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Thermal-conductivity measurements in liquid 4He below 0.7 K
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High-precision steady-state heat-flow measurements were made in pure liquid He under pres-

sures of up to 25 bar. The data cover the temperature range between 0. 1 and 0.7 K and were

obtained using sample containment tubes which ranged in diameter from 0.14 to 1.4 cm. The

data yield information about A, the phonon mean free patli for l;irge-angle scattering. At the

higher pressures phonon-roton scattering plays a significant role in limiting A. However, ;it low

pressures and temperatures the A results show evidence that three-phonon processes become

dominant. This permits inferences to be m ide concerning the phonon dispersion rel ition. In

the temperature regime for which A is comparable with the tube di imeter, a phenomenon was ob-

served which is analogous to the Knudsen minimum observed in ordinary-g is flow me;isure-

ments. These data are compared with the recent calculations of Benin and M iris.

I. INTRODUCTION with

where C~t, is the phonon specific heat per unit
volume, (e~) is the average group velocity of the
phonons, and d is the tube diameter. The effective
mean free path of the phonons is thus, in this case,
precisely equal to d.

With increasing temperature the phonon density
increases and A becomes limited by phonon-phonon
interactions. In the regime where A &( d, the pho-
nons in superfluid 4He can be treated as a gas of par-
ticles with viscosity q which is driven through the
tube via the gradient in fountain pressure set up by
the gradient in temperature. It then follows using
Poiseuille's formula for the volume flow rate of the
gas and the expression

s) = —,
' p„(cg)A

that
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At very low temperatures the thermal excitations in

liquid 'He, i.e., the long-wavelength phonons, travel
ballistically and scatter only from the walls of the
container. This is the process which restricts the flow

of heat and so in general the effective thermal con-
ductivity at low temperature must depend on the size
and shape of the container and also on the smooth-
ness of the surface. For the special case of an
infinitely-long cylindrical container with walls which

scatter the phonons diffusively, Casimir' showed that
the conductivity is given by

1
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The quantity g is approximately equal to unity. In
this viscous flow regime, which was first experimen-
tally observed by Whitworth, the conductivity thus
increases with a temperature dependence which is

greater than the T' dependence characteristic of the
boundary scattering regime.

When A = d, Whitworth found that the thermal
conductivity increases slower than T'. This result is

similar to the Knudsen minimum observed in

ordinary-gas flow measurements. Simons' and more
recently Benin and Maris" have theoretically studied
this intermediate regime and have been able to show
from their very different Boltzman equation ap-
proaches that such a minimum should occur. A sim-

ple physical explanation of the minimum has howev-

er not been given.
In this paper we report liquid 'He thermal conduc-

tivity results obtained using five different sample
tubes which ranged in diameter from 0.14 to 1.4 cm.
These tube diameters are such that the measure-
ments in the temperature range from 0. 1 to 0.7 K in-

clude the regime where A = d and thus show the
transition from Casimir to viscous flow behavior.
This experiment is thus similar to that performed by

Whitworth, however the experimental techniques
have been improved considerably leading to more
quantitative results. In addition, the temperature
range has been extended to lower temperatures and
measurements have now been made under pressure.

In Sec. II we give the experimental details. The
conductivity data are presented in Sec. III followed by
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a discussion of various complicating factors such as
the possible specular reflection of the phonons at the
tube walls, the effects of using a sample tube of finite
length, the slip of the normal fluid at the boundary,
and the effects due to the presence of the rotons.
We then give the results for A obtained from the
data in the viscous flow regime. Implications about
the phonon dispersion relation are discussed. The
transition region is then considered, Tube No.

Diameter
(cm)

Thermometer
spacing

(cm)

Tube
length

(cm)

TABLE I. Sample tube parameters measured at room
temperature. The thermometer spacing was measured
between the midpoints of the copper tabs soldered to the
nickel tubes. The wall thickness of each of the tubes was
1% of the diameter.

II. EXPERIMENTAL DETAILS

A. Apparatus

A diagram of the experimental apparatus used to
measure the thermal conductivity is shown in Fig. 1.
It consisted of five vertical sample tubes joined to-
gether at their lower ends via a circular copper mani-
fold which was in good thermal contact with the mix-

ing chamber of a dilution refrigerator. The nickel
tubes ranged in diameter from 0.14 to 1.4 cm and
had length-to-diameter ratios of about 20, see Table
I. The wall thickness was 1% of the tube diameter.
Each of the tubes was closed at its upper end with a
copper cap. Heaters, with superconducting leads,
wound on the outside of each of these caps were
used to measure the thermal conductance of the
empty tubes. To avoid problems associated with the
thermal boundary resistance, other heaters suspended
inside the caps were used when the apparatus was
filled with liquid helium. Two close-fitting copper
tabs made from 0.8-mm-thick copper sheet were soft
soldered to each tube. These thermometer supports
were positioned nominally 10 tube diameters apart,
Carbon thermometers and metal film reference resis-
tors were varnished onto these tabs.

The helium samples were confined to constant
volume using a valve' which was mounted on the

1

2

3
4
5

0.138
0.232
0.474
0.797
1.427

1.43
2.50
4.61
8.40

15.19

3.6
5.5

10,4
15.6
25.4

manifold. Also located on the manifold were a
heater and thermometer for temperature control; a
germanium thermometer which had been calibrated6
against the 'He vapor pressure scale in the range
from 0.3 to 1 K; and a cerium magnesium nitrate
(CMN) thermometer. '

In order to reduce the amount of specular reflec-
tion of the phonons from the container walls, each of
the sample tubes was fabricatred by electroplating
nickel onto an aluminum mandrel whose outside sur-
face had first been sand blasted using fine glass
beads. Thus after the leaching away of the mandrels,
the nickel tubes were left with "rough" inside sur-
faces. An electron microscope picture of the surface
is sho~n in Fig. 2. It was hoped that the roughness
created in this manner would be uniform over the
~hole surface and the same for each of the tubes
(see Sec. III D).
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F1G, 1. Thermal conductivity apparatus. FIG. 2. Inside surface of the sample containment tubes.
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8. Thermometry

The temperature was measured at the positions of
the two copper tabs on each of the tubes, see Fig. 1,
using 470 0, 0.5 % Speer carbon resistors. They
were ground flat on one side and varnished down
with cigaretter paper insulation onto the tabs along-
side 10 kO metal film resistors. The latter resistors
showed very little temperature dependence below 1 K
and were used as reference resistors. In addition,
differential thermometers werc used on the two larg-
est tubes. These thermometers each consisted of a
well-matched pair of Speer resistors: one mounted
on the upper tab, the second on the lower tab. Each
of thc ten thermometer-and-reference-rcsistor pairs,
as well as the differential thermometer pairs, could
be switched into either of two ac resistance bridges.

These resistance thcffnometcrs werc calibrated
against a CMN thermometer, ' which had in turn
been indirectly calibrated (between 0.36 and I K)
against a high-precision, ifI situ, Hc vapor prcssure
gauge. The calibrations were made during the actual
course of the data taking and were repeated each
time the thermometers were used (see Sec. II C).

For temperatures below a few tenths K, Anderson
et al. 9 have demonstrated that the temperature
dependence of Speer carbon resistors is well

described by the function

R =R sex(pAT v~)

'f00

0.4
l

0.050
I

%e have found that by adding a temperature-
independent series resistance term to Eq. (5), the
range over which our calibration data could be well

fitted was extended considerably. Using the expres-
sion

R = R&+ Ra exp(A T '~4)

with R~, Ro, and A as adjustable parameters, the rms
deviation of the temperature was typically 0.3% for
fits covering tge temperature range from 50 mK to
0.7 K. %e note that over this range the resistance
changes by more than two orders of magnitude (see
Fig. 3). However, since an even better fit of the cali-
bration data was required it was necessary to add
more adjustable parameters. This was done by
rewriting Eq. (6) with T '~' as the dependent variable
and adding terms proportional to higher powers of
In(R —Rs), i.e., in our final analysis we used the fit-
ting 'function

with the a, adjustable and R, set equal to 1250 O for
all of the thermometers. It is possible that fewer
terms would be needed if the bridge reference resis-
tances were truly temperature independent and if the
self-heating in the thermometers was reduced.

F'tG. 3. Calibration data for a thermometer made from ~

470 D Speer resistor. The straight line corresponds to the
relation ln(R —R&) AT '~" with R& 1200 O.

The bridges werc driven at an rms excitation level
of 0.7 mV when the thermometer-reference resistor
pairs werc used. This corresponded to a resolution in
the bridge ratio-transformer reading, tR = R/(R
+R„r),of about 10 ' and implied a relative tempera-
ture resolution 8 T/T of at ieast 10 ~ for temperatures
in the range from 0.1 to 0.7 K. Thus using these
thermometers a temperature difference d T between a
pair of tabs equal to 0.05T could potentially be mea-
sured to a precision of at least 0.2%. Ho~ever, due
to the very large thermal conductance of the largest
filled tubes at the higher temperatures, it was some-
times impossible to generate a 6 T of this magnitude
without exceeding the cooling power of the refrigera-
tor. It was thus necessary to measure much smaller
hT 's with high precision. This was possible using
the differential thermometers since these bridges
could be driven with higher excitation voltages (sec
Sec. IIC).

The calibration of the differential thermometers
was based on the fact that all of the 470 O Speer
resistors tested had a very similar temperature depen-
dence. The similarity of the particular pairs of resis-
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R4((T() R(, (T() A4( —Ab

R(( ( T(( ) Rb ( +b )

where Rb corresponds to the resistor in the regular
bridge circuit on the lower tab. Thus the temperature
of the upper tab can be computed using the relation

R, (T, ) =R, (T, )z 1 — (z —1)
SA

A
(10)

and the calibration of Rb which was discussed above.
The quantity SA /A was determined by comparing
low-temperature (T & 0.35 K) thermal conductivity
data obtained using the regular bridge thermometers
with data obtained using the differential thermometer
but analyzed for various choices of SA /A. For tubes
4 and 5 we found respective values of 0.03 and 0.05.
We note that the conductivity values resulting from
using SA/A =0.05 differed from those obtained with

SA/A =0 by a relative amount which varied little
with temperature and was roughly 5% at 0.3 K.

The power dissipated in the thermometers and
reference resistors was always insignificant compared
to the power supplied to the tube heater.

C. Procedure

Because of the large number of leads required for
each conductivity tube, it was possible, without seri-
ous modification to the cryostat, to make simultane-
ous electrical connections to at most three tubes.
Therefore the data had to be obtained on two cool-
downs of the apparatus. Prior to cooling, the cell
(Fig. 1) was evacuated using a copper tube soldered
into the manifold. This tube was then crimped and
soldered closed.

tors in the differential thermometers was directly
demonstrated by the fact that with no heat flowing
through the conductivity tubes (Q =0) the ratio
transformer reading, (I4 o

= Rp(( To)/! Rg(( To)
+ R4(, (TO) ) was near 0.5 and varied little with tem-
perature. Rq, and Rqb are the resistances of the
resistors in the differential bridge circuit on the top
and bottom tabs, respectively. With the constraint
that the lower tab temperature, Tb, be maintained
constant at To, the differential bridge ratio (Rq with

Q W 0 is related to Rq o via the expression

6t~, o Ra((T()
I —(Rq I —(Rao Ra(( Tb )

If it is assumed that over the complete temperature
range the resistance-temperature relation can be ex!-

pressed in the form R =Roexp(AT «) where

y(W 4 ) is the same for each of the carbon thermom-

eters, then it follows that for small temperature
differences

The thermal conductivity measurements were
made using the conventional technique: A known
quantity of heat Q was forced to flow through the
sample by dissipating power in the resistor located
very near the top of the sample. The resulting equili-
brium temperature difference AT between two points
in the sample was then measured and related to the
thermal conductivity K at the mean temperature via
the expression

Q = KA 6 T//( x

Here A is the uniform cross-sectional area of the
sample, and hx is the spacing between the thermom-
eters. We note that using this simple expression,
which determines an average conductivity, introduces
a relative error which is approximately equal'~ to

4
(hT/T)' This q. uantity was less than 0.1% for all

of our measurements and no correction was applied
to the results.

After making some very preliminary measurements
of the conductance of each of the empty tubes, the
final data for each empty tube was obtained according
to the following procedure. First, the cell was regu-
lated at 80 mK using the germanium thermometer
and heater mounted on the manifold. The bridge ra-
tios of the two tube thermometers were then record-
ed along with the resistance of the germanium ther-
mometer and the bridge ratio of the CMN thermom-
eter. Once this thermometer calibration data was ob-
tained, power was dissipated in the': outside heater
(see Sec. 11 A) at a level estimated, from the prelimi-
nary measurements, to result in a temperature differ-
ence between the two tube thermometers equal to 6%
of the temperature. The heater current was accurate-
ly determined using a potentiometer to measure the
voltage drop across a standard resistor. After equili-
brium had been reestablished, with the manifold be-
ing regulated at its initial temperature, the new resis-
tance bridge ratios and the heater current were
recorded. The temperature was then increased in
steps of 20 mK and the procedure repeated. Typical-
ly 20 min were required to obtain the seven quanti-
ties corresponding to each "datum point. "

After these measurements were completed, helium
(0.0024-ppm 'He) was admitted to the cell and mea-
surements were made on filled tubes at nominal cell
pressures of 0, 2, 5, 10, 15, 20, and 25 bar. The
helium samples were confined to constant volume by
closing the cold valve at 0.1 K (see Fig. 1).

The data taking procedure followed for the three
smallest filled tubes differed slightly from that
described above. Because of the large thermal con-
ductance of the helium samples it was possible to use
the thermometer on the lower tab of the tube being
studied in the temperature control loop. Thus when
the inside heater at the top of the tube was turned
on, the mixing chamber and manifold temperature
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decreased so that after equilibrium was reestablished
the temperature at the position of the lower tab was
unchanged from its initial reading. Because of the
greater sensitivity of the bridge thermometer it was
possible to regulate the temperature with higher pre-
cision. This method also facilitated achieving the
desired temperature difference between the upper
and lower tabs at any given temperature. Using
tables based on preliminary calibrations of each of
the tube thermometers, the heater current could be
easily adjusted to give a hT/T of roughly 0.06. This
was however contingent upon the dilution refrigera-
tor having sufficient cooling power. In Fig. 4 the
heater po~er necessary to generate a 5T of —0.06T,
is plotted for each of the tubes with a sample pres-
sure near zero bar. Also plotted in the approximate
cooling po~er of the refrigerator. The intersection of
these curves gives the temperature above which our
precision, using the data taking method described
above, is necessarily degraded due to insufficient
cooling power.

Figure 4 demonstrates that it was necessary to em-

ploy an alternate method for the two largest tubes in

order to obtain data of meaningful precision at the
higher temperatures considered. It was not possible
to simply increase the thermometer resolution at the
higher temperatures by using a larger bridge excita-
tion voltage since we were also limited by the preci-
sion with which the temperature could be regulated.
To at least partially circumvent this limitation a dif-
ferential thermometer was used on the two largest
tubes (see Sec. IIB). For a fixed heat flow through

the tube, a change in the manifold temperature
caused a shift 5Th in the temperature of the lower tab
and a shift in the upper tab temperature of approxi-
mately (I —35T/Tb)STb Thu.s the relative change
in the temperature difference measured by the dif-
ferential thermometer was 35TI,/Tq. Since the tem-
perature fluctuations were on the order of 10 4T, b, T
potentially could be measured with a precision of
better than 0.1%. However the actual precision of
the data obtained using the differential thermometers
was in general less than this limiting value. Even
when the b, T 's were made as large as the refrigerator
would tolerate it was not always possible, because of
excessive self-heating in the thermometers, to use a
bridge excitation voltage large enough to give the
desired temperature resolution, The actual precision
achieved is discussed in Sec. II C.

The thermal conductivity results for each of the
helium samples were extracted from the raw data in

the following manner. First, the CMN thermometer
calibration was determined using the readings of the
germanium thermometer in the temperature range
from 0.3 to 0.7 K, Next, the resistance bridge ratios
were calibrated against the CMN thermometer, using
the ratios recorded with no heat flowing in the tube.
These calibration data were fitted with the function
discussed in Sec. II B. It was then possible to com-
pute the total thermal conductance. of the tube using
the measurements made with the heater on. After
subtracting off the very small empty-tube conduc-
tance, the conductivity of the helium sample was ob-
tained by dividing by the cross sectional area.

1000,—— D. Uncertainties in the data

100

10

0.1
0.1

t t I

0.4 0.6 0.8 1.0

FIG. 4. Approximate power needed to generate a tem-
perature difference between the thermometer tabs of 0,06T
for each of the five tubes. P =0.1 bar. The dashed line

shows the cooling po~er of the refrigerator.

The tube diameters and the spacings between the
pairs of thermometer tabs-were both known to about
0.5%, while the accuracy of the power dissipation
measurements was better than 0.1'/o. Thus the con-
tribution to the overall uncertainty of the thermal
conductivity measurements from these sources of
systematic error is roughly 1.5%.

The relative precision with which the temperature-
difference measurements could be made was depen-
dent upon: (i) the temperature resolution of the
thermometers„(ii) the size of the temperature gra-
dient that it was possible to generate without over-
loading the refrigerator; and (iii) the precision with

which the manifold temperature could be regulated.
For the two smallest tubes it was possible to generate
a temperature difference of about 0.06T for ail tem-
peratures and the precision of these data is on the or-
der of a few tenths percent. For tubes 3, 4, and 5 a
temperature was reached, beyond which the size of
/t, T/T had to be gradually reduced. As a conse-
quence, the precision of the data for these tubes is
reduced at the higher temperatures.
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Figure 5 gives a summary of the estimated preci-

sion of the data for each of the five tubes for a sam-

ple pressure of 0.1 bar. The suffix d indicates that
differential thermometers (Sec. II B) were used for
tubes 4 and 5. The reduced precision at the low-

temperature end is due partially to the loss of bridge

sensitivity associated with the very large resistance of
the carbon thermometers at these temperatures. For
tube 5, however, a rquch more significant problem,
which may possibly be attributable to experimental
difficulties, was the fluctuation of the tab tempera-

tures. The fluctuations were present with and

without a heat flow in the tube and increased in rela-

tive amplitude with decreasing temperature. A simi-

lar, but very much smaller effect was also observed
for tube 4.

T {K)

FIG. 6. Thermal conductivity results for tubes 1 and 4
obtained at pressures of 2 and 20 bar.

Debye specific heat. At the higher temperatures the
conductivity increases much more rapidly due to the
viscous flow of the phonons and to the contribution
of the rotons. The transition to the viscous flow re-
gime should occur at some fixed value of A/d which
means that the deviation from the approximately T'
behavior should set in at a lower temperature for the
larger tube. The data obtained at a sample pressure
of 2 bar clearly show this effect. The 20-bar data at
the higher temperatures are more complicated partial-
ly due to the significant roton contribution to the
conductivity. In addition, the 20-bar data for the
smaller tube show an abrupt shift and change of
behavior near 0.6 K. This occurs near the tempera-
ture at which the expansion coefficient becomes nega-
tive" and the sample becomes unstable when heated
from the top. The data obtained with the larger tube
to not show this same phenonmenon but the im-
posed temperature gradients were considerably small-
er and apparently not sufficiently large to drive the
mechanical flow.

It is convenient to continue the discussion of the
thermal conductivity results in terms of the quantity

III. RESULTS AND DISCUSSION

A. Thermal conductivity data

The thermal conductivity results obtained using
tubes I and 4 (see Table I) and at nominal sample
pressures of 2 and 20 bar are shown as a function of
temperature on log-log scales in Fig. 6. At sufficient-
ly low temperature, the results should be-described
by the Casimir relation Eq. (1) which gives the con-
ductivity in the boundary scattering regime (A ))d).
In agreement with this expression, the lower tem-
perature data shown in the figure at both pressures
closely scale with the tube diameters. The conduc-
tivity also decreases with increasing pressure which is
consistent with the known decrease in the specific
heat. In addition, the data below roughly 0.4 K very
nearly fall on straight lines with slopes only slightly
less than 3, correspond to the T' dependence of the

y
—= ~/KCasimir (12)

However, for quantitative results to be obtained, the
Casimir expression [Eq. (I)] must be evaluated with
account being made for the nonlinear dispersion of
the phonons. Even at very low temperatures, the ac-
tual phonon specific heat shows significant departures

THERMAL-CONDUCTIVITY MEASUREMENTS IN LIQUID 4He. . .
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from the T' Debye behavior, but high-precision data'
for C~q exist and can be directly utilized. The deter-
mination of the temperature-dependent phonon
group velocity is more involved.

B. Phonon dispersion relation and

the average phonon velocity

a = cpIfk [I 4x2(P)k a4(P)k a6(P)k ] (13)

and imposed the two constraints that at k =0.4 A '

and at k =0.5 A ' the spectrum. agree with the
smoothed neutron results. '3 Equation (13) could
thus be rewritten in terms of only one parameter,
e.g. , a2. At P =0, e2 was adjusted to give a least-

squares fit of the specific-heat data. The computed
phonon specific-heat values which were compared
with the data in the fitting routine, were determined

by numerically evaluating the expression

/kg T

with the integration cutoff at k,„=0.5 A '. For the
low-temperature data (T (0.7 K) this cutoff is

above the momentum region where a significant con-
tribution is made to the phonon specific heat. The
data used were the smoothed results generated using
the best-fit expressions for C~I, presented in Ref.
7(E). The data were terminated at a temperature
beyond which the roton contribution to the total
specific heat is larger than 20%. This was done in or-
der to minimize the effects of possible errors in C~q

associated with the separation of the total specific
heat into phonon and roton terms. The k =0 pho-

The average phonon velocity can be computed
quite directly if the long-wavelength region of the
phonon dispersion relation is known. Since neutron
scattering experiments cannot accurately probe this

region of the spectrum, quantitative information
must be inferred from less direct measurements. In
the analysis of the specific-heat data discussed in Ref.
7, the coefficients in a power series in the tempera-
ture, which accurately describes the phonon contribu-
tion to the measured specific heat, were related
directly to the coefficients of an expansion of the
phonon energy in powers of the momentum. Very
recently, however, Donnelly et al. ' have demonstrat-

ed, using the P = 0 bar data, that this method gives
the correct e —k relation only for the smallest values
of k. In this section an outline is given of the
method we used to determine the pressure dependent
spectrum out to approximately 0.5 A '. It is con-
sistent with the specific-heat, neutron scattering, "
and sound propagation results. '"

We chose to write the dispersion relation in the
form

non velocity, cp, was computed directly from the
coefficient of the T tecum given for C,I, ."b' The
results for o.2 are, of course, quite sensitive to the
constraint values used for a at k =0.4 and 0.5 A '.
This is especially true at the higher pressures. Thus
rather than fitting the specific-heat results for P & 0,
the assumption was made, consistent with the find-
ings presented in Ref. 7, that 0.2 depends linearly on
the pressure. The further assumption was made that
at 20 bar, u2 is equal to zero which is in general
agreement. with the results of sound propagation stud-
ies. ' We thus find that the pressure dependences of
the parameters of Eq. (13) are given by

n2 = —1.30+0.065P

n4 = —10.25n2 —108.5 —1 + 28.44 ' —1
Co.4 co.s

Cp Cp

/ x

~6 = 25.0~2 + 434.0 —1 —177.8
Co.4 co.s

Cp Cp

(15)

with

c —=— = 247.0+ 2.86P
Ak k 0.4

pkm,„fQk p
(c,) =

Jlo e' ~ —1

)"max ak2dk
0 a/ks T

e
(16)

Figure 8 sho~s that even for temperatures as high as
0.7 K, (cg) differs from co by at most a few percent
and thus its use in Eq. (12) has only a small effect on
the reduced thermal conductivity y even at the lower

pressures.
In Fig. 9 the quantity g, which is defined by Eq.

(4) and which will be used later in the analysis, is

plotted versus temperature for several pressures. As
stated in the Introduction, g departs little from unity.

C. Reduced conductivity y

The experimental data can now be presented in

terms of the quantity y defined by Eq. (12). Plotting

cp s
—= — = 242.0+ 2.20P

tk k-o.s

The rms derivation of the phonon specific heat com-

puted using these parameters is about 1% for all pres-
sures. A comparison with the small-k neutron results
is given in Fig. 7, which shows the excellent agree-
ment with these data as well.

The isobaric, energy-weighted average group velo-

city of the phonons was computed as a function of
temperature using the expression



THERMAL-CONDUCT1VITY MEASUREMENTS IN LIQUID "He. . .

380

$.02-

540

0.98-

320

0.960 O.l 0.2
l l

03 0,4
T(K)

I

0.5 0.6

280

FIG. 9. Temperature dependence of the quantity g de-
fined by Eq. (4) along several isobafs.
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FIG. 7. The phonon dispersion relation extracted from
speciTic-heat measurements fEqs. (13) and (15)). Compari-
son is made with the neutron scattering data of Stirling et al.
(Ref. 13).

the conductivity in this manner, ho~ever, introduces
additional errors due to the uncertainties in each of
the quantities C~q, (cg), and d which can be exag-
gerated by uncertainties in the measured sample pres-
sure. The total of these errors is estimated to be of
the order of a few percent but should be mainly sys-

tematic and thus lead essentially only to an overall
shift in y. All of the results with y & 1.4 are shown
in Fig. 10. The five columns correspond to the mea-
surements made on each of the five sample tubes.
Data obtained at the same sample pressure are in
rows.

Kith the exception of the results for tube 3 each of
the strings of data, as expected, tends approximately
to one as T ~0. At the lowest pressure, y exhibits
the minimum first seen by %hitworth. Ho~ever, we
now find that this minimum, although shifted in tem-
perature, exists at all pressures up to the melting
curve.

The results for tube 3 are obviously inconsistent
with the data obtained for the other tubes. As sho~n
below this can be explained if a significant fraction f
of the phonons is specularly reflected from the walls
of this particular tube. Berman, Simon, and Ziman'
have shown that for this situation the Casimir ex-
pression should be written

+casimir 3 &pii (cg) d

which implies then that for tube 3'approximately 10'k
of the phonons were specularly reflected at 0.1 K.

D. Specular reAection

o 3.02-

l . . l . l l l

0,2 0.3 0,4 0.5 0.6
T (K)

FIG. 8. Temperature dependence of the average phonon
group velocity along several isobars.

The fraction of radiation with wavelength A. which
is specularly reflected from a uniformly rough sur-
face, characterized by a iength scale p, was deduced
by Herman, Foster, arid Ziman to be given by

(p ) ) ~&-se s IL ~ &-2p k

Thus for wavelengths iarge compared to p the sur-
face appears smooth and the radiation is specularly
reflected; while for small values of A. , the surface ap-
pears rough and the scattering is diffusive. For the
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FIG. Io. Reduced thermal conductivity y =—I«~Kcasimir vs temperature.

case of phonons the situation is more complicated
since there is a temperature-dependent distribution of
wavelengths. Here the fraction of energy flux (at low
temperatures) which is specularly reflected is comput-
ed by evaluating the expression

(P T) f e 2r k ek2dk/ f
e/k~ T 4 0 e/k~ T

e
(19)

Results of f vs T at P =0 bar, obtained by numerical
integration, are plotted for several values of P in Fig.
11(a). In Fig. 11(b) the quantity (1+f')/(1 f)—

which appears in Eq. (17), the modified form of
Casimir's relation, is plotted as a function of tem-
perature. Note that at sufficiently low temperature
the fraction of phonons specularly reflected will al-
ways become large since the wavelengths of the dom-
inant phonons progressively increase with decreasing
temperature. This is shown explicitly in Fig. 12
where the integrand of the denominator of Eq. (19)
is plotted as a function of wave number for three
temperatures. The maxima occur at values of k cor-
responding to a phonon energy of —3k&T. Thus, the
wavelength of the dominant phonons is roughly
2rrhco/3ks T which at P =0 is equal to 40/T A. The
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FIG. 12. The energy-weighted density of phonons for
three temperatures. The curves have been normalized so
that the area under each curve is unity. The maxima occur
at values of k corresponding to a phonon energy of —3k~ T.

1.0
0 0.1 0.2 0.5 0.4 0.5 0.6 0.7
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FIG. 11. The amount of specular reflection as a function
of temperature. The solid curves correspond to uniformly

rough surfaces and were computed for phonons in liquid

helium at zero pressure using Eq. (19). The dashed curve
labeled BFZ is the result obtained by Herman, Foster, and
Ziman (Ref. 16) from thermal conductivity measurements
on a sapphire crystal.

curves plotted in Pig. 11 therefore show that when
the dominant phonon wavelength becomes of the or-
der of p, specular reflections are becoming signifi-
cant. Thus if the effects of specular reflections are to
be minimized, p must be considerably greater than
A.d, ;„,„,. For measurements extending down in tem-
perature to 0.1 K this means p must be much greater
than about 400 A. It is for this reason that we at-
tempted to obtain a uniform surface roughness of—1—10 iM, m (see Fig. 2) which is stiH small in com-
parison to our smallest tube diameter of about 1 mm.
And indeed for tubes 1, 2, 4, and 5 there is no evi-
dence of significant specular reAection: at low tem-
peratures, where thc effects of specular reAcction
should be largest, we find that, within our overall ac-
curacy, the y data (Fig. 10) for each of the tubes
tends approximately to 1. This is the result expected
if the scattering at the wall is purely diffusive. %e
note also that since A,d, ;„,„,ce co the effect of specular
reAection from a uniformly rough tube should bc ex-
aggerated at the higher pressures, but there is no ap-
preciable pressure dependence to the zero tempera-
ture intercept.

The results for tube 3 arc quite different. The y
data for this tube are, at low temperature, approxi-
mately 25'/o greater than for the other tubes. indicat-
ing that here there is specular reAection. The depth
of the minimum is also greater for this tube which is
consistent with the expectation that the amount of
specular reflection increases with decreasing tempera-
ture. Moreover the increase in the depth of the
minimum as the pressure is increased from 0.1 to 5
bar would be explained since the position of the
minimum shifts to higher temperature. Estimated
values of f, obtained by comparison with the results
for the other tubes are plotted in Fig. 11. The tem-
perature dependence of (1+f)/(I -f) is radically
different from the curves computed for a uniformly
rough surface. But since this tube is unique among
several tubes prepared in the same manner, there is
no reason to expect that its surface is uniform. It is
possible that some portion of the aluminum mandrel
on which the nickel tube was plated was not through-
ly sand blasted, leaving small regions, not visually
detectable, which were relatively smooth. Also plot-
ted in Fig. 11 are results obtained by Herman, Foster,
and Ziman' from their conductivity measurement on
sapphire, and which agree more favorably with our
findings, particularly if allowance is made for the
much larger sound velocity in this crystal. These au-
thors have explained their results as being due to a
distribution of values of p. These arguments would
also apply to our results. Apparently, the tempera-
ture dependence of f for any reai surface can be
determined only empirically, which further ern-
phaslzcs thc nccd. for rcducjng thc amount of spccu-
lar reflection to a very small level if quantitative in-
formation is to be extracted from low-temperature
thermal conductivity measurements. The results for
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tube 3 will, therefore, not be included in the further
analysis of the data.

E. Finite-tube-length corrections

In the Casimir regime, the thermal conductivity,
while not depending on the spacing between the ther-
mometers, does depend on the overall length L of
the sample. This is a consequence of the phonons
scattering from the ends of the tube. As was shown
by Berman et al. " even for samples possessing per-
fectly rough walls (f =0) it is still necessary to apply
corrections due to the finite length of the samples.
For small values of d/L the results of their calcula-
tions are approximated if d in Casimir's relation [Eq.
(1)] is replaced by d(1 —1.3d/L). Thus the thermal
conductivities measured in tubes of finite length will

be less than those computed using the unmodified
Casimir equation. This means that the results plotted
in Fig. 10 should tend, at low temperature, to y
values that are somewhat less than unity. The values
of L/d for all of the tubes can be determined from
Table I. . They imply that the length correction should
range from about 5% for tube 1 to about 7% for tube
5. This may at least partially explain the trend of the
data, with increasing tube diameter, towards smaller
values of y at the minimum. It must be noted how-
ever that the length correction has been determined
only in the Casimir regime. In the intermediate and
viscous flow regions the effects of a finite tube length
should be progressively reduced. In the absence of
any appropriate theory, we have simply chosen to
correct all of the y values for finite-tube-length ef-
fects by multiplying these data by the expression

F =1+1.3(d/L)e

md4 dp

128' dx
(22)

which relates the volume flow rate of a gas to the
pressure gradient. This relation is based, however,
on the assumption that the fluid velocity at the wall

of the tube is zero. Actually the gas slips at the wall

and moves with some velocity v„„,= )du/dr Here r.
is the radial distance from the axis of the tube. The

0
4

tion of the tube diameter along isotherms should
show a set of straight lines emanating from the ori-
gin. The data obtained at 0.1 and at 2 bar are plotted
in this manner in Fig. 13 for several temperatures.
The results are clearly consistent with a set of straight
lines passing through a single y axis intercept, howev-
er, the intercept is considerably greater than zero.
This can be explained as being due to the slip of the
normal fluid at the boundary.

ln obtaining Eq. (3), use was made of Poiseuille's
formula

This function shows the proper behavior for the two
extremes of d/A and implies that the correction is
still significant in the region of the minimum
(d/A = 1) in agreement with the experimental indi-
cations. Although any errors introduced by this pro-
cedure will affect our quantitative conclusions con-
cerning the minimum in y, the consequences of using
this particular interpolation function should be
minimal in the viscous flow regime.

F. Slip coefficient

Equation (3) given in the Introduction implies that
the expression for y is the viscous flow regime should
be given by

'0 I

Q2
I I I I

0.4 0.6 0.8 1.0
TUBE DIAMETER (CN)

I

1.2
I

1.4

(21)

Therefore a plot of the appropriate y data as a func-

FIG. 13. The reduced conductivity y in the viscous flow

regime plotted vs the tube diameter for several isotherms.
The y-axis intercept is directly related .to the slip coefficient.
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parameter (, which has length units, is the slip coeffi-
cient. For ordinary gases both experiment and theory
indicate" that i; should be approximately equal to A,
if the phonons scatter diffusively from the tube walls.
With allowance for slip at the boundary, the
Poiseuille equation becomes

md4 dp
V = —1+Ss-

128q dx d
(23)

where s = g/A is the reduced slip coefficient which is
a constant of the order of unity. For the case of the
phonon gas, the driving force is the gradient in foun-
tain pressure given by

dp dT
dx dx

(24)

rrd'S'T dT
(25)

Using Eq. (2) to relate g and A and neglecting the
effects of the rotons, which are small at low pres-
sures, Eq. (25) implies that

S is the entropy per unit volume. Equations (23) and
(24) and the relation Q = TSV then lead to the ex-
pression for the heat flow

direct role in determining the thermal conductivity of
the liquid. An allowance must be made for the roton
enhancement of the heat flow which becomes partic-
ularly significant at the higher temperatures and pres-
sures considered.

At sufficiently high temperatures both the phonons
and the rotons should have mean free paths that are
small compared to the tube diameter. Thus, accord-
ing to two-fluid hydrodynamics

S =S, +Spy

There is also the relation'

S,Y=—y 1+- '
Spa

5 d 5~~g + sg32 A 4 (28)

The quantity S,/S~q is plotted along several isobars in
Fig. 14, which shows that even below -0.5 K the roton
effects become large at high pressure.

g Y)g + gp/g o

But for T & 0.7 K, q» is large compared to q, at all

pressures and so q =
hapl, . Thus, with the rotons tak-

en into account, Eq. (27) becomes'

~=——g( —Cl, (c )d) I+gs—5 d 1 A,
32 A 3 d

2.0

where g is defined by Eq. (4) and is a quantity which
is approximately equal to one (see Fig. 9). It then
follows that in the viscous flow regime

y= ——g+ 4sg
5 d 5

Thus the y intercept in Fig. 13 quite directly gives the
reduced slip coefficient.

The straight lines were actually drawn with an in-

tercept aty = —, which corresponds to the value

s = —,
5

estimated by Whitworth following the method

used by Millikan' for ordinary gases. Much more
detailed calculations made recently by Benin and
Maris' and by Jensen et at. ' yield the slip coeffi-
cients 0.592 and 0.579, respectively. Using either of
these two theoretical values, however, leads to a
poorer fit of the experimental data.

It should be noted that several of the data points
plotted in Fig. 13 have y = 1 and, therefore, are not
in the well developed viscous flow regime. These y
values should then lie above the corresponding
straight lines, suggesting that the y intercept may ac-
tually be even somewhat less than —.2

G. Roton effects

Ch
CL ip

M

0.3 04 0.5
T (K)

0.6 07

In addition to limiting the mean free path of the
phonons (see Sec. III H), the rotons play a more

FIG. 14. Ratio of the roton and phonon entropies plotted
vs the temperature.
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As stated above, Eq. (28) is valid only if both the
phonons and the rotons are in the hydrodynamic re-
gime. Considering first the rotons: The expressions
given by Landau and Khalatnikov lead to the roton
mean free path (in cm) being approximately given by

s 5 3 4/AT
2 x 10 p ~ e . The implication is that this mean
free path should be small compared to the tube diam-
eters at all pressuies for temperatures beyond the
minima. Also, at high pressures. the experimental
observation of roton second sound" is a direct indi-
cation that here the rotons are hydrodynamic. Evi-
dence that the phonons are at least approaching this
regime at the higher temperatures and at all pres-
sures, is the fact that each of the strings of y data
presented in Fig. 10 shows a minimum of about the
same depth. This means then, that even at 25-bar
pressure, where the roton effects are greatest, the
minimum in the corrected data (at which A = d) can-
not occur at a temperature which is much greater
than the position of the minimum in y. Consequent-
ly, we expect that the phonons should also be hydro-
dynamic for large values of y, at least at the lower
pressures.

H. Phonon mean free path

The mean free path of the phonons can be extract-
ed from the conductivity data in the viscous flow re-

gime using Eq. (28) which with s = —„canbe rewrit-

ten

A = —,', d/( 1'/g ——'
, ) (29)

This form of the expression emphasizes the fact that
for small values of Y, A is quite sensitive to the exact
choice for the slip coefficient and also to possible sys-
tematic errors in Y. Consequently, the most reliable
results for A should be obtained using the measure-
rnents on the largest diameter tubes. Values of A vs
T at 0.1 bar are plotted in Fig. 15 for tubes 4 and 5.
The Y data mere corrected for finite tube length ef-
fects and were normalized so that they agreed at the
minimum value of Y. The data over most of the
temperature range plotted fall quite accurately on a
straight line in this log-log plot which corresponds ap-
proximately to a T ' temperature dependence. The
systematic deviations from this behavior at the low-

temperature end are for data outside of the various
flow regime where Eq. (29) is no longer valid. Near
0.4 K the two strings of data merge which indicates
that when A =

2
d the thermal conductivity is already

that characterizing viscous flow of the phonons. This
implies that the A results for tube 5 should be valid
for A & 0.7 cm or equivalently for T & 0.35 K. At
lower temperatures the position of the minimum in

Y, can be used to determine values of A since the
minimum occurs when A = 1.53d (Sec. III I). The

10

TUB

TUB

0.1—

0.01 I

03
I
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I I

05 06 07 08

data obtained for tubes 4 and 5 using this relation are
plotted as open squares and are consistent with the
mean-free-path results for A & 0.7 cm. The mea-
surements of Whitworth' at I' =0, solid triangles, are
also shown in the figure. His results have actually

S
been scaled by 3

to account for the different expres-
sion he used to relate q and A. There is good agree-
ment, especially for the two pairs of points on the ex-
tremes of his temperature range.

The dashed line in Fig. 15 corresponds to the ex-
pression (in cgs units)

2c 11

A = 4 50 x 10 48 T(u+1)4 (30)

mhich was derived by Landau and Khalatnikov as-
suming that the phonon dispersion relation was nor-
mal and thus that three phonon processes (3pp) were
not allowed. In this expression p is the density and
u is the Gruneisen parameter (p/co)(dco/dp). As
first shown by %hitworth, this expression is clearly
inconsistent with the experi'mental results. It is now
known, however, that the phonon dispersion is
anomalous and that three-phonon small-angle

FIG, 15. Temperature dependence of the phonon mean
free path at P =0, 1 bar. The circles at the lowest tempera-
tures were determined using data outside of the viscous flow
regime and, therefore, do not correspond to the intrinsic
values of A. The squares were determined using the posi-
tions of the Knudsen minima for tubes 4 and 5. The solid
triangles are Whitworth's measurements (Ref. 2). The
dashed line is proportional to T and is the mean free path
for four phonon processes calculated by Landau and Khalat-
nikov (Ref. 20). The solid curve was calculated according to
Maris's model (Refs. 23 and 24) using the parametrization
of the phonon dispersion relation given by Eq, (31).
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a = cotk (1 —a2k —a4k") (31)

vrith a2 —1.1 A' and a4= 8.2 A'. This curve pro-
vides an excellent description of the data with

T & 0.5 K. However, since there is a strong correla-
tion between e2 and cx4 fits which are nearly as good
can be obtained with other values of these parame-
ters as can be inferred from the curves plotted in Fig.
16. In Fig. 15 the discrepancy between the theoreti-
cal curve and the experimental data at the higher
temperatures can be explained as being largely due to
the unrealistic shape of the dispersion curve
described by Eq. (31) near the maximum in the
sound velocity. As a consequence, the cutoff in the
integration of Benin's expression occurs at too low a
wave vector.

processes can take place." Assuming that this is the
dominant scattering mechanism Maris ' calculated the
normal fluid viscosity. His results were based on a
phonon dispersion curve which was very similar to
that plotted in Fig. 7 and agreed well with the Whit-
worth data between 0.45 and 0.6 K. Almost identical
theoretical results were obtained by Benin'4 using a
simplified method. The present data indicate howev-
er that the temperature dependence of A in this tem-
perature range is somewhat steeper than found by
Whitworth. In addition the new data extend to lower
temperatures and can thus-provide a more severe test
of the theory. The solid curve in the figure has been
determined by numerally evaluating Benin's expres-
sion [his Eq. (12)) using the dispersion relation

Presumably a more flexible function describing the
phonon dispersion relation could be used to more ac-
curately fit the mean-free-path results over the com-
plete temperature range. The possibility of accurately
determining e2 would be improved considerably if
the experimental data extended down to much lower
temperatures since Benin's relation implies that A

should tend toward a T 9 temperatures dependence
with an amplitude easily related to 0.2. It should also
be noted that there is some ambiguity in the highest
temperature results since higher-order scattering
processes may become important as discussed below.

As the pressure is increased to 2 bar the position of
the minimum in y (Fig. 10) shifts to higher tempera-
tures which implies an increase in the mean free
path. In Maris's model this is explained in part as
being due to a phonon dispersion which deviates less
from linear behavior leading to three phonon
processes which are more nearly colinear. Thus more
of these small-angle collisions are needed to make up
a large-angle collision. The A results at 2 bar are
plotted in Fig. 17. Below approximately 0.6 K the
results are as expected. At higher temperatures,
however, the temperature dependence of A becomes
steeper, which is evidence that other scattering
processes are becoming significant. The A data at 5

and 10 bar are also plotted in Fig. 17 and exhibit a
temperature dependence for T & 0.6 K which is even
greater than the T 9 dependence expected for four
phonon processes. This would suggest that phonon-
roton scattering may be important at these higher
pressures.

10
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FKJ. 16. Benin's expression (Ref. 24} for A evaluated us-
ing the dispersion relation given by Eq. (31).

FKJ. 17. Mean-free-path results at sample pressures of 2,
5, and 10 bar. The solid curves correspond to 3ALK.
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ALK

2 90 X 1032
9/2 -h/k~7

~ 6 4/3&op

lO/3
'

x 0.133+13.3 x 10" —,
t

+2.22xIo" ("+I) r' .
2~ ll (32)

Numerical values for 8, ctc., have been substituted
and the empirical relations ' ' (ln cgs units)

p, =3.859 x 10-l9p'/3

l/2 t

p Po =1.49 x 10
m4

have been used. In thc above equation 6, po, and p,

are the usual roton parameters. ALK is plotted as a
function of T along several isobars in Fig. 18, using

The Landau-Khalatnikov (LK)" expression for the
phonon mean free path, which takes into account
only the four phonon processes and phonon-roton
scattering (and which involves no adjustable parame-
ters) can be written

values of co, u, and p from Rcf. 27 and values of I
from Ref, 7. These curves qualitatively show the
same temperature and pressure dependence as the
higher temperature experimental results shown in
Fig. 17, however, the magnitude of ALK is a factor of
3 too small. The solid curves plotted in Fig. 17 cor-
respond to 3 ALK. Note that although wc compare
and find agreement with the scaled form of Eq. (32),
the Landau-Khalatnikov result for the four phonon
process should hold only if the phonon dispersion is
normal.

Thc experimental results for A at pressures greater
than 10 bar arc unreliable and have not been includ-
ed in Fig. 17. The large uncertainty in the data arises
mainly from the fact that the roton correction (Sec.
III 6) increases rapidly with increasing pressure.
However, these data can be checked for consistency
with thc findings at lower pressures. In Fig. 19 the
quantity y/( 3, dg/A+ 4 sg) is plotted versus r at

P =20 bar using A 3 ALK. In agreement with Eq.
(28), the solid curve in the figure corresponding to
(I+X„/S~l,)' describes these data well.

Making the assumption that

1 1 1+
A A3» 3ALK

values of A3» have been extracted from the data at
0.1 and at 2 bar and are shown in Fig. 20. The
smooth curves dragon through the data correspond to
the expressions

A„,(O.I) =2.I3 x IO-'r '+6.34 x IO--'r-'

P= 20bgr
TU
oTU

0.5 06 0.7

FKJ. 18, ALK determined using Eq. (32).

FIG. 19. Comparison of the quantities y/( 32 dg/3ALK
5

+ 4sg) and (1+5,/S&I, )2 at P =20 bar. The good agree-
5

ment is in accord with Eq. (28) and the results for A at
lower pressures.
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FIG. 21. Y vs d/A in the region of the minimum. y
reaches a minimum value of about 0.85 near d/A 0.6S.
The dashed curve is due to Benin and Maris (Ref. 4). The
solid curve is a smooth curve drawn through the data.

FIG. 20. A3&& extracted from the experimental data using
Eqs. (29) and (34). The solid curves correspond to Eq.
(35).

and

A3~~(2) =2.6A3~~(0.1) (35)

I. Knudsen minimum

Y =y [1 + 1.3 (d/L) e ~~" ) ( I +S,/S~s ) ' (36)

Y thus corresponds to the y values that would have
been measured in an infinitely long tube if only pho-
nons were present. Additional scaling factors of
0.995, 1.04, and 1.05 were applied, respectively, to
the results for tubes 2, 4, and 5 to improve the
agreement. The magnitude of these overall scaling
factors is consistent with the estimates of the possible
systematic errors in the measurements. With the ex-
ception of the results for tube 4 below the minimum,
all of the values plotted fall quite accurately on the
universal curve smoothly drawn through the data

In the viscous flow regime Y can be written as a
function of d/A [Eq. (28)]. At lower temperatures,
in the region of the minimum, one would expect this
ratio to continue to be the relevant parameter. Thus
in Fig. 21, Y at P =0.1 bar has been plotted versus
d/A for tubes 1, 2, 4, and 5 using values of A deter-
mined by Eqs. (34) and (35). These Y values are the

y data shown in Fig. 10 corrected for finite tube
length and roton effects, i.e.,

points. There is no obvious explanation for the
departures of the tube 4 results. The higher-pressure
data should also fall on this curve, however, the un-
certainities increase rapidly with increasing pressure.
This is due to the increasing importance of the roton
corrections to y which near the minimum cannot be
assumed to be the simple factor given in Eq. (36).
There is also then the consequential problem that the
position of the y minima cannot be used to extend
the data for A down to lower temperatures. More-
over, A develops a strong temperature dependence at
the higher pressures which leads to larger uncertain-
ties in A(T).

The results plotted in Fig. 21 indicate that Y

reaches a minimum value of about 0.85 when
d/A =0.65. Whitworth2 also found the minimum to
have about the same depth, however he places the
minimum" at d/A =0.87+ 0.13. This discrepancy
may be in part due to the fact that all of Whitworth's
data showed evidence of specular reflection for which
a correction had to be applied. There is also some
uncertainty in his temperature scale. The dashed
curve in Fig. 21 shows the recent theoretical results
of Benin and Maris. 4 Their curve exhibits a
minimum y value of 0.91 at d/A = 0.40.
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