PHYSICAL REVIEW B

VOLUME 23, NUMBER 5

1 MARCH 1981

Three-body-correlation effect on the ground-state properties of *He and *Het
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We report some Monte Carlo computations of the ground-state properties of 3He and 3Het,
using a variational wave function including explicit three-body correlations. This inclusion results
in a slight improvement of the computed properties: internal energy, equilibrium density, and
compressibility. The comparison with experiments on 3He remains still largely unsatisfactory.

I. INTRODUCTION

Until very recently the most accurate variational
description of liquid *He was that obtained with a
wave function of the Jastrow-Slater (JS) type

st= H XU

i<j

® , 0}

where X;; is a two-body function which essentially
prevents the overlap of the cores of the neighboring
particles, while ® is the solution of the free-fermion
problem, that is, a Slater determinant of plane waves
with wave vectors filling the Fermi sea, for each
“species’’ of *He with up and down spins. Some of
the failures of the Jastrow wave functions are quite
well known: in this model the equilibrium density is
20% too low (13 x 10~3 A3 as compared with the ex-
perimental value of 16 x 10~ A=), the compressibili-
ty too high (the results of Ref. 1 lead to a compressi-
bility under zero pressure approximately 15% too
high), and the fluid so described lacks local order.
Moreover this modeled fluid is a spontaneous fer-
romagnet; that is, *Het (spin-polarized *He) appears
to be more stable than ordinary *He in the whole
domain of existence of the liquid. As discussed in
Refs. 1 and 2 this ‘“‘spontaneous ferromagnetism”’
could be a mere consequence of the failure of Eq. (1)
to give a correct localization of the nearest neighbors.
So it was interesting to try to improve on Eq. (1) to
have a better structural description of liquid *He.

The study of the local order exhibited by the helium
liquids is a great help in achieving this task. The x-
ray spectrum of helium®* strongly suggests that the
local order of liquid helium is best described by a
configuration of the T} space group (i.e., a face-

centered-cubic lattice in which half of the atoms
are removed; see Fig. 1). Such a local arrangement
is in very good agreement with the position of the
first peak of the radial distribution function (six
nearest neighbors at a distance of 3.16 A in 3He).
This hypothesis elaborated by Keesom and Taconis’
has been thoroughly studied by London.’ The good
agreement between that very simple model of a
quasisolid and the experimental results in the whole
domain of existence of the liquid is impressive and is
a strong argument in favor of a statistical preference
for such a local arrangement. If we analyze such an
arrangement with the help of the simplest structure,
we see (Fig. 1) that it is built up from regular
tetrahedrons, that is fundamentally from equilateral
configurations.

The need for stabilization of equilateral configura-
tions has been recognized for a long time. The first
attempt has been made for “‘He by de Michelis and
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FIG. 1. T} lattice of Keesom and Taconis.
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Reatto® who tried to improve on the usual Jastrow
factor

x(r)=expl—u(r)]

with
_1[s]
u(r) 2[r] )

by modifying the two-body function u () to incor-
porate in it some medium-range attractive effect and
a repulsive pseudopotential in order to simulate
three-body effects. This attempt led to an improve-
ment on the two-body correlation factor, but the im-
provement on the binding energy was not really sig-
nificant; this could be attributed to the low efficiency
of a two-body correlation to stabilize equilateral con-
figurations.

Again in the case of *He, Woo and Coldwell” intro-
duced a repulsive three-body correlation. The calcu-
lation was made in two dimensions, the improvement
was small but significant.

More recently, Schmidt and Pandharipande® (SP)
made a calculation for He with a new wave function
based on the Feynman-Cohen correlation operator.
This calculation leads to a large improvement in the
binding energy at equilibrium density but the
compressibility of the fluid so described was twice as
large as it should be. Moreover these calculations
were done in the framework of Fermi-hypernetted-
chain (FHNC) techniques which do not ensure the
upper-bound property of the variational energy.

Using a somewhat simpler wave function, including
only the three-body correlations used by SP and no
momentum-dependent correlations, we have now
performed a Monte Carlo computation for both the
unpolarized and totally polarized phase of liquid *He.
In Sec. I we describe the relevant features of this
new wave function and we briefly discuss the choice
of the interatomic potential. The internal energy and
the two-body correlation functions have been com-
puted through.an exact Monte Carlo algorithm first
proposed by Ceperley et al.® The specific details of
the present computation are given in the Appendix.
In Sec. III we give the results of these computations
and compare both with experiment and with results
obtained in a pure Jastrow model.

II. VARIATIONAL MODEL OF LIQUID HELIUM

A. New wave function

The wave function we used is of the following
form:

v=v, [I ¢Gijk) , 3)

i<j<k

where ¥s is given by Eq. (1). The three-body corre-
lation is of the following form:

i<j<k i<j<k cycl

H C(i:j’k)=5XP[ 2 Ef(ry)f(rfk)?f/'?,k] 5

4)

where zcyc, means sum upon the-cyclic permutation
of the three indices /,j,k, with

e o

b and m are the variational parameters of the two-
body correlation given by Eq. (2) (here m is given
the value 5) and Ty =T, —T,. Unless otherwise
specified, all the distances are in unit o, the scaling
length of the Lennard-Jones potential.

This new wave function differs from the Jastrow-
Slater wave function by a medium-range three-body
correlation. Its main advantage is that it favors equi-
lateral configuration at a distance of the order of o
(the scaling range of the potential). Moreover, tak-
ing an equilateral configuration the three-body factor
will strongly resist a deformation of type a (Fig. 2)
(the correlation becomes repulsive for 8 > 6,
6o~ 90°). Unfortunately it will not strongly prevent
a deformation of type b (Fig. 2), which is probably a
very serious drawback of the angular form given by
Eq. (4). The radial part of this correlation [Eq. (5)]
has been roughly modeled on that of SP. For com-
putational convenience we chose an exponential form
in Eq. (4) instead of the linear form of SP. So the
form of ¢ has to be somewhat different from that of
SP in order to eliminate some undesirable configura-
tions of type b (Fig. 2) where the weight of the at-
tractive three-body correlation could partially cancel
the repulsive two-body correlation. The only varia-
tional parameter is the weight 8 of the three-body
correlation.

£(r)=B3m

bm
om+ exp

B. Interatomic potential

The features of the wave function being fixed, a
new choice must be made: that of the potential. The
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FIG. 2. Some typical deformations of the triangular confi-
gurations.
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TABLE I. Numerical results for the energy of the unpolarized phase. p is the density (number
of particles by a3), B the weight of the three-body correlation, b is the parameter of the two-body
function, Ej is the kinetic energy of the particles, Ep( 1) is the potential energy computed with the
Lennard-Jones potential, Ep(2) is the potential energy computed with the HFDHE2 potential of

Aziz et al. (Ref. 11), E,, is the total internal energy by particles (all energies in K), n is the

number of configurations sampled in the MC run (x 10*). For all these results the computation
was made on a sample of 54 particles with periodic boundary conditions, and the error estimate is
of the order of 0.15 K. [E,=E; +E,(1)].

p B b Ey E, (1) E,(2) E n

0.414 0.25 1.145 2291 -21.06 s 1.85 43.2
s 0.25 1.145 23.00 -20.96 -20.18 2.04 43.2
s 0.35 1.145 22.65 —20.63 ce 2.02 43.2
0.3648 0.25 1.12 17.97 —17.65 -17.02 0.32 43.2
0.3283 0.25 1.12 15.56 -16.00 -15.67 —0.44 43.2
0.30 0.25 1.12 13.52 —14.70 —14.46 -1.18 43.2
0.2743 0.25 1.12 11.93 —13.40 cee —1.47 30.0
s 0.25 1.12 12.01 -13.32 -13.29 —1.31 43.2
0.35 1.145 12.67 -13.91 -14.13 -1.24 43.2

s 0.35 1.17 13.42 —14.30 -14.71 —0.88 43.2
0.2554 0.25 1.12 10.84 —12.36 —12.38 -1.52 43.2
0.236 0.25 1.12 9.98 —11.23 -11.26 -1.25 43.2
s 0.25 1.10 9.45 —10.83 -10.76 —1.38 43.2

interaction between the *He atoms is usually

described by the Lennard-Jones potential

V(r)=4e[[g—
;

T

g

1

r

with €=10.22 K and o =2.556 A. This potential is

known to slightly underbind the liquid *He at the
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lower densities.!® To have an indication of the sensi-
tivity of the results to the potential, we have tried
another realistic potential which has been recently

proposed by Aziz et al. ' This new potential

(HFDHE2) presently gives the best account of the

gaseous properties of helium over a very large

TABLE II. Results for the polarized phase. Same notation as in Table I. (The size of the sam-

ple is now of 57 particles.)

P B Ey E,(1) E,(2) Eio n

0414 0.25 1.13 22.60 —21.54 ce 1.16 45.6
s 0.35 1.13 22.36 —21.26 -20.79 1.10 45.6
ce 0.45 1.13 22.88 —20.74 s 2.14 45.6
0.3648 0.25 1.13 19.23 -19.27 s —0.04 68.4
s 0.25 1.12 18.96 —18.96 —18.69 0.00 45.6
0.25 1.10 17.85 -17.91 S -0.06 45.6

S 0.35 1.13 19.21 —19.33 ce —0.12 45.6
0.3283 0.25 1.13 16.42 -17.18 -17.32 -0.76 36.7
ce 0.25 1.12 15.85 -17.03 s -1.18 45.6
0.30 0.25 1.12 13.98 —15.48 —15.68 —1.50 45.6
0.2743 0.25 1.12 12.43 -13.99 R —1.56 45.6
s 0.25 1.10 12.00 —13.55 —13.66 -1.55 45.6
0.2554 0.25 1.12 11.37 —12.83 -13.12 —1.46 45.6
s 0.25 1.10 11.12 —12.44 s -1.32 45.6
0.236 0.25 1.10 9.94 —-11.42 —11.61 —1.48 45.6
0.2189 0.25 1.10 9.08 —10.36 -10.57 -1.28 45.6
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domain of temperature and energy. It differs from
the Lennard-Jones potential by the size of the repul-
sive core, which is a bit larger, and of the well depth
(10.8 vs 10.22 K).

III. RESULTS

The expectation values of the Hamiltonian and
two-body correlation function have been computed
through an exact Monte Carlo algorithm. The
method of computation has been thoroughly
described in Refs. 1 and 9; the relevant formulas for
this specific problem are given in the Appendix. The
computations have been made on samples of 54—57
particles. The number of generated configurations is
of the order of 450 x 10? for each run, which ensures
a statistical uncertainty of the order of 0.15 K.

The results are reported in Tables I and II, and
Figs. 3—6. We will begin the discussion by the
analysis of the two-body correlation function which
sheds light on the other results.

A. Two-body correlation function g (r)

The introduction of the three-body correlation im-
proves only slightly the two-body correlation function
(Figs. 3 and 4). At the equilibrium density of real
3He (p=0.2740"?), the improvement in local struc-
ture is slight for the unpolarized phase and insignifi-
cant for the polarized phase. This different behavior
can easily be understood by the fact that the statisti-
cal correlations induced by the Slater determinants
are more dominant in the polarized case than in the

g(r) PAg(r‘)

{102

o4/ ) I
1 15 2 r (0)

FIG. 3. Two-body correlation functions at equilibrium
density of real 3He (p=0.27463) are shown in the figure:
—— solid line, the experimental results of Achter and
Meyer (Ref. 4); —— dotted-dashed line, the computational
results for ordinary He described by Eq. (3); — — — dashed
line, the results for *He{ given by Eq. (3). On the same fig-
ure (scale on the right) we report the improvement in g (r)
induced by the use of explicit three-body correlations for or-
dinary 3He. Ag(r) =g (Eq.(3)) —g(Eq.(1)).

g (P)‘P

0 ] 1 >
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FIG. 4. Two-body correlation functions near the solidifi-
cation line (p=0.41403) are shown on the figure: —
solid line, g (r) for ordinary 3He; —— dotted-dashed line,
g (r) for 3Het.

unpolarized one. For the unpolarized phase the new
wave function does not yet give enough local order to
match the experimental results.*

B. Internal energy

The introduction of the three-body correlation im-
proves the properties of the unpolarized phase sig-
nificantly, essentially at high density (Figs. 5 and
6). The variation of the internal enérgy with the

A E(3He)
E(K) *
E(3Het)
0
Exp.
25}

| I L
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FIG. 5. Internal energy of 3He and 3Hel computed with
the help of Eq. (3). The lower solid line represents the ex-
perimental results for ordinary He [extrapolated from the
results of Boghosian er al. (Ref. 13)]. The typical statistical
uncertainty upon a MC run is shown on the right.
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FIG. 6. Internal energy of ordinary He. The dotted
curve represents the results obtained from the pure
Jastrow-Slater wave function (Ref. 1); the dotted-dashed
curve, the results obtained with the inclusion of three-body
correlations (this work); the solid line, the experimental
results.
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density can be described by a polynomial expansion

3

P~ Po + o

Po

P~ Po

Po

2
E=E\+4 +B

We fitted our results with the first two terms (the
variance of the results being not significantly lowered
by the introduction of the cubic term). The results
for the wave function Eq. (3) lead to the following
estimates for the unpolarized phase (in parentheses
are given the results for a pure Jastrow function from
Ref. 1):

Pure Jastrow

(Eg=-1354005K ),
(pp=0.22£0.007072 ),
(4=51+07K ).

Eq=—1.46 1004 K
po=0.236 +0.00653
A4=58+07K

The improvement in equilibrium density is small but
significant and the improvement in compressibility is
noticeable.

The results for the polarized phase (*Het) are the
following:

Pure Jastrow
Eyg=-1.56 £0.06 K (Eg=—1.55+0.03K ),

po=0.265 £0.0060=3  (py=0.259 +0.00353 ),
A=87+12K (4=76+06K ).

The improvement on the pure Jastrow wave function
appears to be quite insignificant in the polarized case.
We have already underlined this phenomenon in the
case of the two-body correlation function and ex-
plained it by the weight of the statistical correlations.
This argument can even be stated in a more general
way. The symmetry requirement is much more
stringent for a totally polarized fluid than for an un-
polarized one, which could explain why the polarized
wave function is much better than the unpolarized
one. In passing we note that the numerical results
support the idea that *Het is less compressible than
ordinary *He. This feature seems to us a reasonable
prediction, the reinforcement of the Pauli principle in
3He1 should give rise to a stronger localization of the
particles and reinforce the quasisolid behavior of
3Het.

All the numerical results given above are relative
to the Lennard-Jones potential. In Tables I and II we
have quoted some results relative to the HFDHE2
potential.!! These results are partial ones: in particu-
lar the parameter b of the two-body correlation would
need to be adjusted for this new potential. This ad-
justment has been made at the equilibrium density of
liquid *He (p=0.27407%). The results obtained are a
bit lower than those obtained with Lennard-Jones po-
tential, but the lowering is really very small and does
not notably modify the picture: in particular this
modification of the potential is not sufficient to solve
the paradox of the ‘‘ferromagnetism’’ of our model
fluid: a paradox which probably lies more in the
inadequacy of the variational wave function than in a
failure of the interatomic potential.

In conclusion, the introduction of three-body
correlations of the kind described above does not
lead to large improvements of the structural proper-
ties of liquid *He. The equilibrium density and
compressibility of the fluid are slightly improved with
regard to the pure Jastrow model and the artificial
ferromagnetism of the fluid is somewhat diminished.
It is possible that a greater flexibility in the form of
the radial part could lead to some lowering of the
variational energy. Nevertheless a preliminary inves-
tigation led us to think that such an improvement
could not qualitatively modify the two main draw-
backs of the picture: the discrepancy of about 1 K in
the internal energy at equilibrium and the paradox of
the ferromagnetism of the ground state. The com-
parison with the results obtained'? in the same ap-
proach for *He puts the emphasis on the fact that
some essential physical feature of *He must be lack-
ing in the wave function given by Eq. (3).

APPENDIX

In this appendix we do not repeat the contribution
to the kinetic energy of the Slater determinants. The
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reader is referred to Refs. 9 or 1. We just emphasize
the problem of computation associated with the
three-body factor. First for computational conveni-
ence the symmetric part of the wave function:

II ¢Gik) (A1)

i<j<k

vs=|IIxy

i<y

could be written in the form

Vg =exp _% 2(“;/4"20,‘,)"’% Eﬁizl (A2)
i®j i
with

m

b 2.2 & -

“”=H =gt Fi= 36T
i

We choose to use the following form of the kinetic
energy (which is readily obtained from the more clas-

sical form by use of the Green’s theorem)

hzo 35

T=
2m

my is the mass of *He atom and
5 - Vn¥
R 2
The contribution of the Slater determinants F,, (det)

is the same as in the previous computations (see Ref.
1). The new term can be written

%, ~F,(det) =+ 3 (u'+20") "L
JEm T'my

+3(F,-Fp)
k

Tk T mk

X (A3)

Eni + Emic*

mk

(where the prime indicates the derivative of the func-
tion with respect to r, the interparticle distance).

*Laboratoire associe au Centre National de la Recherche
Scientifique.
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