattices. ' They conclud-
ed that the conductance varied as (p —p, )' with

t = 1.25 for a range of concentrations extending 0.1

or more above p„ independently of o.. This is in

contrast with this work and earlier results' which
found that the fitted exponent varied with the anisot-

ropy if the fit extended to 0.15 above p, . We note

For L = 50, as in their work, this becomes

(p —p, ~ && 0.03, so that data for p lower than 0.53
must not be accepted as representive of infinite sam-

ple data.
Mendelson and Karioris" report analog simulations

(punched holes in conducting paper) on a number of
different samples and find that the bulk anisotropy
ratio A varies greatly from sample to sample as p ap-

proaches p, . These fluctuations are due to the finite
sizes of the samples studied, and probably account
for the results of Sarychev and Vinogradoff.

Blanc, Mitescu, and Thevenot' have studied a dif-

ferent anisotropic conductance problem. Their lat-

tices consisted of resistors with the same resistance in

each direction, but with the bond probability being
anisotropic. They found that their fitted exponent t

varied with the anisotropy in much the same way as
ours does, and also concluded (as do we) that the

asymptotic region becomes smaller as the lattice be-

comes more anisotropic.

VI. CONCLUSIONS

We have studied the effects of conductance anisot-

ropy on the bulk properties of square random resis-
tor lattices using a renormalization-group approach.
Near p =0.5 and 1, this approach predicts reasonable
values for the bulk anisotropy and conductance. In
the range between, predictions which are qualitatively
correct result, although quantitative agreement is

poor due to small-cell-size effects.
The extent of the asymptotic region depends on

the degree of anisotropy. In general, as n differs fur-
ther from 1, the asymptotic region shrinks. As p ap-

proaches p„we find that the lattice becomes isotro-
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pic, that is, that A approaches 1. The exponent A.

which characterizes the bulk anisotropy near p, was
found to be 0.86+0.1.

A number of related problems can be studied by
similar techniques. Consideration of the problem of
combined conductance and bond probability anisotro-

py should lead to interesting results. The anisotropic
three-dimensional problem is also interesting, as it
should allow one to study the crossover to two di-

mensions, a case which is less trivial than the cross-

over from two dimensions to one dimension which is
our n=0 limit.
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