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Johnson noise in ideal type-II superconducting films
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The Johnson-noise power spectrum is calculated for an ideal type-II superconducting film con-

taining an array of thermally agitated vortices. The interactions between the vortices are taken

into account via a wave-vector-dependent interaction matrix. We develop a theoretical method

for the calculation of the voltage produced by a moving vortex in a measuring circuit with leads

of finite radii. For a special measuring circuit, only transverse modes contribute to the mea-

sured voltage. Below a characteristic frequency determined by the interaction between the vor-

tices, the viscous drag, and the geometry of the measuring circuit, the power spectrum is

suppressed. The ac impedance, whose real part is proportional to the Johnson-noise power spec-

trum, is also calculated,

I. INTRODUCTION

It is by now well known that the motion of singly
quantized vortices generates a voltage in a type-II su-
perconductor. That is, such motion produces a volt-
age signal in a sensitive voltmeter whose terminals
are connected by a pair of leads to two contacts on
the specimen. The term flux-flow voltage usually is
used to refer to the voltage induced by motion of
vortices from one side of a current-carrying specimen
to the other. The time-averaged part of the flux-flow
voltage was first investigated thoroughly by Kim,
Hernpstead, and Strnad. ' The flux-flow noise
voltage —the fluctuating component of the flux-flow
voltage —was first examined by van Ooijen and van
6urp. '

In interpreting their flux-flow noise experiments,
the latter authors found that the main features of the
power spectrum could be understood by assuming
that the voltage is produced by a sequence of random
overlapping pulses produced by the motion of flux
entities (either as singly quantized vortices or as bun-
dles of these) moving across the specimen at con-
stant speed. This interpretation was given some
theoretical support by the work of Clem, ' where gen-
eral expressions for the autocorrelation function and
power spectrum were obtained. Although this theory
allowed for the possibility of time-dependent vortex
velocities, most of the subsequent model calculations
of Ref. 3 assumed constant vortex velocities or con-
stant flux-line dislocation dipole velocities, such that
the flux-flow noise voltage was regarded as being
generated by the rigid motion of vortex density fluc-
tuations moving with constant velocity. Such as-
sumptions led to the predictions that the shape of the
po~er spectrum versus frequency should depend
strongly upon the measuring circuit configuration and
that strong time-of-flight effects should be observed

in cross-correlation experiments between separated
contact pairs. Recent experiments" have shown that
the power spectrum does depend upon the measuring
circuit configuration, but not as strongly as predicted
by Ref. 3, and that time-of-flight effects are not ob-
served in cross-correlation experiments in which flux
pinning centers break up correlations among vortices
during their travel from one contact pair to the oth-
er. ' Further experiments have shown that local velo-
city fluctuations are important' and that local flux-
flow noise production depends very strongly upon de-
tails of the flux pinning mechanism. 6

In this paper we lay some groundwork for a more
complete theory of flux-flow noise including velocity
correlations in a natural way. Our approach is intend-
ed to be consistent with approaches to the calculation
of pinning forces in which the strength of the interac-
tions between vortices in an array plays a crucial role.
In such approaches, for a random array of pinning
centers, the bulk pinning force decreases as the
strength of interaction increases and averages to zero
in the limit of a perfectly rigid vortex array. It is nat-
ural to extend these ideas to the question of flux-
flow noise generation and to point out that, as an ar-
ray of vortices is driven across an array of pinning
centers, it is likely that local deformations of the vor-
tex array build up and decay in the vicinity of the
pinning centers. On occasion, many vortices may be
involved, depending upon the spatial extent of the
deformation, and, because the vortices are interacting
with each other, the velocities of adjacent vortices are
correlated.

%'e consider in this paper voltage noise generated
when a regular array of vortices, a flux-line lattice
(FLL},undergoes a buildup and decay of local FLL
deformations. However, in contrast to the case of
flux flow, where the FLL deformations can be gen-
erated as a consequence of the relative motion of the
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vortex array and the array of pinning centers, the
FLL deformations are here generated by the random,
thermally generated Langevin forces on the vortices.
These forces may be interpreted as arising from the
interaction between the vortices and the phonons of
the crystalline lattice (CL). Our point of view here is

that, in a classical description at zero temperature, all
vortices would be at rest at their equilibrium posi-
tions in a perfect FLL; there being no vortex motion,
no voltage would be produced. On the other hand, at
nonzero temperature, thermal fluctuations excite
modes of the FLL; the corresponding vortex motion
generates a time-varying voltage, whose autocorrela-
tion function and power spectrum are calculated in
this paper.

Burgess7 calculated the Johnson noise due to ther-
mally excited motion of noninteracting vortices elasti-
cally tied to pinning centers with an elastic force con-
stant per unit length K. Each vortex was assumed to
have a mass M per unit length and to be subject to a
viscous drag force per unit length of magnitude qv,
where e is the vortex speed. According to his calcu-
lations, the power spectrum as a function of frequen-
cy co was predicted (a) to be proportional to co' for
co « coo = K/q, (b) to attain a constant, plateau
value, characterized by the flux-flow resistance, for
coo « co « r '=g/M, and (c) to be proportional. to
ru

2 for «»& r '. In the absence of pinning (taking
coo= K/rt =0), one might expect the plateau region
to persist to zero frequency. However, our results
show that including the vortex-vortex interactions in

a two-dimensional (not accounting for bending), FLL
in a thin, type-II superconducting film yields a pla-
teau only in the range v.R && eu && v, where
ra' = K,/re' Here, K, =. goe66/8 describes the elas-
tic response of the FLL to shear, and R is the contact
radius. For much lower frequencies (~ && ra'), the
po~er spectrum is predicted to be suppressed and to
be proportional to ao.

This paper is organized as follows. In Sec. II, we
calculate an expression for the voltage measured by a
given measuring circuit across a superconductor when
a vortex is moving in the superconductor. In Sec.
III, we present a formalism by which noise voltages
can be calculated, taking into account the interactions
between the vortices. The theory is then applied to
Johnson noise. In Sec. IV, the ac impedance of the
vortex lattice is calculated and is compared to the
Johnson-noise power spectrum. A discussion of the
results is given in Sec. V.

of the measuring circuit and the velocity of the vor-
tex. In this section we derive a gauge-invariant ex-
pression for this voltage, allowing for finite radius of
the leads. Our derivation is a generalization of that
given in Ref. 8, which applies only to measuring cir-
cuits with leads of negligibly small radius.

Consider a type-II superconductor with two normal
leads attached to it, as sketched in Fig. 1. The other
ends of the leads are connected to terminals A and B
of a sensitive voltmeter. The measured voltage gen-
erated by the motion of a vortex, which threads the
superconductor, is'

pa pb= —J„( jd l 'VP —J, ,
d l

B

Jb~c tdl '+&

40
ay

277C
(3)

where $0 is the flux quantum and y is the phase of
the order parameter. Combining Eqs. (I) through

CIMEN

Here P' is the electrochemical potential per unit
charge in the superconductor, P is the same quantity
in the normal leads, C& is a path inside the supercon-
ductor that connects the two points a and b, one
under each contact, and C~ is a path that connects A

and B through the leads and the voltmeter. Assum-
ing no contact voltage between the superconducting
specimen and the leads, t is independent of C~ and
C~. In the normal leads we can write

1
e =—V'P ——Ba

c

where e is the electric field, c is the speed of light in

vacuum, a is the vector potential, and 9 represents a
time derivative. In the superconductor the electro-
chemical potential per unit charge can be written as'

II. MEASURED VOLTAGE IN SUPERCONDUCTORS

A. Resolution function

The measured voltage generated by a moving vor-
tex depends upon both the geometric configuration

FIG. 1. Measuring circuit with thick leads, for which the
measured voltage V is described by Eq. {1).
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(3) yields

tab wA
~ QQry ~

I d 1
e Qa

2~~ ~a tel ~ du [CMl

wA

dl Ba d 1 c

Cq and CM to lie along a current tube, we have

st'0 „.«Ya 40 „.«7b
dlM += «S}tlM' jM «52tlM' jM2m@ df 2mc dt

QB
t

+«SMliiM 3M J « l + e
'A

fab

M
(4)

+«Ssr2iiM jM Jl « l +e, (5)
b C

For leads with negligible resistance, the last two
terms in Eq. (4) are very small, and the equation is
the same as Eq. (2.1) of Ref. 3 and Eq. (1) of Ref. 4
with its' replaced by (@0/2src) By.

Next we look at the quantity IM V, ~here IM is a
virtual current flowing through thc leads and the su-
perconductor from A to B. Assuming that there is no
accumulation of charge anywhere, we can visualize a
continuous "current tube, " through which a fixed
amount of current, dIM, flows. Choosing the paths

where dS~ and dSq are surface elements in contacts 1

and 2„respectively, dSM ~ is the cross section of the
current tube between A and a, dS~2 is the cross sec-
tion of the current tube between b and 8. In all
terms on the right-hand side (RHS) of Eq. (5),

where dS is any surface element specified above. In-
tegrating Eq. (5) over all current tubes yields

0 1 3 3IMV= — ' dSt't' jMQQ+ ' d t' jM'pa+ d f jM'eboth ~ leads leads
contacts

where t" is an outward normal to the superconductor. Integrating by parts yields

40 «, i'
3 -. - sto « t'
r jM'+y J~ «5 5 ' j~y «5 i1(ni ~jQ

2ee dt" inside 2~~ d~ both c 4 cut
contacts

The integral on the left-hand side (LHS) is over the
inside of thc superconductor. Thc integral in the
second term on the RHS is over a cut surface bound-
ed by the closed curve formed by thc vortex axis and
an arbitrary curve C on the surface of the supercon-
ductor connecting the top (t) and bottom (b) of the
vortex, as shown in Fig. 2.

We now consider the interaction energy

4m %.
'

—.AU=
„,

d't bM b + . . d't', , jM' jieii 4rr ~ inside c2/'2
space

where f is the magnitude of the reduced order
parameter and the subscript 1 denotes the contribu-
tion from thc vortex. Writing

bM bi/4m=0 aAr x bi/47r+ ji asr/c

wc can show that hU =0. Next we evaluate 3 U by
writing

bsr bi/4~ = + ai x bisr/4~+ 1 ~ a i/&

This leads to the equation

d t' jM' ~7+=—: 6 t' jM' ai2~g ~ inside g ~ leads

8 PEG IME N
VORTEX

I"IG. 2. View of specimen showing the cut surface appear-
ing in Eq. (8); t and b denote the top and bottom of the vor-
tex, respectively. The voltmeter and leads are not shown,

where we have used the fact that j ~
is parallel to the

specimen surface.
Now we make the important assumption that j M is

independent of time both under the contacts and in
the leads. This means that the skin depth associated
with the characteristic frequency of the flux move-
ments has to be large by comparison with the size of
the leads, and the "backflo~ current" around the
vortex core is being ignored.

With this assumption and the aid of Eqs. (8) and
(10), we can rewrite Eq. (7) as

«»& t jM+ d'f jM eIMP df cut IM ieads

(11)
If wc have low-resistance leads, we can drop the
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second term on the RHS, and Ampere's law and
Stokes's theorem then enable us to write

According to Ref. 9, we can define a vortex-current
density,

V=- d8
2e dt

(12) J (p, i) = X v;(i)82(p —p;(i)) (20)

where, ignoring the contribution from along the vor-
tex axis,

Conservation of the number of vortices leads to the
continuity equation

pt
8= J dT b~

21M & C
(13)

where n is the vortex density

The integral in Eq. (13) is along the boundary C of
the cut from the bottom (b) to the top (i) of the
vortex, as sketched in Fig. 2. This is the same as Eq.
(4) in Ref. 8 for the case of vanishing lead radius.
Note that in the case of vanishing lead radius, jM in
the leads and under the contacts is time independent
for all practical purposes.

We can also write

V= [b~(p, ) Bp, —b~(pi, ) Bpi, j, (14)
4m IM

n (pr) =, X 82(p —p;(i)) (22)

J (p, i) contains all the information about vortex
dynamics. The voltage then can be written as

v(i) = JI'd p g(p) J (p, i) (23)

«(i)) =J d'pg(p). &J(p i)) (24)

where the integral is over the whole specimen. The
time-averaged voltage is

~here pt and pb are the coordinates of the top and

bottom of the vortex, respectively.
For the case of a flat slab or thin film of uniform

thickness, we can usually assume the top and bottom
of a vortex move at the same velocity. The voltage is

then simply

and the noisy part of the voltage is

gv(i) -=v(i) —( v(i)),

= J~d'p g(p) 8 J (p, i) .

where

(25)

V=g(p) v (15)
8 J (p, i) = J (p, i) —( J (p, i) ), . (26)

where p is the position of the vortex, now a two-

dimensional vector, v —= 9p, and

g ( p ) =— [b~, ( p ) —b~i, ( p ) ]
4mIM

(16)

The usual measured quantities are the autocorrelation
function and the power spectrum. The autocorrela-
tion function is given by

Here bM, and bM~ are the values of bM at the top and

bottom of the slab (film), respectively.

B. Measured voltage and noise

q, (s) —= (8 V(i)8 V(i+ s) ),

= J d'p
g

d'p' Xg ( p )gs( p )
a.P

x K &( p, p,s), (27)

For a specimen containing a number of vortices,
the total measured voltage is a superposition of con-
tributions from individual vortices, such that

where

K s(p, p, s) —= (SJ (p, t) SsJ(p, t+ )s), (28)

v=xv, . (17)

Here,

d8;V=-
2e dt

(18)

V=Xg(p;) v; (19)

where e, is defined as in Eq. (13), but according to
the position of vortex i.

From now on, we shall only consider the case of a

flat slab or thin film, so that we can extend Eq. (18)
to

is the vortex-current correlation function. Here, 0,

and P refer to the Cartesian coordinates. The power

spectrum, Wy(co), is twice the Fourier transform of
the autocorrelation function.

We thus see that the voltage and its autocorrelation
function consist of two parts, one depending only on
the measuring circuit geometry, and the other on the
vortex dynamics. This is true if we assume the
measuring circuit does not influence the motion of
the vortices. The above formalism can be. easily ap-

plied to the case of cross-correlation measurements,
where two pairs of leads, placed at different parts of
the specimen, are used to measure the noise.
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We now turn our attention to the vortex dynamics,
keeping in mind that we want to take the interactions
between vortices into account. Since the interaction
force on a vortex in general depends on the position
of all other vortices, a treatment in reciprocal space is
much simpler mathematically than in real space. This
is done in the next section and the results are applied
to a special kind of noise, Johnson noise.

tors

D(q)'(q) ) =D««(q) ) . (34)

There are two polarizations, which at long wave-
lengths can be identified as transverse (h, = t) or
longitudinal (h. = I) As. usual, the polarization vec-
tors are orthogonal:

«(rfk) «(qk') =5 (35)

III. THEORY INCLUDING THE INTERACTION
BETWEEN VORTICES: APPLICATION

TO JOHNSON NOISE

A. Expansion of vortex positions in normal modes

X«;(qk)«&(qX) =5t

From

Xe'q "=A5-„, ,

(36)

Consider a slab or thin film, with no bending of
vortices allowed. The positions of vortices are
described by two-dimensional vectors. If the vortices
form a perfect lattice, each vortex can be uniquely
identified by its equilibrium position within the lat-

tice. We attach a reference frame to the flux-line lat-

tice (FLL frame). The equilibrium position of a vor-

tex is measured in this frame. There is also a labora-
tory frame (lab frame), which coincides with the FLL
frame if the lattice is not moving as a whole. The
position of the vortex with equilibrium position 1 is,
in the FLL frame,

p, ( l, t) =7+ s( i,t),

where N is the number of vortices and the sum is
over the first Brillouin zone (BZ), we obtain

G(h)= — X D(q)e "'"
q, 1st BZ

(37)

G,, (h)= —X D,„., (- );(- ) -"
q, k.

1st BZ

(35)

In the following, all summations on q are over the
first BZ unless otherwise stated.

Now we expand s ( I, t) in the basis «(qX):

The orthogonality of the polarization vectors yields
further

where s ( I, t) is the deviation from the equilibrium

position. The interaction energy between the vortices
can be written in quadratic form in the harmonic ap-
proximation

V(s( l, t)) = — X G( I, I ) s( l, t) s( l, t), (30)

s(T, t)- Xe"' '«(q), )Q,„(t) .
q, k,

The coefficients of expansion, Q«„(t), are the
normal-mode amplitudes. The inverse relation is

Q«(t) =—Xe "' «(qIt) s( l, t)
N

(39)

(40)

7„( l, t) =— V(s( l, t))
5 s( l, t)

= —XG( I, I ) s( l, t) (31)

Since G ( I, I ) depends only on I —I and is real
and symmetric,

G(T—I )=G(l —l)=G(h) (32)

we can define a dynamical matrix, as in a crystal lat-
tice,

D(q) = XG(h)e"'"
h

(33)

D is also real and symmetric. The basis vectors
«(qIt) that diagonalize D are called polarization vec-

where G ( I, I ) is the elastic matrix. The interaction
force on vortex 1 is then

57(p, l) = nogv. (p —vot, t) + vogn (p vot,t)—(41)

where no is the equilibrium vortex density, 8 J and p
are vectors in the lab frame, and Sv and Sn are re-
ferred to the FLL frame, which is moving with velo-

All the above relations are derived for the FLL
frame.

According to Eq. (22), the noise measured can be
expressed in terms of the vortex-current correlation
function. If the dimensions of the measuring circuit
are large by comparison with the intervortex spacing,
we can treat the vortex lattice as a continuum. This
is equivalent to saying that we only consider modes
with q much smaller than those at the zone bound-
ary. To first order in small quantities, the change in
the vortex-current density is, assuming the displace-
ments of the vortices from their equilibrium positions
to be small,
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city vo. We can identify Sv as just Bs, and Sn as
—no'7 s. Therefore, in terms of normal modes in
the FLL frame,

ST(P, t) =no X [«(q) )SQ«b(t) —voi q «(qx)0«), (t) l

q, A,

x exp[iq (p vot—)]

The measured noise voltage is, from Eq. (28),

s v(t) = X s v, „(t),
q, k,

with

sv, „(t)= [F,„sg,„(t)+G,„g,„(t)]
"exp( —i q vtjt)

where

(42)

(43)

(44)

NDUCTING

FIG. 3. Measuring circuit assumed for calculation of
johnson noise,

F,„=nb d'p—g(p) «(qZ)e"'&
(45)

G«g—= —np) d'p g(p) vbe" e[i q '«(qX)]

g(p) = — [ bbt, (p) +bbtb(p)]
4m.

(46)

where p is the position of the tpp of the vortex and

The Doppler factor exp( —i q vot) in Eq. (44) follows
from the fact that the normal modes are defined with
respect to the moving FLL frame, whereas the
measuring circuit is fixed in the lab frame.

There are two terms in the expression of the noise
voltage. The first term is proportional to Sv, or
SQ«b, while the second term is proportional to Sn, or
0«~. This is another way of saying that flux-flow
noise can be produced in two ways: by local velocity
fluctuations or by density fluctuations being carried
along with the FLL 5 to"

We now specify the measuring circuit geometry and
calculate the resolution function. We consider an in-
finite film of type-II superconducting material with
thickness df. A perpendicular magnetic field gen-
erates a flux density 8 in the film. The measuring
circuit consists of two identical low resistance leads of
radius R attached to the film. The leads rise perpen-
dicularly to the film and connect to a voltmeter far
away from the film. The distance between the two
contacts, p,b

—=
l p, —pbl is much larger than R (Fig.

3). From Eq. (16) we obtain the resolution function,

so that

bbt. (p) =o (48)

for l p —p, l (R. The same applies to bbtb. Equation
(45) then yields

exp(iq p, ) —exp(iq pb)F«= —z «qX xq
C iq

x Jp(qR)Sb, (49)

G«„=—(z q x vo) [exp(iq p, ) —exp(iq pb)]

x JP (qR )Sb t (50)

B. Vortex dynamics

The phenomenological force-balance equation for a
vortex is

Ms p (T, t) = —rtsp( l, t) —XG( l, l ) s ( I, t)

where Jo is the zeroth-order Bessel function. For this
measuring circuit, where the two leads run perpendic-
ularly from the film up to a large distance away, the
only contribution to the noise voltage is from the
transverse modes if vo is zero. For other measuring
circuit configurations, however, this will not iri gen-
eral be the case.

bbt, (p) = z x (p —p, )
clp-p. l'

(47) + f,„,( T, t) (51)

for l p —p, l )R and z = B/B. bbtb is also given by-
Eq. (47) with subscript a replaced by b and the addi-
tion of a minus sign on the RHS. We assume that
the resistivity of the normal leads is much smaller
than the flux-flow resistivity of the superconductor,

Here M is the mass per unit length of a vortex, as
defined by Bardeen and Stephen, '

q is the viscous
drag coefficient per unit length, and p (T, t) is the
position in the lab frame of the vortex whose equili-
brium position in the FLL frame is l. 7,„,( l, t) is



JOHNSON NOISE IN IDEAL TYPE-II SUPERCONDUCTING. . . 2215

the external force per unit length on the vortex, ex-
cluding the viscous drag forces and the interaction
force. It includes, for instance, the elementary pin-
ning forces and the Lorentz force from the transport
current. Assuming that the whole FLL is moving
with an average velocity vo, which is time indepen-
dent, we obtain with the help of Eq. (51),

M8's(T, t)+»tVO+»tss( l, t)

where

sf»&(t) =—Xe "' ' e(qa) s7( l, t)
7

The solution of Eq. (55) is

(56)

where

taoo

Q»t, «) =„'ii gg(q. co)A|,(q, t )e '"', (57)

+ X G (T, T ) s (T, t) =7,„,( l, t) . (52)

Taking the time average of Eq. (52) yields

A~(cf, cu) =~ dt A»„(t)e™

A»), (t) —=—s f»„(t)
1

(5g)

(59)
»)V0=7g+ (7( l, t)), (53)

M8's (T,t) +»tss ( I, t)

+XG(T, l ) s(T, t) =s7( l, t) . (54)
~1

1

Here, ( ) denotes an average over time,
7=7,„,—7q, where 7~ is the constant Lorentz force
due to the constant transport current, and
87=7—(7). We have assumed that (8s ( I, t)) and
(8's ( l, t)) =0 for all l, and that 7( l, t) is distrib-
uted such that ( s ( l, t) ) is independent of l .

X, , 6 ( I, T ) 0 has also been used.

Equation (53) is just the familiar dynamic force
balance equation. Applied to flux pinning where 7 is
the elementary pinning force, this equation states
that the dynamic pinning force is just the time aver-
age of the elementary pinning force on a vortex.
Equation (53) also shows that the deviation of the
positions of the vortices from equilibrium is deter-
mined by the deviation of the applied force from its
time-averaged value. Therefore, for flux-flow noise
induced by pinning, the fluctuating part of the pin-
ning. force is the governing factor. There are also
other sources of the applied force. A thermal gra-
dient will generate a force on the vortices. If the
thermal gradient fluctuates with time, voltage noise
can be produced. Even with no thermal gradient, at
nonzero temperature each vortex is in thermal equili-
brium with its surroundings and undergoes thermally
induced random motion about its equilibrium posi-
tion. If the time-averaged velocity of the vortex, Vo,
is not zero, then the dissipation can be separated into
two parts. The part that is proportional to vo is asso-
ciated with the viscous drag coefficient g, with a cor-
responding viscous drag force, -'qv~. The other part
of the dissipation is associated with a random force,
which is called the Langevin force, as in the case of
the Brownian movements of colloidal particles. The
associated noise is called Johnson noise. It is present
at nonzero temperatures, whether vo is zero or not.

Expanding Eq. (54) in normal modes, we obtain

M8'Q»t (t) +»t8Q»„(t) + D»), Q»„(t) = sf»i(t), (55)

g„(q, »») = —(o)2+i ro/v— o)»2„)'

~»x = D»J-M ~

r -=M/»t

(60)

(61)

(62)

Hence, if S7 is known, we can calculate Q,„and
8Q»„, and the associated noise voltage.

C. Johnson noise

As an example, we shall apply the above procedure
to Johnson noise in an ideal film with no transport
current at constant temperature. In this case, the
FLL is stationary and 70=0. The force we are con-
cerned with is the Langevin force and has the proper-
ty that it is uncorrelated in direction, space, and time,
and has zero time average:

(f, (T,t)f, , (T, t')) =ps, s„,s(t —t'),
(7(t)) =0 .

(63)

Since V0=0, if we consider the measuring circuit
shown in Fig. 3, the only contribution to the noise
voltage is from the transverse modes. The autocorre-
lation function is then

q y(s)= XIF I
i ~ Ig(q ~)l e

M'W " ~-- 2~
q

(66)

Equation (63) has been used to eliminate the cross
terms with q & q . The power spectrum then follows
directly

14'y(~) =, X IF»tI'~'Igi(q. ~) I'e '"* .2p

q

%'y(s)= X F„F",, (8Q»g(t)8Q", (t+s)) . (65)
q, q

By using Eq. (57), this can be shown to be
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The constant P can be shown from equipartition to
be given by

(68)

where ks is the Boltzmann constant. Using Eq. (49)
to calculate ~F«I', the complete expression for the
power spectrum is found to be

Tg2 sin
2 q Pab

WdJrlr2c2 - (—'q)'

where

C = 4ks TB$0/rrdgrtc'

r.b' = r(sJP.b)'= &~/~P'b ~

r„'=r(s/R)'=E/qR' .

(76)

ker is a Kelvin function and y =1.78107 . T,b
and v~ are the decay times for transverse modes of
wave vector P,b' and R ', respectively. The expres-
sions for the power spectrum simplify further in the
following limits:

2
X

OJ

(r«~g) + (r«/r )

(69)

qr = &r0' (70)

Since the power spectrum depends on Dz only
through co@, and Dz is proportional to q for both a
bulk and a thin film superconductor, ' ' we can write

-IC OJT'ab, OJ (C 7"ab

g,(„),C In( —,
' yQ~r. b ),

Cln(p, b/R), rs' « r«« r ',
C ln(pb/, R) (r«r) 'r, ' « r« .

(78a)

(78b)

(78c)

(78d)

For e» )) rs', 8'&(«&) has the frequency depen-
dence of the normal-state Johnson-noise power spec-
trum, except that r is not in general equal to the nor-
mal collision time ~, . %e can write, in this frequen-
cy regime,

s = (It /M)'~' (71)
Wy (r«) =4ks TRY[1 + (r«r )'] '

where

E, = $«cee/B = Dqi/q2 (72)

The summation ln Eq. (69) ls over the first BZ.
%'e can approximate the summation by an integral
over a circle of equal area as the first BZ in reciprocal
space. The radius of the circle, and thus the upper
limit of integration, is of the order of the inverse of
the intervortex spacing d. The factor J02 (qR), how-

ever, provides a much lower cutoff in q, of the order
of R, if R && d. The upper limit of integration can
therefore be extended to infinity.

Kith the above substitutions, and the angular in-

tegrations done, we obtain

T

Py Pab
Rg = ln

f
(80)

I $ I ~ & & l l~ 1 I 1 r ~ j j ~ I I ] I

and pJ = Bpo/gc' is the flux-flow resistivity. Equa-
tion (79) is analogous to the Nyquist formula for the
Johnson-noise power spectrum of a passive resistor at
absolute temperature T. As the flux density ap-
proaches 0,2, p~ approaches p„, and R~ approaches
R„, the normal-state resistance. At 0,2, the po~er

4ks TBgg t1 Jo(q p,. b)—
Wb(r«) =, , Jl dq Jo (qR)

~y ~~2~2 0

M

(r«' —s,'q')'+ (ru/r )'

(73)

lo'

IO
C

3 lO

[O

IO

~ ~ ~ ~ ~ ~

VS. {u

XPRESSIONS FOR
~ ~ e ~ ~

The power spectrum has the following limiting ex-
pressions:

C [ker(Qc«r, b) + In( ,
' gee«-rb )],, '(74a)

Wy(ru) = ao C& v'g

C ln(p, b/R) [1+(«)r)'] ', (74b)

N 0'0 &R

lO

IO I I I

I 0 IO

p"I
ab

I I I

l lO

y-I
R

I I I ) I I I I I I I I

IO IO lO IO lO lO lO lO IO

cu [rad/set:)

FIG, 4. Calculated Johnson-noise poorer spectrum, ex-
pressed in terms of the equivalent frequency-dependent nor-
malized resistance. Parameters are chosen corresponding to

0
the granular aluminum film of thickness 110 A in Ref. 14.
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spectrum is identical to the Nyquist formula except
that according to the Bardeen-Stephen theory"
v =2r„at H, 2.

The po~er s ectrum was calculated numerically
from the 110- -thick oxygen-doped aluminum film
used in Ref. 14. The result is shown in Fig. 4. The
quantity plotted is R («I)/R„, where R («I) is the real
part of the ac impedance, which is proportional to the
Johnson-noise power spectrum. Also shown are the
limiting expressions.

IV. IMPEDANCE OF THE FLUX-LINE LATTICE IN

AN IDEAL TYPE-II SUPERCONDUCTING FILM

IN THE MIXED STATE

~do n.
X(«I) =— —+ kel(Q«Ir, b)

dfge'
(85)

GP 44 TR

where kei is a Kelvin function. A piot of X(«I) is
sho~n in Fig. 5.

V. DISCUSSION

R («I), which corresponds to the resistance, is equal
to WI («I)/4kB T for a fixed temperature. This fact
can also be derived independently from the
fluctuation-dissipation theorem. " X(«I) has the fol-
lowing limiting expression at low frequencies,

(81)f( I,r) = [b~, ( I )+b~b( I )]e '"'
4n df

with b~, given by Eq. (47). Substituting this into
Eq. (57) to obtain 8Q~„and using Eq. (44) to calcu-
late the voltage, we obtain the ac impedance as

Z (m) = X I F„I' [—I ~g, ( q, ~) l
MNdf

The real and imaginary pa~ts, Z =R +iX, are given
explicitly by

(82)

df'rtr N &o I0 «I&~ + «I r

dfrtrW, («I2 —«I~, )2+ («I/r)2

%e consider the same geometry as in the preceding
section. An ac current Ee '"' is fed into the film via
the leads. It can be sho~n that the driving force on a
vortex at l is given by

If we compare the frequency dependence of the
Johnson-noise power spectrum with that of the
normal-state expression (Nyquist formula), we see
that there is a suppression of the power spectrum at
low frequencies («I & rR') in the superconducting
state. This is a result Of the shear interaction
between the vortices. As the flux density 8 ap-
proaches H, 2, the shear modulus and the parameter
K, decrease to zero, and there is less and less
suppression, as sho~n in Fig. 6. Finally, when
8 = H, 2, K, =0, and there is no suppression. For
8 & H, 2, if ao is less than the inverse of the decay
time of a normal mode, that mode will not contribute
to the power spectrum or the real part of the im-
pedance; hence, a suppression occurs at low frequen-
cies.

It is important to note that the resolution- function
g( p) (and hence IF«I') plays a large part in deter-
mining the range of important wave vectors. For the
present geometry, the important wave vectors are
those which satisfy p,b' & q & R '. For co & v~', the

7 I I I I I I "I I' I I I I I I I I I I I I I I I

X(MiR„vs. ~
8= IOG
T= l.6 K

LIMITING EXPRESSIONS FOR:
F

ill ~ Z ~ ~ Po ~

0-I

10

I I I I I I I I I I I I I I I I I I I I I t I

NORM A L STATE

3«I
I

C
K

3
X

CII ++ T
R

-I
ob

0-5

3 IO

tt.

IO

IO

l06
306
506
706

IO

IO I t I I I I I I I I I I l I I l.

IO IO I I 0 I 0 IO I 0 IO' I
O' IO'

tu {rod /sec)
IQIB I OIB

I
Oao

I I I I I t I I I l I I I I I t I I I I I

IO- IO-' I IO' IO4 IO~ IO8 IOIo IO IO" IOB 0 IO~
«u (rod /sec)

FIG. 5. Calculated imaginary part of the ac impedance for
the granular aluminum ftlm of thickness 110 A in Ref. 14.

FIG. 6. Calculated Johnson-noise power spectrum, ex-
pressed in terms of the equivalent frequency-dependent nor-
malized resistance, for various values of the magnetic induc-
tion. Parameters are chosen corresponding to the granular
aluminum film of thickness 110 A in Ref. 14.
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F(T) =—k s( 1 ) (86)

where k is a scalar force constant, as was done by

effect of the measuring circuit dominates and the
power spectrum "saturates" to a constant value. For
ao v&', the effect mentioned in the previous para-
graph dominates. At even higher frequencies
co & v ', inertial effects come in, and the power spec-
trum starts to decrease with frequency.

Comparing our expression for the impedance with
those obtained earlier, ' ' the major difference is
that we have included the effects of the interactions
among vortices. Instead of assuming a restoring
force of the form

previous authors, we have used the interaction ten-
sor, Eq. (31). The force constant is now wave-vector
dependent. As a consequence, the frequency depen-
dence of Z(co) is modified at low frequencies: in-

stead of R (cu) c au~ we now have R (cu) ~ ca for
OJ 47gb.
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