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Crystal field of Dy implanted in Ag obtained by Mossbauer spectroscopy
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The magnetic field dependence of the hyperfine interaction of ' 'Dy impurities in Ag has

been studied in external fields up to 3.2 T by means of Mossbauer spectroscopy. ' 'Dy was in-

troduced into a single crystal of Ag by means of low-temperature implantation. From the mea-

surements we can determine the parameters of the cubic crystalline electric field (CEF);icting
on the Dy nuclei: A4(r4) = —l3.5+4.5 K and As(rs} =+5.7+0.3 K. These results seem to be

at variance with those of other methods, However, we will show that the above CEF parame-

ters can account for the other experimental results is well, It may be concluded that in this c ise

Mossbauer spectroscopy is probably the only method to determine the CEF parameters A4(r4)

and A&(rs) with reasonable accuracy.

I. INTRODUCTION

Present-day interest in low-temperature magnetic
properties of rare-earth ions in cubic metallic en-
vironrnents has led to a number of experiments in

which various techniques have been used to,deter-
mine the crystalline electric field (CEF) that piays an
important role in these systems (e.g. , magnetic sus-

ceptibility, specific-heat measurements, inelastic neu-
tron scattering' '). For an accurate determination
single crystals of dilute alloys have to be grown in

most of these cases. Generally, low solubility
hampers the formation of such alloys.

In this paper it will be shown that in those cases
Mossbauer spectroscopy on low-temperature-
implanted radioactive ions is a useful tool for study-

ing the CEF, As a host we chose Ag, because a
number of techniques have been used to determine
the CEF parameters of Dying' "6with a reasonable
accuracy, presenting a test case for our method.
From a combination of dc-susceptibility and
electron-spin-resonance data' it follows that the
ground state is a I 7 doublet separated from a I 8 ex-
cited quartet by 5 =11,5+1.0 K with an overall mul-

tiplet splitting of 160+ 25 K.
In this paper the hyperfine interaction as found

from our Mossbauer-effect measurements is analyzed
in terms of the CEF acting on the rare-earth electron
spin. Experimental conditions for the accurate deter-
mination of the CEF parameters were chosen in such
a way that only the lowest electronic state was popu-
lated. In this way the influence of relaxation between
electronic levels was eliminated and the hyperfine in-

teraction measures directly the moments (J,) and

(J,') of the electronic ground state as a function of
the external magnetic field.

%e find the same separation 1= 11.1+ 1.1 K but a

much smaller overall splitting (55 K), corresponding
to a set of CEF parameters quite different from that
found earlier. As will be discussed, all the other ex-
perimental results can be explained with this smaller
overall splitting, taking into account the concentration
Inaccuracy.

II. THEORY

In the presence of a magnetic field the most gen-
eral operator equivalent potential with cubic point
symmetry within a manifold of angular momentum J
composed of,f-electron wave functions may be writ-
ten in the form'

H = ——,A4(r4) pJ(Og~ —20&20' )

+ ', As(r'—)yj(Ose+ —", J20s3 + —"
, 0,')

+gjpgB ~ J

with the (ill) direction as a three-fold quantization
axis. (There ls some confus1on about the signs of
the coefficients of 643 and 063. Here we chose the
axes as in Hutchings. ' Changing the sign corre-
sponds to a rotation of m around the three-fold axis. )
(r ) and (rs) are radial integrais, the O„are the so-
called operator equivalents, and pj and yj are multi-
plicative factors as given' in Ref. 8.

The coefficients A4(r4) and As(rs) can be calcu-
lated if the influence of the environment is approxi-
mated by point charges on the fcc lattice, but since
the contribution of the conduction electrons, which

play an important role in these systems, cannot be
calculated, it is customary to regard A4(r') and
As(r ) as parameters to be determined by experi-
ment.
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HM = gg p, NBhrIg (2a)

In the case of Dy('H&&J2) the qualitative effect of
the cubic field Hamiltonian is a splitting of the lowest
J multiplet irito two doublets (I'6 and I'7) and three
quartets (I'j", I'P', and I'P'). In the presence of an
external magnetic field these levels are mixed by the
Zeeman interaction and any degeneracy is removed.

Because the hyperfine interaction is small com-
pared to the differences between the electronic ener-

gy levels, we can use first-order perturbation theory
to obtain the magnetic and electric part of the 4f con-
tribution to the hyperfine interaction in a certain elec-
tronic state9:

electronic states. The matrix A (m) is given by

A (m) = I'(—m)1+i [D(m) —r«1]+m

where I'(m) is the halfwidth of the Mossbauer line of
the mth transition, 1 the unity matrix, and II«(m)
=«&z(m)5«(k =1, . . . , 16). In the last expression
ruI, (m) is the frequency of the m th Mossbauer transi-
tion for given values of (k lJ, lk) and (k IJ,'lk), that
can be found for all the 16 states with the aid of Eq.
(I). Assuming that the Dy electron spin relaxes via
the conduction electrons (i.e„through the off-
diagonal elements of the s-f interaction, ' the transi-
tion probabilities ski between the electronic levels are
given by

with

(J*) B„r(max)= Rsr B„r(max)J

e q4H = '" [31,'-1(r+ I)],
41(2( —1)

rr(k I) =(2kaD) ' Xl(klJqll)l'

~kl
X Ek &EI ~

exp(A«/ka T) —I
'

n(l k)=(2ksD) 'Xl(klJql&)l'

with

3(J') —J(J+1)
q4f =

3J2 —J(J+ I )
q4f ( max) = Rqq4J'( max)

(3b)

~kl

1 —exp( /J «/kJJ T—)

rr(k k) = —X rr(k i)
l pt-'k

S(m, ~)=Re[W(m) A(m) ' 1]

and the complete Mossbauer spectrum by

S(ru) = XS(m, «J)

(4)

where the sum is over the allowed transitions. In
these expressions 1 is a column vector of ones,
W(m) = C(m) [p~,p2, . . . , p~6], where C(m) is the
nuclear transition probability for the m th transition
and p~ to p~6 are the population densities of the 16

In these expressions B„r(max) and q4f(max) are the
hyperfine field and electric field gradient, respective-
ly, when the 4f contribution is maximal ((J,) =J).
For the case of Dy their values are well known.
From our low-temperature Mossbauer experiments
we can obtain the ratios RM and R~ in the electronic
ground state as a function of the external magnetic
field. On the other hand, by diagonalizing Eq. (1) we
can find values for (J,) and (J2) [or, using Eqs.
(2b) and (3b) for Rsr and Rq] in terms of the
parameters A4(r4) and A, (r'). These parameters
can now be adjusted so as to obtain a least-squares fit
to the measured RM and R~.

If not only the lowest electronic level is populated,
relaxation phenomena will be present. These can be
treated using the rate-equation method, "described in
detail by %'it et al. ' As is shown in Ref. 10 we can
describe the intensity distribution of the m th transi-
tion in the Mossbauer spectrum by

with 5«= lEI, —E~l and where X denotes a sum
over J+, J, and J, . If the s finteraction -is written

Hf (gJ 1)JfJ s

the Korringa-like constant D is given by

D [(gJ 1)Jfrl] ks
VT E(a)

(1 —a)'

with gJ is the Lande factor, J,f is the coupling con-
stant between the 4f-electron spin and the conduc-
tion electrons, q is the conduction-electron density of
states per one spin direction at the Fermi level, and
the factor K (a)/(1 —a)2 allows for exchange
enhancement of the conduction electrons. '

III. EXPERIMENTAL

The sources used for the experiments were ob-
tained by irradiating 12 mg of Gd203, enriched to 98
at. o/0 in 16oGd for 5 d in a thermal neutron flux of
2 & 10' n cm s ' in the reactor of the Energie Cen-
trum Nederland (E.C.N. ) in Petten. The desired ac-
tivity '6'Tb (T~J, =7 d) is the decay product of '6'Gd

(T~J2= 4 min). ' 'Tb was separated from the irradi-
ated oxide using the Groningen Isotope Separator
and implanted with an energy of 112 keV into an Ag
single crystal of purity 99.999% cut perpendicular to
the (111) axis. During the implantation the Ag crys-
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tal was kept at liquid-helium temperature. Before the
implantation the crystal was etched by a mixture of
NH4OH and HqOq and checked by the Laue method.
In order to avoid vapor condensation on the target
crystal surface before implantation the target was

kept at room temperature during the cooling down of
the cryostat until the implantation was started. The
average implantation depth is much larger than the
thickness of the condensed layer. Using the data of
Winterbon, '4 a mean penetration depth of 160 A and
a width of the semi-Gaussian depth distribution of
175 A can be estimated for Tb in Ag. The implanted
dose was 1 x 10" atoms cm, corresponding to a
maximum impurity concentration of 500 ppm.

After transportation of this source at liquid-
nitrogen temperature, Mossbauer-effect measure-

5 — 5+
ments on the 25.7-keV —, —, transition in ' 'Dy

were performed in another cryostat. Magnetic fields
were produced by a superconducting split coil. The
magnetic field was oriented along the (111) direction
of the crystal. The single-line absorber
(11.2 mgcm ' '6'DyF3) was moved sinusoidally at
room temperature with a frequency of 37 Hz. Velo-
city calibration was performed by means of the moire
technique. " Gamma rays were detected with a Kr-
CO~ filled proportional counter. Measurements were
performed in magnetic fields of 1.52 and 2.22 T at
1.7 K and of 3.21 T at 4.2 K.

IV. RESULTS AND ANALYSIS

If a rare-earth ion is implanted into a metal it can
occupy a substitutional or a nonsubstitutional position
in the (cubic) host lattice. '0 In the case of fcc metals
the occupation of the substitutional site will be
highest after liquid-helium temperature implanta-
tion' " because defects are largely frozen in. The
(2J +1)-fold degeneracy of the electronic ground
state of the ion is lifted in different ways for both
sites.

The ground state of the substitutional ion is split

by two interactions in this case: the Zeeman interac-
tion and the cubic CEF [Eq. (1)j. The second in-

teraction in general leads to a reduction of the hyper-
fine field and quadrupole splitting as has been dis-
cussed.

If a nonsubstitutional ion is associated with damage
(e.g. , a vacancy) in the host lattice, it is very likely
that there is a strong axial component of the CEF.
Since Dy'+ is a Kramers ion, its ground state will be
split into doublets. 9 These doublets are split by the
external magnetic field.

The Mossbauer spectra, which are given in Fig.
1(a), show the presence of at least two components,
one of which (55%) is associated with Dy ions in a
substitutional site (cubic symmetry), while the other
one (45%) is associated with Dy ions in a strong axial

0' 3I,"—I'(I'+1)
4 0 I'(2I' —1)

31,'- I (I + 1)
I(21 —1)

(10)

The relative areas of the 16 Lorentzians are given by
the appropriate Clebsch-Gordan coefficients, multi-

plied by a factor that depends only on the angle
between the magnetic field at the nucleus and the
direction in which the y quanta are detected. The
values gz/gz = —1.236 and g'/0 = 1.00 were used in

fitting the spectra. "
Because for the substitutional component the mag-

netic hyperfine field and the direction in which the y
quanta are detected are parallel, the intensity of the
I,' —I, =0 transitions is zero and the spectrum is a
sum of ten Lorentzians.

For the nonsubstitutional site the direction of the
magnetic field at the nucleus is random relative to
that of the y quanta, so the spectrum of this com-
ponent consists of 16 Lorentzians, the positions of
which can be found from Eqs. (2), (3), and (10) by

taking (J, ) = —, .

The computer fits could be improved by incor-
porating a spread in the magnetic hyperfine field or
in the quadrupole interaction of the substitutional
component, which allows for a spread of the CEF
parameters, e.g. , small deviations from cubic sym-
metry. Probably there is a spread in both, but it is
not possible to determine the spread in the magnetic
interaction and quadrupole interaction independently,
so a spread in either one of the two is allowed. The
parameters derived in fitting the Mossbauer spectra
are not influenced by the choice of one of these two
ways of fitting. The results of these fits are given in

Table I. From these fits the ratios R~ and Rg given
by Eqs. (2b) and (3b) can be calculated. These ratios
and the ratios calculated from the best CEF parame-
ters A4(r4) =—13.5 K and A6(r ) =+5.7 K are
shown in Fig. 2 and Table II. In Table II the ratios
RM and R~ are also given when no spread in the in-

CEF (with lowest energy state a doublet with

(J, ) =+J). This was verified at B,„,=O where the
substitutional component shows up as a relaxation
broadened single line, whereas the nonsubstitutional
component is not affected at all. For this component
the line intensities and positions do not depend on
B,„,so that the axial CEF must be so strong that an

isolated doublet (J, ) =+—, lies lowest.

Disregarding relaxation effects, the Mossbauer
spectrum of "'Dy is the sum of 16 Lorentzians,
given by the Hamiltonian:

r

g/t/
gNP NBhf ~s ~z

g/V
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(a) Mossbauer spectra from Dying &n different magnetic fields at 1 7 and 4 2 K f tt d
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TABLE l. Parameters derived in fitting Mossbauer spectra.

Non'substitutional cofnponent

gyp, gBhf (cm/s) e qg (cfn/s)

Substitutional component

1—e2qg (cm/S) Relative spread

1.52(2)
2.22(2)
3.21(3)

4.051(5)
4.058(4)
4.058(4}

2.50(4)
2.66(3)
2.58(3)

2.636(13)
2.898(9)
3.066(8)

0.95(5)
1.26(3)
1.48(3)

0.71(9)
0.36(8)
0.33(7)
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FIG, 2. Measured ratios R& and R~ and calculated

curve, using A4(r4) -—l3.5 K and A&(ra) -5.7 K, for

DyAg as a function of the external magnetic field.

teraction is allo~ed. As can be seen these ratios are
not much influenced. Because of their much higher
accuracy only R~ has been used for the fit. Figure 3
shows the region of vaiues of A4(r') and A6(r') that
give. acceptable fits to the data. In our analysis we

have only taken into account statistical errors and we
have used as a realistic criterion an increase of X' by
a factor of (v+1)/v, in which v is the number of de-

grees of freedom. In this figure the region of values
of 6 and the overall splitting is also indicated.

FIG. 3. (a) Allowed values for the cryst il-field parame-
&ers A4(r ) and A &(ra) for DyAp. (bi Allowed values for
the separation of the V~ ground state from the V~ excited
state and the overall multiplet splitting for DyAg.

Figure 4 shows the calculated energy-level scheme
for applied fields from 0 to 3.5 T using
A4(r4) = —l3.5 K and. Aq(r') =5..7 K, As can be
seen from this figure the population of excited elec-
tronic states can be neglected at 1.7 K and for
8 3.21 T, so that relaxation effects will have no in-

fluence on the Mossbauer spectra taken at that tem-
perature.

We also did experiments with (l l l) single crystals
at 4.2 K. The experimental details are the same as
described above. The experimental results could not
be analyzed satisfactorily in terms of a static hyper-
fine interaction. This is so because the lowest three

TABLE II. Ratios R~ and R0 derived experimenta)ly and calculated from CEF parameters.

1.52(2)
2.22 (2)
3.21(a)

0.645(2)
0.710( 1 )
0.754(1)

0.650(3)
0,715(2)
0,756(2)

0.650
0.708
0.755

0.603
0.655
0.699

0.289(7)
0,377{6)
0.43.5 (5)

0.287 (12)
0.372 {7)
0.436{6)

0.282
0.353
0.414

0.240
0.294
0.339

'No spread in parameters, allowed.
Spread in p ir ~meters allowed.

'Calculated using the CEk parameters found in this paper,
dCalculated using the CEF parameters of Ref. 2.
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7.65

7.60

30 60 90

FIG. 5. Magnetization as a function of magnetic field at
T =0.42 K calculated using b =11.5 K and an overall split-

ting of 160 K (curve a) and using b, =11.2 K and an overall

splitting of 55.5 K (curve b) for a concentration of 220 ppm
Dy in Ag, Also indicated is the magnetization curve calcu-
lated using d = 11.2 K and an overall splitting of 55.5 K for
a concentration of 200 ppm (dashed curve). Magnetization
data from Ref. 2.

the experimental data equally well if we assume a
concentration of 200 ppm instead of 220 ppm, as is

indicated by the dashed curve. This 10'/o diffe, rence
is, according. to Ref. 2, within the error bars of the
concentration determination. e conclude that the
authors of Ref. 2 have highly underestimated the er-
rors in the CEF parameters obtained, because they
did not include the concentration inaccuracy.

Figure 6 gives the zero-field susceptibility data with

the same kind of curves as for the magnetization.
Oseroff et a/, ' have also measured the variation of

the g value as a function of angle between the applied
dc field and the sample crystal axes at a frequency of
35 6Hz (Fig. 7). The curves give the calculated vari-

ation using their CEF parameters (curve a) and ours
(curve b). As one can see the agreement, although

not optimal, is still reasonable in the case of curve b.

~CA

E
04

I

CD

0.2

FIG. 7. Variation of the p value vs angular orientation of'

the applied dc field to the sample «xis at a frequency of 35
GHz. The normal to the crystal is (l 10). Same type of
curves as in Fig. 5.

Since most of their other experimental results are
less sensitive to the CEF parameters, we do not com-
pare all of them in this paper. It suffices to say that
in all cases a very good agreement can be found.

Also specific-heat experiments have been carried
out for the system DyAg by Parker et a/. ' The CEF
parameters as given in this paper can account for the
measured Schottky effect but they are rejected on the
basis of the other experimental data, notably Ref. 2.

From this discussion it should be clear that in the
case of Dying Mossbauer-effect measurements in

external magnetic fields yield much more accurate
CEF parameters than the other techniques, particu-
larly because the Mossbauer spectra are sensitive not
only to 5 but also to the position of the other levels
in the ground-state multiplet.

8. Discussion of the ne~ results

From the measured values of A4(r4) and A, (r ) a
I"7 ground state follows and from the energy-level di-

agram we calculate an effective g value,

g = hE/ps8 = 7.576(5), where AE is the distance
between the lowest two electron states in a field 8
(used in the ESR X-band measurements). The
difference between this value and the measured
values, g =7.66(5) (Ref. 5) and g =7.66(3) (Ref.
2}, is attributed to a ferromagnetic coupling between
the 4f'-electron spin and the conducting electrons.
The coupling constant Jf can be calculated using the

expression�'9

0
0 )0 l5

FIG. 6. Reciprocal of the zero-field susceptibility as a

function of temperature. Same type of curves as in Fig. 5.

Here gJ is the Lande g factor ( —, for Dy), g is the

conduction electron density of states per one spin
direction at the Fermi level, and the factor (1 —n) '
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defined in Ref. 20 allows for exchange enhancement
of the conduction electrons [see also Eq. (9)]. The
value of n can be obtained from Matzkanin et aI.":
0. =0.76. The value of q can be found from specific-
heat measurements using MacMillan's relation"

(12)

where ~ is the electron-phonon mass enhancement.
ln the case of 'Ag, X should be very small (no super-
conductivity observed). Reported values of y, range
from 0.61 to 0.74 mJmole 'K 2."32" This yields,
according to Eq. (12), rt=0.07 states/eVatomspin.
Using this value, the coupling constant J,f is calculat-
ed to be J/=0. 16(5) eV. This is much lower than
in Ref. 2, because we calculated Jf including some
enhancement factors. Using the same enhancement
factors we find from the ESR linewidth data in Refs.
2 ind 5 a value of J&——0.17(3) eV, in nice agree-
ment with the value given above.

The CEF results can be compared with theoretical
calculations. Using a lattice-sum point-charge calcu-
iation, assuming an effective charge +~e ~, one ob-
tains for the CEF parameters A4(r') = 31.4 K and

A, (r') =4.9 K using the Herman and Skillman free-
atom wave functions. 2 These values have been
corrected for an enhancement of the lattice-sum CEF
parameters when overlap with nearest neighbors is
taken into account. %'ithin the large uncertainty of
the caiculated (r"), the point-charge value for
A6(r6) does not disagree with the value obtained ex-
perimentally. However, Aq(r') has even changed
sign with respect to the point-charge value. To ac-
count for this we refer to a paper of Dixon and
Dupree, 26 where the effect of the conduction elec-
trons has been studied. These authors used an
orthogonalized plane wave (OPW) to describe the
conduction-electron wave function and considered
the effect of mixingfand d character into , the
conduction-electron wave function for the case of
rare-earth noble-metal alloys. In doing this, they as-
sumed the conduction electrons to be noninteracting
and independent, with two 6s and one 4f electron
entering the conduction band. One might therefore
expect the conduction electrons to possess a small
amount of the spatial character of this 4f orbital.
The method includes also the contribution from the
Sd character of the conduction electrons. This d

character must be included when an unoccupied Sd
orbital lies fairly close to the Fermi level. The
change in sign of A4(r') observed in many alloys' is
ascribed to this.

In the calculations the conduction-electron wave
function was made orthogonal to all the 4f orbitals
(occupied and unoccupied) and all core states of a
rare-earth ion and its immediate neighbors. To
correct for the fact that the 4f shell is actually not

completely occupied, the authors~6 admixed an
amount a/ of one of the unoccupied 4f states in the
conduction-electron wave function. In the same way

eq is a parameter to incorporate 5d character in this
wave function.

Using their calculations one can determine the
parameters eq and ef from the CEF parameters ob-
tained experimentally. This yields a/ =—0.08(4) and

a& =0.035(2). The errors given are determined by
the uncertainties in the experimental values of
A4(r4) and A6(r'). However, as there is consider-
able uncertainty in the wave functions, the real errors
are much larger. ef is very much influenced by this
uncertainty, while ~q is rather insensitive. These
values cannot be compared very well with the values
obtained for other rare-earth silver-based alloys, be-
cause no accurate results, are available. For compari-
son, we therefore give values derived from our accu-
rate results for DyAu (Ref. 27): s/ = 0.30(1) and

aq = —0.036(l) using Herman and Skillman wave
functions. %e see that the mixing parameters ~& are
roughly equal ln DyAu and DyAgs while 6f 1S too un
certain to draw any conclusion,

jn order to understand the systematics of these
values, accurate and reliable experimental values for
A4(r~) and A6(r6) in a number of systems (especial-
ly, in systems with varying conduction-electron densi-
ties) are needed. We have already performed
Mossbauer measurements in external fields on the
systems DPI," DyCu, "DyAu, "and DyMO. It
should be noted that ' Tm as a solute also presents
an excellent case for determining CEF parameters in
dilute metal alloys by our method.
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