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Magnetically induced helical textures in superfluid sHe-A
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Bulk 3He-A in a uniform relative superflow is known to deform with increasing parallel m tg-

netic field from a uniform structure to a helical one. This latter texture becomes unstable at a

critical field, beyond which the. system exhibits runaway nonlinear growth. Subsequent behavior

depends on the specific external configuration. In a torus, the texture apparently evolves into t

stable wide-angle helix with a reversed and largely quenched superfiow. In an applied he it flow,

the texture instead oscillates periodically but anharmonically.

I. INTRODUCTION

The evolution of textures in 'He-A under increased
magnetic, hydrodynamic, or thermal stress has re-

cently aroused considerable interest. ' " This paper
treats one simple example of such configurations'.
one-dimensional textures in the presence of parallel

magnetic field and imposed superflow. The predicted
behavior of the system is fascinating, for the struc-
ture becomes increasingly complicated with increased
magnetic stress. The original stable uniform state
distorts into a helical structure with small opening an-

gle, and further stress eventually renders the helix

catastropically unstable. " Depending on the experi-
mental configuration, this instability may signal either
the formation of a wide-angle helix or the onset of an

intrinsically time-dependent dissipative texture.
Similar phenomena occur in classical hydrodynam-

ics. ' ' For example, applied stress can induce
Benard convection rolls in a fluid heated from below

and Taylor vortices between differentially rotating
cylinders. Further increase in the thermal or hydro-

dynamic stress induces oscillations in these static con-
vection patterns, ultimately leading to a chaotic state.
The possibility of similar behavior associated with the
superfluid degrees of freedom in 'He-A is indeed in-

triguing.
Section II reviews the hydrodynamic model of

He-A and discusses the specific configuration of su-

perflow and parallel magnetic field. The intrinsic
differences between superflow established as per-
sistent current in a torus and as superfluid heat trans-

port receive particular attention. In Sec. III, we dis-

cuss the stability of textures with increasing magnetic
field, not only allowing the order parameter full free-
dom in the hydrodynamic approximation but also in-

cluding temperatures well below T, . The instability

A A

of the uniform state (with I =d = z parallel to the
flow and magnetic field) occurs at a finite wave
number and signals the onset of a helical texture.
This texture evolves with increasing magnetic field
until it too exhibits an instability at a critical magnetic
field. " The onset of this latter instability occurs as a
catastrophic inverted bifurcation (Sec. IV) that may
signal the appearance of an intrinsically time-
dependent state. For simplicity, this section treats
only the dipole-locked limit, which applies for small
relative superflow and magnetic field. The subse-
quent fate of these one-dimensional textures is in-

ferred from the form of the free energy of the un-

stable helical states (Sec. V). Distinct and dramatic
effects are predicted. For persistent flow in a torus,
the instability of the helix probably signals the onset
of a dissipative time-dependent state that precesses to
the reversed orientation (I = —z) and then ultimately
relaxes to a stable wide-angle helix with a reduced
and reversed relative superflow. For an external heat
flow, the instability instead probably marks the onset
of an oscillatory dissipative texture with periodic but
anharmonic time dependence.

II. HYDRODYNAMIC MODEL

The hydrodynamic model of He-A describes the
order parameter at every point in the fluid by a com-
plex orbital vector m +in (with m s n ) and a real spin
vector d. Alternatively, the orbital part of the order
parameter may be characterized by a real unit vector
I =—m & n and the change in phase 54 associated with

local rotations of m and n about l in moving from r

to r +Sr. These new degrees of freedom can vary

slowly in space and time. The basic hydrodynamic
equations describe the dynamics of I, 4, and d plus
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the usual conservation laws of mass, momentum,
and energy. Several authors have exhibited these
equations' '9; thc results are complicated and typical-
ly involve numerous. .phenomenological coefficients
that are neither measured experimentally nor evaluat-
ed theoretically. Fortunately, the present rather sim-

ple configuration does not require the full hydro-
dynamic model, for physically motivated approxima-
tions' allo~ us to simplify the model in conditions of
steady flow and applied field.

(1) We assume that the "normal" thermodynamic
variables are fixed externally. Thus we take the tem-

perature T, the mass density p, and the normal-fluid
velocity V„ to be uniform and constant. This approx-
imation ignores any effect of the superfluid back on
the normal degrees of freedom.

(2) The low-lying excitations of the superfluid cor-
responding to slow spatial and temporal variations of
the order parameter are here investigated with a Lan-
dau expansion of the free-energy density through
second order in the spatial gradients of the order
parameter. Specifically, the hydrodynamic free-
energy density f» in the frame with V„=O is given
by21

,f»o=
2 (V, —V„)p,(v, —V„)+(v, —v„)Ccurll +

2 K, (div/)~+
2 K, (I ~ curll) + , K»(I —xcurll)2

+—Ki(I ' 0)dz(I ' 0 )d&+ K2(I x—Od&) ' (I X Od&) ——(I d) +—(0' d)

where A is the applied magnetic field and the super-
fluid velocity is defined as

84
v, = lim

Sr ~0 Qr
(2)

.f» =fi'+ j Vs+ , p~s . -

j = p, (V, —V„)+ C curl/

is the current in the frame with v„=o. A simple cal-
culation shows that f» differs from f»O in that the
first two terms of Eq. (1) are replaced by z v, p, V,

+V,C curl/+ —V„pV„, where p„=pl —p, is the
normal-fluid density tensor. This function f» has
thc natural variables V, and j, whereas v, and v„
often provide a more convenient set. Since v„may
bc cxprcsscd as

Here a summation over repeated indices is implied,
and the tensors p, and C are defined by

A A

(Ps ) ij Psgij POIi Ij

(C) j= Cgj —Colilj (3b)
The first seven terms in Eq. (1) are the kinetic and
elastic contributions, and the corresponding phenom-
enological parameters have known temperature
dcpendences from model calculations. 3 " The last
two terms are the dipole and magnetic contributions,
respectively.

(3) lt is often preferable to work directly in the
laboratory frame, where the corresponding hydro-
dynamic free-energy density f» is obtained by a
Galilean transformation

new "free energy"

f=f» —V I
which now depends ori the desired variables v, and
V„. A combination of Eqs. (1), (4), (5), and (7)
shows that

1f=fi' , p~' ~—— (g)

which serves as our fundamental free-energy density.
(4) We assume that the Cross-Anderson orbital

viscosity dominates the dynamical behavior of the
order parameter. Thus the dynamical equation for /

is given by'0

A Q/ ~A, A

p/x —+7„'V/ = —/&
Qt

»

, ~/, Se-o, Sd-0

where p, is a phenomenological "orbital viscosity"
that characterizes the relaxation of the quasiparticle
distribution when / is displaced from its equilibrium
orientation. Since changes in the orientation of the
spin vector d and rotations of m and i about / require
no quasiparticle redistribution, d and 4 can change
instantaneously to minimize the free energy:

1

dx ~g.

I Sl 0, 84' 0

=0,

sf
'I i Sl~08d 0

Equation (11) guarantees current conservation, for it
lmp11cS that

, 81~0, Sd~084
Bf

~
I Sd~0

jO=O

a Legendre transformation allows us to introduce the where j ' [see Eq. (5)1 can be rewritten in terms of
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the supercurrent j, and normal current j „ in the
laboratory frame as follows

= js+ jn pvn (13)

Equations (9)—(11) form the basis of our hydro-
dynamic model. For simplicity, we consider only the
special case of a magnetic field along the direction of
the relative superflow V,„=v, —v„, with H = H~ and
V„=so~. To characterize the order parameter, we
use the Euler angles a, P, and y (see Fig. 1) for the
orientation of the right triad I, m, ~ and the usual po-
lar and azimuthal angles 8 and @ for the orientation
ofd

I =z cosP+sinP(x cosa+y sinu)

d = z cos8+ sln8(x cosf +p sing)

Correspondingly, the superfluid velocity becomes

(15)
I.IG. I. The Euler angles m, P, and y that describe the

orbital part of the superfluid order parameter.

7, = —Vy —COSPVa

Previous studies indicate that the instability associ-
ated with the helical texture occurs for srnall-
amplitude perturbations with the wave number k

u„=-y'-a cosP, (16b)

along z, and we therefore assume that the order
parameter varies spatial)y only in the z direction.
Direct substitution of Eqs. (14) and (15) into Eqs.
(16a) and (8) yields

f = —,
'

(p, —pocos'P)( —y' —a'cosP —v„)'+Cosin'pcosP( —y' a'cosp ——v„)u'

+ —,(K, sin2p+ Kr, cos2p) p'2+ —, (K, sin2p + Kr, cos2p) sin'pa'+ —, (K2 sin'p+ K 1 cos'p) (8'+ sin'tip')

—
~

[cosH cosP+slnH slnPcos(a —@)] +
2

H cos t) —
2 ptl„

where the primes denote differentiation with respect
to z. The corresponding dynamical equations (9)—(11)
become

inspection of Eq. (17) shows that the free-energy
density is now independent of y. Thus Eq. (20) can
be integrated to give [see Eqs. '(5), (12), and (13)]

p Sln p(a + lJN a ) = 8 8
Bu Bu

p, (p+u„p ) =
BP' BP

(18)

(19)

(23)Bf,o
~ Z

'y

where j, is a spatial constant. This relation serves to
eliminate the dynamical variable y entirely from the
problem through a Legendre transformation to a
"Routhian" free-energy density4'4

0 Bf Bf
8p

Bf Bf
8$' 8$

Bf Bf
Qg' 98

(22)

where dots denote differentiation with respect to time
and where the partial derivatives are taken holding
fixed the other angles and their derivatives.

.f=.f y', = f+y'.i,' . -. (24)
'y

By construction, f is a function of the angles a, P, t),

@, and the spatial constant j, . It is not difficult to
rewrite the dynamical equations in terms of f; they
are identical with Eqs. (18), (19), (21), «nd (22) if f
is replaced by f and the partial derivatives are taken
holdlflg /g fixed Instead of y . Equation (20) then
holds automatically, reducing the number of dynami-
cal equations from five to four. The ch'oice for f or f
in the dynamical equations is merely a matter of con-
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a( +zL) =n(z)+2mn
cosP & +1

y(z + L ) = y(z) +2mn„

(2Sa)

(2sb)

venience, for either will work with proper attention to
the fixed variables. Under some circumstances, how-

ever, one of the two formulations may simplify the
calculations.

In addition to the dynamical equations, the order

parameter has rather special constraints arising from
the "super" character of the fluid. These constraints
depend crucially on the mechanism that induces the
relative superfluid velocity v,„. An experiment that
establishes a persistent current in a toroidal con-
tainer' requires "topological" conditions that ensure
the single valuedness of the order parameter. To
model this situation, we assume that the normal-fluid
velocity vanishes in the frame moving with the walls
of the torus. In our one-dimensional model, periodic
boundary conditions over a length L in the z direction
then simulate the multiply connected geometry.
These periodic boundary conditions require that the
angles a, y, and P have well-defined integral winding
numbers n, n„, and n@

tal z component of the current j„+jnz vanishes, " so
that, for heat flow

Jz = p&n (27)

As a result, j,p in a thermal counterflow is fixed
externally, independent of the textural configuration
within the sample. This- differs significantly from a
persistent current in a torus, where j, also remains a
spatial constant, but whose magnitude depends on
the texture.

The preceding discussion shows that the principal
difference between persistent current in a torus and
heat flow is the nature of the constraints, In a
toroidal container, the single valuedness imposes to-
pological conditions on the relative superflow; in heat
flow, the current j, is fixed externally, and the con-
dition of zero mass flow through the walls requires a
relative superflow. It is clear from these constraints
that the free-energy density f, which has the angles
a, P, y, 8, and @ as its natural variables, is the ap-
propriate function for persistent currents in a torus.
Similarly, a one-dimensional heat flow is most simply
analyzed in terms of the "Routhian" free-energy
density f, which has n, P, I',0, 8, and @ as its natural
variables.

$(z + L ) = $(z) + 2rr n& cos8 & +1 (26)

when cosP 4 +I and cos8 A +1. Thus, in general,
the periodic boundary conditions quantize these
winding numbers. Moreover, any change in these
quantized winding numbers requires that the magni-
tude of the order parameter vanish over a significant
fraction of the fluid; hence transitions between states
of different quantized winding numbers encounter
large free-energy barriers, which helps account for
the assumed metastability of persistent currents in
'He-A. " One unique and important feature, howev-
er, is that n~ is no longer defined when cos8=+1,
and that n and n~ are not separately quantized when
cosP = + l. Instead, when cosP = +1, the angles n
and y both generate rotations of m and n about I.
The single-valuedness condition then requires only
that n + n„be quantized. Under certain conditions
(discussed in Sec. V), these topological properties can
allow the winding numbers (and hence the persistent
currents) in a toroidal geometry to change without
the system having to cross large free-energy barriers. '

An alternative procedure for establishing a relative
superflow is to impose a heat flow across the sample.
In this case, we imagine the system to be confined
between two parallel slabs separated by a distance L.
In a superfluid, heat flow can exist even in the ab-
sence of a temperature gradient. The heat flow
Tps'„z is carried by the normal fluid, where ps is the
entropy density. In order to conserve mass at the
walls, an opposing supercurrent flows across the sam-
ple. Equations (13) and (20) imply that j,o=j„+j„,
—v„, must be a spatial constant. At the walls, the to-

III. TIME-INDEPENDENT TEXTURES

Ho= [po —(Co+ —, )'(K~L) ']' 'vol

near the origin of region I, where

Kb = Kb+ K(

(2ga)

(2gb)

In the absence of an applied magnetic field or im-

posed superflow, the equilibrium texture has I and d
parallel and spatially uniform, but in an arbitrary
direction. Application of a relative flow or a magnet-
ic field then orients I and d to minimize the free en-
ergy. It is not difficult to show that the dynamical
equations have static uniform solutions for all values
of the magnetic field Hz and relative superflow vpz,

although I and d are not, in general parallel. These
uniform textures can only be realized physically if
they are stable against small-amplitude fluctuations.
Appendix A outlines the linear-stability analysis of
these uniform textures, with the results indicated in

Fig. 2.
The most notable conclusion is that dynamically

stable uniform textures occur only for values of H
and vp within the regions labeled I and II of Fig. 2.
In region I, where the flow predominates and the
field is a small perturbation, the texture with I =d =z
is stable. Determining the entire bounding curve re-
quires numerical analysis, ' but the stability for
dipole-locked deformations (d ll I) at small uo and H
gives the limiting curve
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FIG. 2. Phase diagram for textures of He-A in a magnet-

ic field Hz and a parallel relative superflow upz. Uniform
J%

textures with I = d = z are stable in region I; uniform tex-
tures with I =d sz are stable in region II; uniform textures
are unstable elsewhere in the Hvp plane.

is the dipole-locked elastic constant, In region II, the
magnetic field predominates, and the stable texture
has z J.d = I =x (say), with the analytic boundary
curve

v, = (p p,p)
' H(1+H )

Although the analysis of these two boundary
curves is formally similar, the detailed instability has

markedly different forms. In region I, the textures
become unstable for plane-wave fluctuations along
the z axis of finite wave number k, [see Eq. (A12)l.
In region II, however, the texture in a finite quanti-
zation volume L' first undergoes a uniform small-

angle rotation (k =0) of order L'/L in the xz plane,
which then becomes unstable' with respect to long-

wavelength fluctuations with k slightly different from
I. Furthermore, the two regions I and II have a very
different temperature dependence. As the tempera-
ture decreases, region I shrinks monotonically, even-
tually disappearing when T = 0.82T, . In contrast, re-

gion II shrinks slightly with decreasing temperature
until T =0.48T, and then increases rapidly as T i's
lowered below that value. This latter behavior arises
largely from the temperature dependence of the an-

isotropy parameter pp. Some of these, predicted tem-
perature effects are probably unobservable because
the A-8 transition already occurs at =0.75 T, in low

fields.
It is striking that region I terminates at a maximum

relative superflow, beyond which the texture l = d = z

is unstable, even in the absence of an applied field. 9

a =-u (z —u„t)

/3 =Pp

y= —sz+F(t)

8=Op

it = —u(z —u„t)

{30)

{31)

{32)

(33)

(34)

where Pp, Hp, u, and s are spatial constants, and F(t)
depends only on t.

This feature, which would not occur for a dipole-
locked system, reflects the competition between the
bending energy and the dipole energy on d. The fin-
ite wave number k, of the instability at the boundary
of region I increases monotonically and nearly linear-

ly with vp. For large vp, dipole locking in the de-
formed phase would require large elastic energy, and
it eventually becomes preferable to separate d and I,
thus reducing the total bending energy. In effect, al-

lowing d full freedom reduces the stiffness of the
uniform texture and enhances the instability of the
uniform texture with d = l = z to finite-wavelength
perturbations.

It is' notable that the two regions I and II of stabili-

ty have only the point H = up=0 in common. As a

result, it is impossible to move continuously from
one stable uniform texture to the other without first
reducing both the field and the relative superflow to
zero. This suggests that the final textural configura-
tion need not be single valued in H and vp, instead, it

depends on the detailed history of the system's
preparation. As a particular example, the present
study considers the evolution of textures under in-

creasing magnetic stress at fixed initial relative super-
flow. Specifically, imagine the sample initially

prepared with v,„=vpz', then slowly apply a magnetic
field parallel to the superflow. This procedure en-
sures that the initial texture is a uniform state with

I =d =z (region 1 of Fig. 2). Had the magnetic field

been applied before establishing the relative super-
flow, the initial texture would have been in region II,
and the evolution of the system would be very dif-

ferent.
The unusual interest in the instability of the state

with I = d = z arises from the finite critical wave

number k„which suggests that the system evolves
into a spatially periodic structure. " Indeed, the in-

stability of this uniform state has been proved to sig-

nal the onset of a Landau displacive transition" to a

helical texture with a spatial period 2m/k, (Fig. 3).
The polar angles of I and d acquire constant nonzero
values Pp and 8p, and the corresponding azimuthal

angles a and $ increase linearly in the z direction.
The helix is carried along with the normal-fluid velo-

city, giving a and $ a trivial nondissipative time
dependence. Thus solutions to the dynamical equa-
tions have the form
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vaiue from Eq. (35), independent of Pp, so that the
relative superflow v„-v„becomes an explicit func-
tion of Pp and u (for a torus)

vgg 'Ug ~'Up+ ll (COSPp 1) (36)

On the other hand, heat flow imposes the condition
that the total current vanish for all Pp, which requires
s to be an explicit function of Pp. Use of Eqs. (16b),
(23), and (27) yields the expression (for heat flow)

Jz = (pz ppCOS pp)($ + M Cospp V„)

—Cpu sinlPpcosPp -pu„

'4c 3
CS $
d
A

FIG. 3. Helical texture with pitch u~, sho~ing the polar

and azimuthal angles of /(P, o. ) and d(0, $).

5 —V„=Vo —Q (35)

Once the helix appears with nonzero Pp and Hp, how-

ever, the winding numbers of e and y become
separately quantized. ""This distortion fixes the
"pitch" u of the helix. In addition, s retains the

The appropriate values of s and u follow from the
constraints imposed by the experimental situation. In
the toroidal geometry, the uniform texture with

I = d i and Pp Hp = 0 fixes only the winding

number of the sum n+ y, which requires that u + s
be quantized in units of 2n/L If the o.riginal relative
superflow is e0= v —e„, this condition may be writ-

ten as [see Eq. (16b)] (for a torus)

and any alteration of the texture must keep this
quantity fixed. Equivalently, we may rewrite this te-
lation as (for heat flow)

s —ill = ('vp + CpM sin pp cospp)

x (1 +pp sin pp) —
M cospp,

where so= —pv„ is the original relative superflow in

the uniform state. Note that s is not quantized in

this latter situation.
For both the torus and the heat flow, the pitch u of

the helix when the system first distorts to have

Pp & 0 is just the critical wave number k, from Eq.
(A12). As Pp increases with increasing H, this pitch
remains constant, because any small change in u

would imply a large deformation in the order parame-
ter, with I changing direction over the whole sample.
In a torus, the quantization conditions specifically
maintain u when Pp W 0; even in heat Aow, however,
changing the pitch of the helix in any geometry that
lacks perfect axial symmetry would encounter large
free-energy barriers.

If we substitute Eqs. (30)—(34) into the free-
energy density and the dynamical equations
(19)-(21),we find that Pp and Hp must satisfy the
following pair of coupled transcendental equations

sln2(Hp —i3p) =sin2pp[pp(f+ u cospp) +u'[Ep+2{lt', —Kp) sm pq+ (Kl —It l) sln~Hpl }

—2sinPp {Cpu ()+u COSPp) (2 —3 sin~pp)+ u [(1+ppsinlPp) (g+ u COSPp) —Cpu sin~Ppcospp] }

sin2(Hp —Pp) = [H' —u'(Itl sin'Pp+Kl cos Pp)] sin2Hp (39)

where the parameter g denotes s —v„and is defined differently in the two situations [see Eqs. (35) and (37)]

vp —u (torus)
g —s —v

(lip+ Cpll sin ppcospp)(1 +pp sin pp) ' —u cospp (heat flow)

(40a)

(40b)
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Within region 1 of Fig. 2, the values Po = Ho = 0 are
the only solutions to Eqs. (38) and (39). As the
magnetic field strength H is increased with vo fixed,
the transcendental equations first have nonzero solu-
tions when the system reaches the bounding curve;
we denote the, corresponding critical magnetic field by

Ho, which depends on vo. The instability of the uni-
form state signals the onset of a small-angle helical
texture, with the pitch uz determined as the root of
the equation [compare Eq. (A12b)]

[Kb+K)(1 —Ho +K)ub') ]ub = (Co+ —, )up . (41)

In the dipole-locked limit, vo and H are both small;
an elementary calculation gives the specific value

ub = (Co+ )vp/Kb (42a)

which becomes

ui, = 0.6vo (42b)

near T, . More generally, numerical analysis for the
weak-coupling Ginzburg-Landau values (po= Co

] 2= —,p, =K~ = —,Kb =1) shows that ub/vo increases

from 0.6 for small vo to =0.74 at the maximum
value vo 0.826. Thus uq increases nearly linearly
with eo throughout the allowed range.

It is interesting to note that the initial value of ui,

(and hence the initial form of the helical texture) is
independent of how the superflow is established, be-
cause [see Eq. (40)] ((torus) = ((heat flow) when Po
vanishes. Once Po W 0, however, the particular ex-
perimental arrangement becomes important. Since
the pitch of the helix is fixed by the conditions when
the texture first deviates from the uniform state, it is

essential to specify the details of any experimental
procedure. Here we concentrate on textures that
evolve as H is increased past Ho at constant values of
the other external variables (such as the temperature
T and v„). This choice implies a horizontal trajectory
in the Hvo plane of Fig. 2. Many other possibilities
exist, and each, in general, requires a separate
analysis; a few are mentioned briefly in Sec. VI.

Once the helix appears, it becomes important to in-

vestigate its dynamical stability; here we consider
only longitudinal variations ~e'"', since these are
thought to be the most critical. ' First, the equilibri-
um parameters Po and tto of the helical state are
determined from Eqs. (38) and (39), assuming that
the system evolves from the uniform state with its
pitch ui, fixed as the magnetic field increases past Ho.
Next, the texture is assumed to undergo small varia-
tions about this equilibrium [compare Eqs.
(30)—(34)] with ttt(z, t ) = —ub(z —u„t ) + Sa(zt), ,

P (z, t ) = Pp + SP ( z, t ), and corresponding small
changes in y, t), and $. Finally, the small variations

are expanded in Fourier series, for example,

Sa(z, t ) = Xexp(ikz + a t )Stzb (43)

0.8

0.6

Y

0.4

0,2

0.2 0,4 0.6

FIG. 4. Stability regions for helices that form in i torus
for temperatures 0.99T, (curves a) and 0.90T, (curves b).
The helices evolve with increasing magnetic field H at fixed
initial relative superflow vo. The curves for i&eat flow differ
only in minor changes in H] and H&.

where k =2mn/L; n =0, +1, +2, . . . ; Stz„"=Stz „,
and ~o. '~ is the characteristic relaxation time of the
deformed helix back to its equilibrium configuration.
The linearized dynamical equations (18)—(22) for the
small variations lead to a determinantal equation for
o- as a function of k. ' The helix is stable only if o- is
negative for all values of k. Determining this region
of stability is analogous to that for the uniform state
(Appendix A), except that it now becomes crucial to
distinguish between heat flow and persistent currents
in a torus by imposing the appropriate constraints.

We have evaluated numerically the region of stabil-
ity for a helix subject to longitudinal perturbations„
using the hydrodynamic parameters from Ref. 3. As
the magnetic field increases beyond Ho, the equilibri-
um helix develops an ever-increasing opening angle
Po. At a critical magnetic field H~, the helical texture
ceases to be stable against small fluctuations of long,
but not infinite, wavelength [namely, n = +1 in Eq.
(43)]. For a helix of fixed pitch, it is curious that the
helices are unstable only in a finite range of magnetic
field H ] ( H ( H&, and that helices again become
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TABLE I. Critical opening angle and magnetic field when helix becomes unstable,

Heat flow

Hi P2

0.1

0.3
0.5
0.7

0. 1

0.3
0.5

0.623
0.607
0.569
0.510

0.648
0.629
0.586

0.053
0.160
0.262
0.355

0.050
0.150
0.247

1.84
1.85
1.88

1.84
1.85
1.87

0, 139
0.423
0.733

T =0.90Tc
0.135
0.409
0.703

0.602
0.591
0.565
0.531

0.643
0.633
0.610

0.052
0.157
0.261
0.364

0,050
0.151
0.253

1.85
1.88
1.94

1.86
1.88
1.95

0.161
0.504
0.956

0.163
0,514
0.985

stable with respect to longitudinal perturbations for
H 0 H2. ' %e denote the opening angles at. the two
points of instability by P~ and P2, respectively. Fig-
ure 4 sho~s the regions of stable helices in a torus
for two different temperatures; the situation for heat
flow differs only slightly. Table I lists the critical
magnetic field and opening angle for I at several
points along both stablllty lines. Notice that Pi 0.6
(=35'} almost independent of temperature and the
source of the imposed superflow, and that P2 exceeds

2

The helices that are stable in the range Ho & H
& H& have small opening angles, while those stable
for H & H2 have large angles. It is not obvious that
these large-angle helices arc accessible in an experi-
ment that increases the magnetic field at fixed v„,
because linear stability theory cannot determine the
subsequent evolution of the texture beyond the
threshold at H~. The next two sections investigate
the nature of the instability at H~ and suggest a quali-
tative picture that may provide some insight into the
ultimate evolution of the textures.

IV. NONLINEAR STABILITY

Thc preceding discussion sho~s that thc uniform
texture I =d =~ in a relative superflow vo becomes
dynamically unstable at a critical field Ho, signaling
the onset of a helical deformation with a specific
pitch uI, . This helical texture in turn becomes un-
stable at a higher critical magnetic field H~, and it is
natural to ask whether this second instability again
signals the onset of a new static distortion. To
analyze this question, we consider the time evolution
of the first unstable mode, including the leading non-
linear contribution. For the onset of the helical de-
formation at Ho, these nonlinear terms limit the
growth, 3'4 leading to a normal bifurcation'6 with the
characteristic Landau behavior P, a (H Ho)'~' just—
beyond threshold. In contrast, the nonlinear terms in
the transition at H~ will now bc shown to enhance
the growth, leading to an inverted bifurcation and a
catastrophic instability. For simplicity, we consider
only the dipole-locked limit.

In the case of one-dimensional motion, the dipole-
iocked free-energy density (17) becomes

f-—, (1+po sin'P)(a'cosP+ y'+ u„)' —Coa sin P cosP(a' cosP+ y + v„)

+ —, sin'P(K&~ cos'P+ K~L sin'P)a'+ , (K~L cos'P+KP sin—'P)P'+
2

H'cos'P,

where we have set 8=p, @=a, dropped the additional constant terms —2(1+pv2), and introduced the dipole-
locked parameters [compare Eq. (28b)]

KbL=K~+K) KL=K, +K2 K, =K, +K2

In general, the current

(45)

,
I'0=—,= —(1+posin'P)(a'cosp+y +v„)+Coa sin'PcosP

8f
(46)
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is a spatial constant of the motion that depends of the particular experiment in question. For a thermal counter-
flow, the heat f1ux itself determines j, , independent of the helical texture at the onset of instability. In a torus,
however, this constant depends on the specific parameters of the helix [see Eqs. (30)—(32) and (35)]:

jo (1+po sin2Po) [vo+ u (cosPo —I ) ] Coua sin2PocosPo

In either. case, the subsequent evolution of the variables a, p, and y for H )Hr must preserve this constant.
Thus the problem can be simplified considerably by introducing the Routhian free-energy density [see Eq. (24)]

Co cos'P sin'P,
2 o 1+ (po —Co) sin'Pf f —y', =

2
sin2P KoLcos P+K&Lsin2P —

2
a'2 joco—sP a'

I + po sin'p

0 2

jou„—+ —,(K cos'p+ KL sin'p) p'+ , H' cos—'p
posin

p, sin2P(a+ u„&x') = (49a)

which now depends only on the two dynamical vari-

ables &z(z, t) and p(z, t). The corresponding dynami-
cal equations become

small quantities and can be shown not to contribute
in leading order since the instability occurs at long
wavelengths. The constant coefficients in Eq. (52)
denote various partial derivatives of f evaluated in

the equilibrium helical configuration

p, (p+v, p ) =
Sp'

(49b)

~o+8~, P=Po+SP . (50)

Substitution into Eqs. (48) and (49) yields the exact
relations

The steady helix is characterized by the azimuthal
angle ao =-u„(z —u„t) and a constant polar angle

po, and we therefore write

g2 g"

sill Po 8&x o

82f
QP2

Slf
sinPo 8e&'Sp o

1

Q2 f
Qp

2

82f
sinpo, Sa Sp

83.f'

8&x Sp
r

, Sp'~p, o

p, sin2P(Sa+v„Sa') =, Sa"+, SP'

(51a)

A general deformation of the helix may be expand-
ed in plane waves of the form

x(z, t) = Xe 'x„(t), y(z, t) = Xe' '*y (t)
p, (SP+ v„SP')=,

2
SP

(}p 2
(5 lb)

where the partial derivatives themselves still depend
on the full dynamical variables. It is now straightfor-
ward to expand the coefficients about the steady heli-

cal texture. Introducing the abbreviations x —= 5o[' and

y sinPo —SP, we find the following approximate equa-
tions

p, (x + v„x') ( l +2y cospo+ )

x „(t)=x (t)', y (t) =y (t)" . (55)

Before studying the nonlinear evolution, it is helpful
to consider the linearized equations for the mth
mode

where ko=2e/L, and the Fourier coefficients satisfy
the relations

= ax" + by'+ e (x"y +x'y') +fy'y +

(52a)

p, (x,„+imkou„x ) = —m'koax +imkoby

p, (y,„+imkou„y ) = imkobx —(e+—m2ko2d)y

(56a)

p( y + v„y') = bx'+ dy" —ey ——,ex—' fx'y ——,gy'—
+ jt ( y "y +—'y') +

2

Here the terms omitted are of third order in the

(56b)

These have solutions of the form e ' [compare Eq.
(43)] and a simple calculation gives the allowed

values
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p(o'm-'+imkpu„) =——[c+m k (a+d)]+[—[c+m'kp2(a+d)] +m kp (b' —ac —m~kp2ad) }'i2

2195

(57)

It follows by inspection that a and d are positive;
furthermore, Figs. 5(c) and 5(e) show that c is also
positive (if c were negative, the helix would be un-
stable with respect to a uniform increase in the polar
angle Pp). Thus the instability first occurs for m =1,
when Reo I+' changes from negative to positive, at
the field HI determined by the condition

b2 —ac = k02ad (5g)
Since ko is small for a macroscopic system, this long-
wavelength instability appears approximately when
the determinant of second partial derivatives ac —b'
first vanishes. 4

The corresponding normal modes are linear combi-
nations of x and y:

=p xm+Iqmym, q m= iqmxm+p ymm. (59)

with the growth constants 0'+' and cr' ', respective-
ly. Here, the coefficients p and q are given by

p =iV [ —,
' [c+m'kp (d —a)]+S ), q =W mkpb

(60)

and

N =2S ( 2
[c+m kp (d —a)]+S ), (61a)

Sm = —[c+m k (d —a )]'+m kpb (61b)

Note that p'+q ' =1, so that Eq. (59) is readily in-

verted to give

Xm pm tm Iqm 'qm ~ ym qm 4 +mpm gm'

In addition, p,„ is of order 1 and q is of order
kpa/b = (Lap)-' = L'/L «1, implying that the
dominant motion in the unstable normal mode is tor-
sional.

%e now return to the exact nonlinear dynamical
equations (52) and construct the linear combinations
appropriate for the normal modes ( . Substituting
the Fourier expansions (54), we find

p(g +imkp( ) = po'+'g + X [ —p p(x„+inkpx, )2cosPpy „pemnk—p2x„y „+ip fnkpyy

+ iq en(m ——n)kpx„x„„+q fnkpxy „—iq [g+—hn(m+n)kp ]y,ym „)

(63)

STAT IC TEXTURE S
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a/2
H&HI
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I
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H &Ho
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Ho~ H &H
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DYNAMIC TEXTURES
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m/2
H& HI

~o
I

a/2

FIG. 5. Evolution of the free-energy density of helical textures with increasing magnetic stress. See text (Sec. V) for detailed
description.
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gl(t) =A (t) exp( —ikon„t), (65)

where A (t) is a small time-dependent amplitude.

with a similar equation for q . In the regime

k00d ~~ 6 —QC «~ 4koQd

just above threshold, only the lowest normal mode gl
grows with time in the linearized approximation.
Thus we assume that $I(t) has the form

xl =Pl(l =PIA exp( ikpu-„t)

—/q I $ I
= Iq I A—Cxp ( Ik 0

—
22n t )

(66)

The dynamical equation for A f'ollows from Eq. (63)
for m = 1:

Equation (62) shows that xl(t) and yl(t) are each of
order A, since the dynamical equation for q~ indicates
that lt ls of higher order (A ). Thus, to lcadlng or-
der, we may write

/M, (A —o II+II ) exp( —ikll22„t )

2p CosppPI [(X-I Ik022nx I)y2-+XI1VI + (Xl + Ikovnxl )y0+ (X2+ 2/koUnx2)y-I + '
1

Pl ekp ( ' X-ly2 +xlyp+ 2X2y —I + ) + IP Ifkp( y-Iy2+ylyp+ 2y2y —I +

+ /qI«0 ( 2X IX2 —2X2x I+ ' ' ' ) +qlfkp( x Iy2+xlyp+2X2y I+ ' ' ' )

2 Iql(g(y —Iy2+yoYI) + (g+2/tko )ylyo+ (g+6/tko )y2y-I+ ' ' ' j (67)

so that the nonlinear coupling among the modes introduces higher-order terms in A.
To identify the particular terms of importance, we consider the corresponding equation (63) for g2, retaining

only the leading nonlinearities (of order A2):

/I (~2+2'koun~2) =/Jlrr2 ~2 2P cos/30P2(XI +/k022nxI )yl 2P2«oxly'I + IPzfkpyI

+ —/q2«pxI + q2fkpXlyl ——/q2(g + 3/lkp )yl + (68)

Substitution of Eq. (66) on the right-hand side shows
that $2(t) has the form

$2(t) = $2I2IA ' exp(-2ik oil„t ) (69)

p, ~i"6"= — /(P I(2P2q +I,' P I q2)Ck�-
—oq(P2qI +PI q2)fkp.
+ —,

'
q2qI2 (g +3bk02 ) ]

Here terms of order AA have been neglected since,
by assumption, the initial growth rate of A is small.
At threshoid, Eqs. (57) and (58) imply that
/2, a 2+' =—12k~~I2'a/c, and use of Eqs. (60) and (61)
leads to the relation

T

/b
3

3fl2 go
2 (71)

neglecting terms of higher order in kpa/b « 1.
Similarly, $0(t) has the form gplA2, but the coeffi-
cient gP' turns out to vanish to this order. In addi-

tion, both 2)0(t) and 2/2(t) are also of order A2, but
the corresponding coefficients are smaller than gal in

Eq. (71) by a factor of order (kpt2/b)2. Thus only
the single mode g2 contributes to Eq. (67) in the
present long-wavelength limit.

It is now straightforward to evaluate the right-hand
side of' Eq. (67) to leading order in powers of A.
Equation (62) and (69) give

x, (t) =P g 2'a2' pe(x-2 k lptv)n,

y2(t) =iq2$2I2IA
' exp( —2/koan„t )

(72)

neglecting higher-order terms in the small parameter
kpa/b '~ The most significant feature of this equa-
tion is that the A term has a positive-definite coeffi-
cient. Below threshold (Reo II+' & 0), an infini-
tesimal initial perturbation A (0) decays exponentiaily
to zero. and the cubic term remains negligible. Just
above threshold, however, Reo ~+' becomes positive
and an initial perturbation A (0) grows exponentially
until the cubic term becomes appreciable. The solu-
tion then changes character and apparently diverges
at some finite time. The present approximation can-
not analyze this ultimate behavior in detail, but the
form of Eq. (73) clearly indicates the onset of a ca-
tastrophic instability that is not merely-a small defor-
mation to some nearby state. Similar inverted bifur-

and the corresponding xo and yo are negligible. Use
of Eqs. (55) and (71) eventually leads to the desired
relation

'2

/M, A = p, a'+IA + 3e — ' + g A' (73)
ko ' 3~0 0
6d b
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pi =0.622, H~ =0.538tio (torus)

Pi = 0.599, Hi =0.527vo (heat flow), (74)

essentially the same as those in Table I, where dipole
locking was not imposed. Correspondingly, numeri-
cal evaluation of the various partial derivatives yields
the value 3e —3fa/b +ga'/6' = —0.632 for a torus
and =—0.046 for heat flow. 3'

V. TIME-DEPENDENT TEXTURES

The preceding analysis suggests that the instability
of the helical texture at H~ does not produce a small
deformation to another more complicated static tex-
ture. Rather, the inverted bifurcation probably indi-
cates the onset of time-dependent dissipative tex-
tures.

To gain qualitative insight into the character of the
instability, it is useful to consider the form of the
free energy as a function of the opening angle of the
helix. A stationary equilibrium texture corresponds
to a local minimum of the free energy appropriate to
the experiment in question. The free-energy density

f with the natural variables a, p, y, 8, $ is therefore
the appropriate function for a persistent current in a
torus. In heat flow, the relevant function is f, which
has a, p, jo, 8, $ as its natural variables.

As iHustrated in Fig. 5, f and f are similar for
H & H~. They both have a local minimum at po= 0
for H & Ho, which represents the uniform state with
d i i [Fig. 5(a)]. The onset of a helical state at
Ho occurs when the curvature at po 0 changes sign
[Fig. 5(b)]. The local minimum at Po= 0 now be-
comes a local maximum, and the system undergoes a
typical Landau transition to the riew. local minimum
at po & 0. Once H exceeds Ho and po is nonzero, the
pitch uq of the helix is fixed by the initial relative su-
perflow. The free-energy' density then becomes a
function of us, and textures with different values of us

evoive differently with increasing magnetic field
As H-Ho gro~s from zero, the opening angle of

the helix increases continuously. %hen the helix
first becomes dynamically unstable at H~, the free
energy still appears to have a local minimum at
po-p& [recaH c &0 but ac —b'=0 in Eqs. (53) and
(SS)]. If the texture were only a function of the con-
stant polar angle po, the helix would indeed be stable
at H], but the additional degrees of freedom associat-
ed with nonuniform motion introduce more and dif-
ferent fluctuations. In this general parameter space,

cations are found in certain hydrodynamic prob-
lems. '6

The constants in Eq. (53) depend on the particular
experiment in question. Weak-coupling values of the
dipole-locked hydrodynamic parameters near T, yield
the following critical values for the onset of instability

the free energy acquires a saddle point that allows the
hehx to deform spontaneously for H & H~ [Figs. 5(c)
and 5(e)].

Once the system has left the local minimum

representing a stable helical state, it is likely to evolve
into a more complicated configuration. Nevertheless,
the form of the free energy for a helical texture pro-
vides valuable insight into the subsequent dynamical
evolution. Figures 5(c) and 5(e) suggest that the
texture then becomes intrinsically time dependent
(and dissipative through the Cross-Anderson viscosi-

ty). The dynamical equations drive the system to-
ward lower free energy, and the texture thus moves
to the reversed configuration with po

As long as the helical textures are stable, the prac-
tical difference between a torus and heat flow is

negligible (compare Table I). After the helical tex-
tures become unstable, however, the opening angle
increases toward m, and the difference becomes signi-

ficant. For example, the instantaneous value of
o„—w„ is increasingly different in the two cases as po
grows [see Eqs. (36) and (37)]

uo- (1-cospo) u» (torus)

u„—ti„= tio+ Coui, sin'po cospo
heat flow1+po sin'po

'

(75)

Recall that eo is the relative superflow in the original
uniform texture, taken to be the same in the two
configurations. %hen the time-dependent texture in
the torus has reached po= m, the relative superflow

has the new value 9o given by ~o= &o —.2u
The dipole-locked limit near T, yields the values
uI, =0.6vo, and so= —0.2eo, and other situations will
be qualitatively similar. In particular, we notice that
the direction of the relative supercurrent has reversed,
and its magnitude is markedly reduced. In an exter-
nal heat flow, on the other hand, when the texture
reaches po=sr, Eq. (75) shows that the relative su-
perflow is once again eo, the same as in the original
uniform state. Thus the instability of helical textures
leads to dramatically different configurations in a
torus and in heat flow.

The time-dependent process does not stop at
po = m, however, for the texture is now essentiaHy
uniform with I and d along —z, but in a finite mag-
netic field H & H~. For persistent flow in a torus,
the relative superflow in reduced and reversed, and
detailed analysis shows that this new uniform state is
once again unstable with respect to the formation of
a helical texture. Imagine the system to fluctuate
about po sr in a superposition of different plane-
wave states. The maximum growth rate in the
dipole-locked regime occurs for a characteristic wave
number k„ leading to the formation of a helix with
pitch ui, = k, = —(Co+ -,

' )oo/Ei, Since the free ener. -

gy depends on the pitch, the change from u& to u&
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alters the form of f qualitatively [compare Figs. 5(a)
and 5(d)]. In fact, the new free-energy density has a

deep local minimum near Pp = , n—that is stable with

respect to small-amplitude longitudinal perturbations.
Presumably, the system relaxes to this new

minimum, thus providing a mechanism for attaining
thc stable wide-angle helices sho~n as the region
H & H2 in Fig. 4. In essence, the reduction in the
relative superflow from ~, to ~, drops the system
along the vertical line H =H1(up) into the region
below the. curve H2 in Fig. 4.

In heat flow, the new uniform texture again has
I =d —z and H & Hl, but the relative supcrflow re-
tains its original value vo. This state is also unstable
with respect to small-amplitude fluctuations, with thc
maximum growth rate now occurring for u& = —

uA, .
Thus the system presumably develops into a helix
with equal and opposite winding. The new free-
energy density f (Pp) in Fig. 5(f) is obtained with the
substitution ul, —uI, ', it is simply the reflection of
the original curve in Fig. 5(e) about Pp= —,n. The

system is now at a local maximum and begins to de-
Crease pp ffonl 1r. T11C local nl11111llulll at p1 1S Bgalll

unstable because H & Hl, and thc system therefore
evolves by decreasing the polar angle continuously to
zero. At Pp= 0, the texture has returned to the origi-
nal uniform configuration, and the process can re-
peat, Thus thc texture in a heat flow oscillates from

Pp = 0 to Pp = m, continuously dissipating energy sup-
plied by the heat source. 3' The motion is anharmonic
because of the shape of f (Pp). Since Bf/8Pp van-
ishes at severai points along f (Pp), fluctuations or
boundary conditions that distort the texture must be
invoked to maintain the motion. As a result, thc
present dynamical equations are insufficient to
deduce thc per lod of thc motion.

These qualitative considerations have been based
solely on helical configurations, whereas the actual
textures that appear beyond H[ are almost certainly
morc complicated. In addition, the presence of
boundaries introduces surface layers. Both of these
effects may help explain the intricate periodic mo-
tions for heat flow found by Hook and Hall through
numerical integration for one-dimensional textures in

a finite channel.

VI. DISCUSSION

This work has concentrated on one class of helical
textures in superfluid Hc-A. The system is initially

prepared with a relative superflow vo and then sub-
jected to a parallel magnetic field. As seen in the
preceding section, the subsequent behavior depends
on the mechanism that produces the supcrflow, ow-

ing to different conserved quantities in a torus and in

heat flow.
It is important to realize that other experimental

situations also can lead to the formation of helical

textures. Even ln thc abscncc of a magnetic field,
for example, lowering the temperature can induce a
helix because the hydrodynamic parameters are tem-
perature dependent. '2 Figure 2 shows that the re-

gion I of stability for the uniform state shrinks with

decreasing temperature, and its disappearance at
=0.82T, indicates the spontaneous distortion to a
helical texture for arbitrarily small eo.

Once formed, by whatever mechanism, the helix
can become unstable in many varied ways. For sim-

plicity, we shall treat only the case of small-angle
dipole-locked helices, where analytic expressions are
rcadi1y availablc. In the case of heat f1ow, for cxarn-
ple, the general region of stability for Pp (( I Is

given by

H'+ up[(Cp+ —,
' )'(Kb ) ' —pp] ) 31''b (u —up)',

where u is the actual pitch of thc helix,
up

——(Cp+ 1 )vp/Ep, and vp is the initial relative su-

perflow when the helix first forms. Note that the
helix is stable for a range of pitches about the pre-
ferred value uq, even though u is expected to retain
the value uI, . Suppose, however, that thc heat
current changes after the helix is formed. The new
value vo will produce a new preferred uq different
from that appropriate to the original helix. Since a
small value of vo —eo can easily violate the inequality
111 Eq. (76), cvcll B snlall Bltcfatloll ln tllc llcat
current can render the helix unstable. In addition,
the preceding analysis of nonlinear growth beyond
the threshold for instability remains correct, again
implying a catastrophic transition to a ncw and qua1i-
tativcly different regime. Similar considerations apply
to a change in the temperature after the helix forms,
for the temperature dependence' "of the coefficient
(Cp+ —, )/K&L again aiters the optimum value of the

pitch even at fixed vo.
An analogous calculation for a helix in a torus

leads to a slightly different condition for stability, in

that the right-hand side of Eq. (76) acquires an extra
term 2PpH /vp. Since this additional term is positive
dcflnltc, small-angle hcllccs ln a torus should bc
more sensitive to changes in the optimum pitch than
those produced by heat flow. It would be interesting
to search for such an effect on a persistent current in

a torus, where a magnetic fic1d ~ould produce a static
helical texture. Torsional oscillations could modulate
v„—v„, which, in turn, should induce an instability
of the helical texture at a critical amp1itudc. Such
behavior could be monitored through a change in the
nuclear magnetic resonancc, '0 "or, perhaps, directly
as an altered current and angular momentum.
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Moreover, since

SI =SP(x cosa+y sina)

to leading order, and

(A3)

APPENDIX A: STABILITY OF UNIFORM TEXTURES

I z+Sl, d z+Sd, 4 -e z+54, (Al)

where the small variations in I and d must satisfy th@

constraints I ~ I 1 and d ~ d 1. To second order in
the small quantities, these conditions require

8/ xSI„+ySI» —2i (Sl» +8/»t)

Sd -xSd„+y Sd„——,i(81„2+Sd»2)
(A2)

.The basic dynamical relations are those in Eqs,
(9)—(11) concerning the time dependence of /, d, .

and the local phase 4. In the case of a large relative
superflow V, —V„=voz, and a small parallel magnetic
field H, the initial uniform configuration has
I -d -z. To study the time dependence of small de-
viations, it is simplest to use Cartesian variables,
with

V, --O(y+ Sy) —cos(Sp) v)(a+ Sa), (A4)

a simple analysis shows that 8 v, can be expressed in
terms of the Cartesian components'

sv, -Osc + ,
'

(8/„O-s/, -8/„Osi„) (AS)

correct through second order, ~here
SC =-(Sa+Sy).

Similar relations for d lead to five independent
variables g„~ [ 8/„, 8/», 84, Sd„, Sd» } with

1, . . . , 5, and we therefore obtain a set of five
coupled linearized equations whose coefficients are
the second partial derivatives of the free-energy den-
sity with respect to these variables and their gra-
dients. For example, the two independent corn-
ponents of Eq. (9) become (X-1,2)

where the partial derivatives are evaluated in the uni-
form texture; the corresponding three equations for
84, 8d„, Sd»{A.-3,4, 5) differ only in that the left-
hand side is replaced by zero. It is convenient to ex-
pand all the small variations in Fourier series

l

the configuration is unstable, whereas it is stable if
Reo is negative for all k. There are, in fact, only
two nonirivial degrees of freedom, and it is con-
venient to eliminate 84 and SB in terms of 8/„and
SI~. The resulting eigenvalue equation has the form

(~r r ) ~ X e/ k v+(rt~

k

which leads to an algebraic equation for the quantity
0 o+i k V„. If Reo. is positive for any k, then

(Ap, +A )Sl„+88/» 0

8"Sl +(Op, +C)8/» 0, (AS)

A (k» k» k») 1+pou02+K, k»2+Ktk»2+Kpk»2 (p»k pok» ) ~(Cok»tk» +u02p02k»)

—[ i H'+ K,k,'+ K,{k„2+—a,') ]-',
8 = [K, —K, —(pgk2 —pok»2) '(uopp2 —Cp2kg )]k„k»+iuok»[1+2CO —poCo(k»2+k» )(pgk2 —pok»~) '], (A9)

C-A (k», k„,k, )

Since the matrix of coefficients is Herrnitian, the
eigenvalues O~ and 02 are real, and the instability
occurs when their product AC —}8}'vanishes. Thus
the uniform texture is stable if ~ -}a}-o (Al la)

nai fluctuations (k ki), in which case A C and 8
is pure imaginary. The instability thus appears when

wc-}8}'~0, yk . (A 1 0)

Numerical evaluation for various values of eo and H
indicates that the instability first occurs for longitudi-

8
9k

(w —}a})-o. {A11 b)
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Direct calculation yields the conditions

ppup+ Kbk'+ (K)k —H ) (I —H + K ik )

= uok (2Co+ I ) ~ (A12a)

[Kb+K)(1 —H2+K(k2) 2]k =up(Cp+ —) . (A12b)

It is not difficult to eliminate 1 —H +Kik from
these equations, whose solution then yields the criti-
cal wave number k, for a given value of vp, and the
associated magnetic field. Figure 2 shows the corre-
sponding stable region I for several temperatures.
Near the origin (up «1, H « I), the critical field

(A13)

has the analytic form given in Eq. (28a) with

k, = (Cp+ , )—up/KbL,
1

but the remaining portion requires numerical
analysis. It is evident that the coefficients A, B, and
C do not converge uniformly as k 0. Indeed, the
assumption that k =0 yields the less restrictive con-
dition up )H'(1 —H') ' for the stability of the uni-

form state with respect to uniform rotations of I and
d. Thus the inclusion of phase variations and the al-
lowance for nonzero wave numbers considerably
reduces the stability of the uniform texture I = d =z.

A similar procedure determines the stability of re-
gion II of Fig. 2 (I =d =x in large field Hz and small

parallel relative superflow upz). The criterion (A10)
remains correct, but with the coefficients now given
by

3 =K,k»'+K, k,'+Kbk„—(Cok„k, )'(p, k' —ppk, ') '+ I —[I+K)k„'+K2(k» +k, )]

[K,—K, + Cpzk„'(p, k —pok„') ']k»k, +i upk, [p, —Co —ppCpk„'(p, k' —pok„) ']

(A14a)

(A14b)

C = I —ppup2+K k,'+K k2+Kbk2 k2(Cozk +Pouo)(psk2 Pokx) [I +H +Kik~ +K2(k» +k*')] ' . (A14c)

Once again, the most restrictive condition arises for
k = I, but it now occurs as a long-wavelength instabil-

ity with k~ = k, =0 and k„0; the associated boun-
dary of region II (see Fig. 2) becomes"

1 H
( )1/2 ( I + H2)1/2

(A15)

This critical velocity has a characteristic dependence
on magnetic field, which might be detectable experi-
mentally. 2b The overall coefficient is (J2) ' near T„
but it has an unusual temperature dependence
through po. Other choices for the direction of k yield
less restrictive conditions; for example, the factor

(ppp, )' ' is replaced by [pp+ (p, —Cp)'/(K, +K, ) ]'/'

if kz ky 0 and k, ~0, and by 1 if k is set equal to
zero from the start.

I

of Eq. (52b) acquires the extra terms

x (f) =Xx„,e '/"', y (f) =Xy /e /"', (B3)

2tH cosppcosfpf + e H [
2

cospp(1 + cos2 (of)

+ 2y cos2/3pcosfof ] +
(B2)

Since H is uniform, these extra driving terms affect
only the m =0 components [see Eq. (54)] in lowest
order, but the nonlinearities produce higher-order
couplings that turn out to delay the instability of the
helical texture from the value found in Secs. III and
IV for ~=0.

To verify this assertion, it is helpful to expand the
spatial Fourier coefficients x„(f) and y (f) [see Eq.
(54)] in a further Fourier series

APPENDIX B: EFFECT OF MODULATING
THE MAGNETIC FIELD

0 = H(1+ a cosfof )z (Bl)

where e (( 1. The formalism of Sec. IV is readily
generalized to include this behavior. In particular,
Eq. (52a) remains unchanged, but the right-hand side

Recent studies of harmonically forced one-dimen-
sional motion in an anharmonic potential well ' make
it interesting to consider the effect of a small har-
monic modulation of the magnetic field. For defin-
iteness, we assume that H remains uniform and of
the form

oH COSpp 6H COSPO
yo, i= . , yo, ]=

C + /o)p, C —/~p,
(B4)

The instability of the helix appears through the
time dependence of the Fourier coefficients x[ 0 and

yi 0, which involve nonlinear terms of the typical
form yo [xi i, yo [xi i and other similar ones. Thus
it also becomes necessary to consider the equations

where x / and y / are constant coefficients (apart
from those with. j =0, which may undergo slow vari-
ations relative to the period of the oscillatory field).
Evidently, only the two terms yo ] and yo i are of or-
der e, and a simple calculation yields the explicit rela-
tions
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for x~ +] and y~ +~, which again involve nonlinear

couplings, now of the form yo, +~x~, o or yo +&y& 0.
Since ya +t is known from Eq. (B4) to leading order
in a, these last equations are effectively linear and

may be solved for x~ +~ and y~ +~ in terms of x~ 0

and y~ 0. Substituting back into the dynamical equa-

tions for x~ 0 and y~ 0 leads to a set of linear equa-
tions similar to those in Eq. (56), but whose coeffi-
cients have additional contributions of order e2. A

lengthy calculation that works to zero order in ko and
to first order in e yields the modified stability condi-
tion [compare Eq. (58) and the following discussion]

2~'H4
ac —b'+ [b e sin Pa —[(fc —bg ) cosPa —bc sin'pa]

( ' '+c')'
+ (ta'p, '+c ) [b'cos2pa —2cos'pe(ce —bf)] ) =0 . (B5)

Numerical evaluation shows that the factor in braces
is positive at the original point of instability (a =0),
both for a torus and for heat flow. Thus modulating
the magnetic field actually stabilizes the helix because
the quantity ac —b' must become negative definite
before Eq. (B5) can be satisfied. The effect is largest
at low frequencies and falls to zero when sop, && c.
If the instability of the helical texture is eventually
detected for a uniform static magnetic field, it would
be interesting to investigate this nonlinear stabiliza-

I

tion. In particular, the critical opening angle (see
Table I) should increase by a term of order a'.

Similar calculations for a field of the form
Hz(1 +ac oksazcosrat) indicate that such a spatially
varying perturbation has a destabilizing effect, in con-
trast to the situation for a uniform perturbation. Un-
fortunately, construction of this sort of field is likely
to be difficult, so that experimental study of this
latter configuration appears remote.
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