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Utilizing the molecular-ion model previously constructed to describe photoemission arid ultra-

violet absorption in pendant-group polymers, we derive an expression for the probability of elec-
tron transfer between a molecular ion and a neutral molecular species embedded in a

frequency-dependent dielectric medium described by the (nonlocal) longitudinal dielectric

response function «(q, co). The medium is taken to exhibit three branches of its longitudinal

polarization excitation spectrum defined by ~(q, eo(q)) =0: a low-frequency branch correspond-

ing to intermolecular motions, an infrared branch corresponding to molecular vibrational

modes, and a high-frequency branch corresponding to valence-electron excitations. In addition,
the linear coupling of the electron to the intramolecular modes of the initial and final molecular

ions is incorporated into the model. The electron-transfer probability is evaluated as a function

of the spacing, R, between the molecular-ion sites and the energy difference between the intitial

and final molecular-ion states. Utilizing parameters in ~(q, e) typical of pendant-group poly-

mers (e.g. , polystyrene, polyvinylpyridine) or the matrices utilized in molecularly doped poly-

mers films (e.g., polycarbonates), we find that the electron-transfer process is activated and that
the low-frequency dielectric relaxations characteristic of these polymers create this activation.

Explicit expressions for fhe activation energies are derived and evaluated numerically for
poly(2-vinylypyridine): a material for which a model of e("q, co) is available in the literature.
The valence-electron excitations do not influence the electron-transfer activation energies, but
both the intramolecular and longitudinal-polarization vibrational modes increase these activation

energies above the values predicted using the low-frequency relaxations alone. The energies,

Ace„, of many of these vibrational modes are, however, larger than thermal energies, kT. Con-

sequently, the predicted electron-transfer activation energies are smaller than those given by

traditional semiclassical models of electron transfer. Moreover, these activation energies also

depend explicitly on the spacing, R, between the two sites. This R dependence is evaluated for
both classical and quantum-mechanical models of the change densities on the molecular ions.
Our analysis predicts, therefore, the complete spacing and temperature dependence of the

electron-transfer probabilities as functions of the intramolecular molecular-ion vibrational fre-

quencies and electron-vibration coupling constants, and of the frequency and spatial dependence
of the dielectric response of the medium in which these ions are embedded. This prediction
permits the identification of scaling laws relating both the activation energies and electron-
transfer prefactors to molecular and dielectric observables: an identification which provides
valuable guidance in the molecular design of efficient electronic transport media.

I. INTRODUCTION

In recent years the increased use of organic poly-
mers in electronic, electrophotographic, and optical
device applications has led to a renewal of interest in
the electrical properties of these materials. ' Takeo par-
ticularly important classes of such substances are
pendant-group and molecularly doped polymers
vrhich consist of electrically active molecular species
in an otherwise inert polymeric matrix. Examples in-
clude the use of polystyrene, poly(2-vinyipyridine)
and poly(methylmethacrylate) as contact-charge-
exchange materials' and the consideration of poylcar-
bonate doped with 2,4,7-trinitro-9-fluorenone (TNF)'
and triphenylamine (TPA)~ ' for use in composite
photoreceptors. In such polymers charge transport

occurs via electron transfer between charged and
neutral molecular species present as pendant groups
or molecular dopants.

Our purpose in this paper is the provision of a mi-
croscopic description of the intermolecular electron-
transfer process in terms of parameters which are
directly accessible via independent experiments. Thus,
~e predict the probabiltiy of electron transfer
between two molecular entities, one charged and the
other neutral, a distance R apart, in terms of parame-
ters which may be evaluated either via gas-phase
molecular spectroscopy of the species involved or via
measurements of the dielectric properties of the
polymeric host. These electron-transfer probabilities
are the input data used in multiple-hopping models of
measured transport properties, e.g. , drift mobility5'
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and photoconductivity. ' They constitute, therefore,
the link between observed transport coefficients and
the microscopic electronic structure of the polymer.
Hence, the model developed herein provides valuable
clues for the design of custom materials with desir-
able electrical properties.

The model which we utilize to evaluate the
electron-transfer probabilities, called the molecular-
ion model, has been proposed and described else-
where. It is based on the concepts that site-to-site
variations in the relaxation energies of molecular ions
in pendant-group and molecularly doped polymers lo-
calize injected charges in these materials as molecular
anions or cations, and that, consequently, these re-
laxation energies can be evaluated as those associated
with localized molecular ions in a dielectric medium.
This model was tested critically by analysis of pho-
toemission and uv absorption in poly(2-vinylpyri-
dine)p and polystyrene. '" It also led to the success-
ful a priori prediction of the temperature dependence
of photoemission lines from molecular films. " Con-
sequently, we believe the applicability of the model to
describe individual molecular ion (and exciton) states
in polymers has been established, Herein we extend
the model to encompass charge transfer between two
different molecular ion states. The mathematical for-
malism utilized to accomplish this extension has been
developed in a variety of solid-state, chemical and
biological contexts involving electron and exciton
transfer reactions between localized states, as may be
ascertained from inspection of a recent review of this
topic. " Therefore we confine our presentation to the
recapitulation of the requisite general formulas for
the electron-transfer probabilities in Sec. II, and to
the evaluation using the molecular-ion model of the
expressions involved in these formulas in Sec. III. In
Sec. IV we present numerical results for poly(2-
vinylpyridine) and indicate the consequences of our
results for the design of polymeric films which exhi-
bit efficient transport of injected charges. We con-
clude with a synopsis.

II. ELECTRON- TRANSFER PROBABILITY
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In Eqs. (I) the e; are the molecular-ion eigenvalues
for the site labeled by i associated with the eigenfunc-
tions lb;(r ); the {g;„}and {g (q) } are dimension-
less linear coupling constants describing the interac-
tion of these molecular-ion states with intramolecular
vibrational modes and medium longitudinal polariza-
tion fluctuations, resepctively; the energies, tr«(q ),
of the longitudinal polarization fluctuations of wave
vector q are determined by zeros of the longitudinal
dielectric function

e(q, r«(I[)) =0, (2)

and the ~„are the plasma frequencies associated
with various branches of the polarization fluctuation
spectrum, which we define herein by use of the ex-
pansion for e ', i.e.,

polarization fluctuations of the dielectric medium, of
energy tr«(c[), is given by

r

Hp = 61+ Xglntp«ln (bin + bin ) Cl C I
n

l i

r

+ e2 + Xg2~tr«l~ (b2tn + bint ) cl C2

In this section we evaluate the intersite electron-
transfer probability resulting from a Hamiltonian
describing an excess electron which can reside on one
of two molecular ion sites and which interacts both
with local intramolecular vibrations at each of the two

sites and with longitudinal polarization fluctuations
characteristic of the dielectric medium in which the
sites are embedded. A schematic diagram of such a
model system is given in Fig. 1. In the absence of
any direct interaction between electrons on each of
the two sites, the model Hamiltonian describing
linear interactions between these electrons and the
molecular vibrations, of energy leo;„, and longitudinal

The r«n and funCtiOnal fOrm Of the «l ( q ) are
evaluated from experimental dielectric response data
as described by Duke et al. in their original proposal
of the model defined by Eqs. (I)—(3). Further, the
dimensionless linear coupling constants for the in-
tramolecular vibrational modes are nonzero only for
the totally-symmetric modes of the molecular ions. "
They may be evaluated either via analyses of high-
resolution gas-phase photoemission spectra (in the
case of molecular cations) or via the use of a combi-
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nation of a molecular orbital model for the electronic
structure of the ion and a valence-force-field model
to describe its vibrational normal modes. A review

of the literature on the evaluation of these quantities
for various molecular ions has been given recently by
Duke. " Finally, Eqs. (1) are written in second-
quantized form in which the c; designate the fermion
annihilation operators for the added electron in the
molecular-ion orbital at site i, the b;„are the boson
annihilation operators for the totally-symmetric nor-
mal modes of the vibration, labeled by the index n,
of the molecular ion at site i, and the b ( q ) are the
corresponding boson annihilation operators of the
longitudinal polarization fluctuations of wave vector

q associated with the branch of the excitation spec-
trum designated by e.

Two features of the Hamiltonian defined by Eqs.
(1)—(3) are important. First, it is defined entirely in

terms of independently measurable or calculable
quantities. The molecular parameters, e;, @;(r ), ro;„,
and g;„, are obtained via the analysis of gas-phase
molecular spectra as interpreted using molecular-
orbital models. 9'0'4 The medium parameters, ~~
and ro (q), are evaluated by fitting observed dielec-
tric response data by a phenomenological model of
the longitudinal dielectric function. Thus, although
in this paper the model wi11 be utilized to describe
transport measurements, it contains no parameters
that are not obtained independently via other experi-
ments. Second, Eq. (1) can be diagonailzed by
canonical transform. '~'6 Thus, if we impose a per-
turbation which mixes the two molecular--ion states
directly, i.e.,

form by linear response theory. The result is"'

P, l2(T) (Ul2/tt)2F(T, co)

F(T, co) =„dt exp(ia)t) exp[d(T t) y(—T, 0)],
(5a)

(sb)

Acti = 6] Ep) 62+ Ep2: E]2 (6a)

P(T t) -4 l(T t)+&2(T t)+yl2(T t),
y, (T t) = Xg,'„P,„(Tt),

(7a)

(7b)

@2(T, t ) Xg2nt P2nt ( T, t ) (7c)

p»(T, t) - X g.'(q) I~i(q) —~2(q) I' P.(q, T,t),

P;„(Tt) N(ao;„) exp(is);„t)

+ [N (ao;„) +1]exp( —ice;„t )

N(co) [exp(tru/kT) —1] ',
P (q, T, t) -N [al.(q)] exp[is). (q)t]

+ (N [el.(q)]+ I ] exp[ —to) (q)t]

(9)

(10)

&» = Xgl', &'~l. + X g.'(q) IMl(q) 12&~.(q), (6b)
n a, q

+ X g.2 ( q ) 1~2(q ) 12&~.( q ),
(6c)

Hr = Ul2(Cl C2+ ~2Cl) (4)

the electron-transfer probability per unit time, P, ]2
due to this perturbation can be evaluated in closed

In Eqs. (5)—(10) we have assumed that cu (q) is
syllllllCtflc as a fullCtloll Of q, i.C., Ql ( q ) = Gl (—q ),
and that U]2 is real. Typically, U~2 is proportional to
the overlap of the two molecular ion states, i.e.,

U„(R)=UJ y, (r)y2(r K)a'r-

FIG. 1. Schematic diagram of two spherical molecular
ions, of radii R ~,and R2, respectively, separated by a vector
R and embedded in a local dielectric medium of dielectric
function ~(co).

which scales exponentially as a function of R, i.e.,
Ul2(R ) —U exp( —yR ), in which y is a decay con-
stant, typically y —1 A '. Finally, in Eq. (9) k is
Boltzmann's constant and T is the temperature in de-
gress Kelvin.

The model defined by Eqs. (1)—(4) and (11) may
not seem appropriate to describe the hopping
between molecular ion sites in a polymer because an
adequate description of this process must incorporate
the fact that the molecular ion energies form broad
(dE 1 cV) distr lblltiolls ' ' and that tllc dis-
tances between two sites also form a distribution.
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Both effects enter the two-site problem by virtue of
the fact that P, &2(T) in Eq. (5a) depends on the en-

ergy separation between the relaxed molecular-ion
eigenvalues on the two sites, i.e., E~2 defined in Eq.
(6a), and on their relative separation, K, via

IM( —M2I' in Eq. (7d) and Ui2(K) in Eqs. (11).
Given the continuous distribution of molecular-ion
energies and relative positions induced by the (static)
disorder in the polymer, and electron (or hole) intial

state localized on a given site exhibits a probability
P (I(gc,«) of experiencing a corresponding localized
final state of relative energy tao on a site a distance R
away. Because of this fact, the final states for the
electron-(hole)-transfer process form a continuum as
a function of Aced, so that the probability of back
transfer is negligible, and the first-order linear-

response theory expression, Eq. (5a), provides the
correct formulation of the intersite hopping probabili-
ty;" In other closely related problems, for example
the calculation of optical absorption lineshapes in di-

mers, ' the final states do not form a continuum.
Hence, periodic electronic motion results that can
make important modifications of thc vibrational
modes to which the electronic subsystem (in that
case an exciton) is coupled. Therefore the statistical,
multisite character of the electron hopping motion in

pendant-group or molecularly-doped polymers exerts
a decisive influence on the mathematical formulation
of the appropriate boundary conditions for the
corresponding two-site problem. In addition, more-

over, we expect Ut2 & 0.01 eV (Refs. 11, 12, and 21)
for such polymers whereas for typical aromatic pen-
dant groups or molecular dopants E~; )0.1 eV. 'Con-

sequently, the individual two-site electron-transfer

processes occur in the "weak-coupling" limit, '6' '9
i.e., U„" && E„,E». In this limit, even in the absence
of static disorder the modulation of the energies of
the initial and final electronic states by a continuum
of vibrational modes suffices to provide a continuum
of electronic final states adequate to render Eqs. (5) a
suitable description of the time dependence of the
probability that an electron initially localized at one
site will make a transition ("hop") to the other [dur-
ing a time shorter than or comparable to P, ~'2 (T)].
Thus, the parameters of the individual two-site prob-
lems as well as the statistical character of hopping
among sites ~hose energies form a distribution lead
us to the linear-response formulation [Eqs. (5)—(11)]
of the electron-transfer probabilities. Finally, both
aspects of thc problem also suggest that corrections
to this multiple-independent-hop model, e.g. , caused
by incomplete vibrational relaxation following one
hop before another occurs, "are unimportant for car-
rier transport in molecularly doped and pendant-
group polymers: a suggestion which is cleary compa-
tible with the observations3 that in such materials
the carrier mobilities, p„satisfy p, & 10 ' cm'/V scc
and exhibit a thermally activated temperature depen-
dence.

An important limiting case of Eqs. (1)-(11)is the
limit in which either the inhomogeneous line broaden-
ing due to static disorder or the coupling of the
electronic motion to continuum vibrational modes'6 is
sufficiently strong that only thc short-time behavior
of ex[pp( Tr) ] is important in evaluating the integral
in Eq. (5b). In this situation we can expand $(T, t)
through terms quadratic in t, and perform the integral
analytically to obtain' '6

Pg„(T)= (I/il) U(p (n/of2)'i'exp[ —(g«) —E,, i2)'/4o2i2],

E,, i2= Xgi'8'~in+ Xg2mg~2 + X g.'(q) IW(C) —M2(q) I'it~. (q),
n m a, f

2o2~2-X (g~„tee~„)'coth(hru~„/2kT) + X (g2 hr«2 )'coth(tco2 /2kT)

(12a)

(12b)

+ X It.Ã&& .(q)]'IW(q) —M2(q) I'cot [g .(q)/2kT] .
A, g

(12c)

The semiclassical limit is obtained with an additional
proviso, i.e.,

Ar«;„, iree (I[) & kT

In this limit Eq. (12c) yields

of2„= (kT)Ep (2, (14)

E"=E,„[I—(g~/E, „)]'/4 . (15b)

Thus, in the semiclassical limit the electron-transfer

and hence the electron-transfer probability becomes

P" (T) =t 'Uiq (w/E i2kT)' exp( —E /kT) (15a)

(16a)

(16b)

(16c)

E, ~, -E~q(intra) +E&2(inter)

E2(intra) = E& (intra) + E2(intra)

E, (intra) = Xg,2tcu;„

E„(inter) = Xg.'(y)tm. (q) IM, (q) -M, (q) I',
a, q (16d)

probability is activated with an activation energy, E',
explicitly related to intramolecular spectral parameters
[i.e., the g,„,tru;„, and M, (j)], and intermolecuiar
dielectric parameters [i.e., the g (q), tea (q)], via
Eq. (15b). The intramolecular contributions to E',
described by E~2(intra) in
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Ep) =8~2= g2heo„=Ep

in Eqs. (6) or
/

E~2(intra) = 2E~ = 2g2tco„

E(2(inter) =0,
in Eqs. (16). In either case we obtain

E'=E,2/4=E, /2

(17b)

(17c)

(17e)

in Eq. (15b), recovering the well-known" semiclassi-
cal result that for identical sites the molecular crystal
model predicts a two-site activation energy, E', equal
to onc half the "polaron binding energy, "

E~ at each
site. In fact Eqs. (15) indicate that this conclusion
applies to any linear electron interactions with in-

trarnolecular vibrations at identical sites. More gen-
erally, Eqs. (5)—(I 1) reveal" '6 that any model in

which the electron coupling to intermolecular modes
is neglected leads to the electron analog of the
Forster-Dexter model of exciton transfer, a result
utilized explicitly by Hopfield" to construct models of
electron-transfer in photosynthetic membranes.

This consideration of limiting cases of Eqs.
(5)—(11) indicates that they reproduce correctly
known results' " for electron-transfer probabilities
when suitable approximations are introduced. Un-
fortunately, for conditions typical of room-

correspond to thc "inner-shell" contributions in con-
ventional models2 ' of electron transfer in solution.
The intermolecular contributions, described by
E~2(inter) in Eqs. (16a) and (16d) correspond to the
contributions of the "outer shells" or the "medium"
in these models. For example, formulations of
electron-transfer reaction probabilities analogous to
Eqs. (15) and (16) in which classical electrostatic
models are utiiized to obtain E~~(inter) have been
given by Hush" and by Kestner, Logan. , and
Jortner. '6

Another limit of particular historical interest in

molecular solids corresponds to the "molecular cry-
stal model" initially proposed by Holstein'8 and sub-

sequently studied and extended by others, especially
Emin. 29 In this model only the intramolecular
electron-vibration coupling is considered, and it is ap-
proximated by linear coupling of electrons situated at
identical sites to a single intramolecular mode which,
however, is allowed to exhibit dispersion. In our
analysis this model implies utilizing a single in-

tramolecular mode of energy has„and setting

(17a)

temperature hopping in pendant-group and
molecularly doped polymers neither the quadratic-
time expansion [resulting in Eqs. (12)] nor the semi-
classical approximation [inequality (13) resulting in

Eqs. (15)] is valid for either all of the intramolecular
vibrational modes or all of the longitudinal polariza-
tion fluctuations with which an excess electron (hole)
interacts. Thus, we turn in the next section to the
derivation of more suitable evaluations of,Eqs.
(5)—(11) for parameters typical of these materials.

III. MOLECULAR-ION MODEL

In this section we first indicate the parameters util-
ized to describe the molecular-ion states and medium
dielectric response in the molecular-ion model of lo-
calized electronic states in pendant-group and
molecularly doped polymers. Then, using representa-
tive parameters we evaluate the singie-electron-(hole)
density of states associated with an injected charge in
the otherwise neutral system. Finally, using these
parameters we evaluate thc electron-transfer proba-
bility, given formally by Eqs. (5)—(11), that this in-

jected charge will hop from one site to another a dis-
tance R away.

A. Model parameters

In order to render our calculations of electron
transfer directly comparable to our earlier ana-
lyses~'0 23 of photoemission and uv absorption in

poly(2-vinylpyridine) and polystyrene, we adopt a
schematic molecular-ion model with parameters typi-
cal of these materials. Molecular-ion wave functions,
based on the use of the CNDO/S3 molecular orbital
model, ' arc available for both the phenyl and the py-

ridyl moieties in these materials on thc basis of ana-
lyses of the gas-phase photoemission specta of
methyl, ethyl, and isopropyl substituted benzene and
pyridine. ' ""These wave functions are too de-
tailed, however, to bc useful for our present purposes
of establishing the order of magnitude of various
contributions to relaxation energies, linewidths, and
electron-transfer activation energies. A model which
premits us to establish the connection between our
analysis and classical electrostatic treatments of elec-
tron transfer is one in which the moleculai ions are
represented by point charges each in a sphere of ra-
dius Ro within the dielectric described by a(q, co). If
wc treat this charge classically we obtain from Eqs.
(I) (Ref. 9)

g'(q) IM(q) I'&~.(q) = (2~e'/q') IM~(q)l'ho, /~ (q)l' =(2ne'/q') [sin(qRo)/qRol'[co, /o& ( q )]' . (Iga)

For such a classical charge density, the intermolecular contributions to the single site polaron binding energy are
obtained from Eqs. (6). Substituting Eq. (18a) into Eq. (6b) and further assuming local dielectric response in
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performing the final sum over cf, we obtain:

E~ (inter) - X g2 (q) ~M;(q) ~2lt«i (q) = X (2me2/q') [sin(qRp)/qRp]'[1 —[I/a(q, pp=0)] }
a, q

~ (e2/2Rp) [1—[1/a(pp =0) ] } (18b)

in which we utilized Eq. (3) to evaluate the sum over
n, and the arrow indicates the results for a local
dielectric. Since the final form of Eq. (18b) is just
the Born formula for the free energy of solvation, it
establishes the relationship between the molecular-
ion model and the classical theory of solvation in a
local dielectric medium. 9 The extension of the Born
model to static but nonlocal dielectric response also
has been given by Dogonadze and Kornyshev34 in a
form which is equivalent to using a particular
parametrized version of a(q, 0) in evaluating the in-

tegral over Q in Eq. (18b). Extending our analysis to
the treatment of electron transfer, when we evaluate
Eq. (16d) using this point-charge-in-a-spherical-cavity
model, we obtain

E~2(inter) =e'(Rp ' —R ')(1 —[I/a(p«=0)] }
(18c)

R ~2Ap
for the intermolecular contributions to the activation
energy in the semiclassical limit for a local dielectric
medium. As expected from the fact that for identical
sites M2(q) = Mt( q ) exp( —i q R ), we see that
when R ~, E~2(inter) becomes twice E,~(inter)
=E,2(inter). Hence, in this limit the intermolecular
electrostatic contributions to the semiclassical activa-
tion energy [given by the tea 0 limit of Eq. (15b)]
alone lead to E'=E~;(inter) 2/, analogous to the
prediction of the molecular crystal model which was
discussed in connection with Eqs. (17).

Although the point-ion model is useful for estab-

M, (q) = exp( —i q R;) [1+(q/2y)] 2 (»b)

For a local dielectric we obtain from Eqs. (6) for
the intermolecular contribution to the polaron bind-
ing energy the result that

E~, (inter) = X (2n e'/q') [1+(q/2y) ] 4

x (1 —[ I/a( q, «) = 0) ] }

(Se'y/16)[1 —[I/a(pp = 0)']} . (19c)

In Eq. (19c) the arrow indicates the results for a local
dielectric, just as in Eq. (18b). Evidently the (2Rp)
factor characteristic of the point-charge model [i.e., in

Eq. (18b)] has been replaced by Sy/16. Otherwise,
the two results are entirely comparable. Similarly,
the intermolecular contributions to the semiclassical
activation energy [see, e.g. , Eq. (16d)] are given by

I

lishing contact with classical electrostatics, it does not
permit an internally consistent evaluation of the
dependence of the electron-transfer probability on the
separation R between the initial and final molecular-
ion sites. For this purpose we represent the
molecular-ion wave functions as an s-wave bound
state of decay constant y, so that the evaluation of
P~q(T) via Eqs. (5)—(10) is compatible with the ex-
pressions for U~2(R) given by Eq. (11). This model
predicts

$;( r —R;) = (y3/m)' exp( —y( r —R, (), (19a)

E~2(inter) = X (4m e /q ) [1+(q/2y) ] [1—cos( q K ) 1 [1—I/a(q, co = 0) ]
q

~((Se2y/8) —e2R '(1 —[exp( —2yR )/48] [8(yR ) +36(yR ) +66yR +48] })(1 —[I/a(pp =0)] }

(19d)

Equation (19d) also is completely analogous to the
point-charge result, Eq. (18c), with the addition of a
quantum correction proportional to exp( —

2yR )
which reduces the image-charge contribution —e~/R
at short distances, R ( (2y) ', where the hopping
integrals U~2(R) given by Eq. (11) are large. It is

noteworthy that the local dielectric approximation was
used only at the final step of the computation in per-
forming the integral over q in Eqs. (19c) and (19d).
Thus, these equations specify the general form of the
intermolecular contributions to the semiclassical po-
laron binding energy and electron-transfer activation
energy (for identical sites), respectively, for isotropic

molecular-ion wave functions even in nonlocal dielec-
tric media. Finally, an important feature of Eqs. (18)
and (19) is their revelation that the semiclassical ac-
tivation energy depends explicitly on the site separa-
tion, R, increasing as the sites become further
separated. Both the hopping integrals, U~2 ~ exp( —yR ),
and the activation energies (E"= E~2/2 for identical
sites) favor short hops (small R). We examine the

consequences of this ef,feet in Sec. IV.
The final molecular-ion parameters which we must

specify are the frequencies [cu,„}and coupling con-
stants [g;„}associated with the totally-symmetric
molecular-ion vibrations (at least for nondegenerate
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radical ion states; for degenerate states we must also
consider some nonsymmetric modes, "but we neglect
this refinement here). For substituted benzene and
pyridine these modes occur in the energy region ' '
0.05 «tee;„» 0.5 eV. The relevant coupling con-
stants, g;„, range from nearly zero to a little over uni-

ty depending upon the mode and the orbital. ' Thus,
a representative set of model parameters for our
identical sites is a single totally symmetric mode
characterized by

TABLE I. Values of the energies Ace of the three
branches of the longitudinal polarization fluctuation spec-
trum in poly(2-vinylpyridine) and their contributions to the
electronic polaron binding energy, F~ (Rp), and effective
coupling constants, g (Rp), specified by Eq. (22b) in the
text for a point charge in a dielectric cavity of radius

0
Rp=1.67 A, The evaluation of these parameters is

described by Duke et aI. (Ref. 9).

Type of. fluctuation @co {eV) Fp (Rp) (eV) p (Rp)

ho)p=0. 1 eV,
gp=1

Eo(intra) =gogao0=0. 1 eV,
2o o(intra) = (go

taboo)'

coth(trio/2kT )

(20a)

(20b)

(20c)

Torsional (o. = 1) 5.36 x 10 "
Vibrational (o, = 2) 9.4 x 10
Valence electron {n= 3) 19.2

2.53
0,65
1:31

4.72 x 10'P

6.91
6.83 x 10 2

= (0.1 eV)2coth(0. 1 eV/2kT) . (20d)

Since at room temperature 2k T = 0.05 eV, the elec-
tron coupling to the model symmetric intramolecular
mode does not lie within the semiclassical limit [ine-
quality (13)]. This situation is the expected one in

actual cases which also are characterized by the oc-
currence of multiple intermolecular modes [e.g. , ap-

proximately 6 for polystyrene. and poly(2-vinylpyri-
dine)]. In these cases we anticipate that at most a
few of the lowest-energy modes would satisfy the
semiclassical limit at room temperature, so that Eqs.
(15) do not describe quantitatively the influence of
intramolecular vibrations on the room-temperature
electron-transfer probabilities for typical pendant-
group and molecularly-doped polymers.

The dielectric response of the polymer matrix is

specified by Eq. (3) for the reciprocal of the longitu-
dinal dielectric function. In this model the nonlocali-

ty of the dielectric response is described by the
dispersion of the longitudinal polarization fluctua-
tions, i.e., the q dependence of the ru (q) For the
purpose of our numerical calculations in this paper
we utilize a local model of the dielectric response 'of

the polymeric medium so that the ro (q) are taken to
be constants, independent of the wave vector q. 'We

further utilize a model of the dielectric response of a

polar medium in which three branches of longitudinal
polarization fluctuations are considered:

a= 1, au~
—103 sec ' (torsional or backbone modes)

(21a)

a=2, co2 —10" sec ' (vibrational modes), (21b)

a=3, cu3 —10" sec ' (valence-electron excitations)

(21c)

Once the values of the co have been selected, those
of the cu~ in Eq. (3) are obtained from measured
dielectric response data. Moreover, values for "ef-

fective" coupling constants, g;, for each branch of
longitudinal polarization fluctuation spectrum may be
defined by using the point-charge model Eq. (Igb) to
note that in the absence of dispersion

E„(inter, RO) = XE„, (Ro) (22a)

E~; (Ro) = (c»p /co )2 X(2rre2/q2) [sin(qRo)/qRo]'

(e'/2RO) (Ql /rd )'

.2=gia&+a ~ (22b)

B. Electron density of states

A useful quantity for comparison with the electron-
transfer probability is the one-electron density of

Therefore given a value of Rp, the effective coupling
constants, g;, for electron coupling to longitudinal
polarization fluctuations may be evaluated from the
magnitudes of so~ and co as determined from the
dielectric response data. The values of gru, E, (Ro),
and g,

' obtained using Ro= 1.67 A for the pyridine
moieties in poly(2-vinylpyridine) are given in Table I.
It is evident from this table that at room temperature
the semiclassical limit [inequality (13)] is applicable
for the torsional modes (a = 1), at best marginally
applicable for the vibrational modes (a =2), and de-
finitely not applicable for the electronic modes
(a=3). These results lead to the important conse-
quences, documented below, that the electronic
modes are essentially totally responsible for the relax-
ation energy observed in photoemission in going
from gaseous 2-ethylpyridine to (solid) poly(2-
vinylpyridine) whereas the torsional modes are pri-
marily responsible for the temperature dependence of
the widths of the valence-electron photoemission
lines and the electron-transfer activation energies.
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in which the brackets indicate a thermal average over
the boson states characterizing the intramolecular vi-

brations and longitudinal polarization fluctuations,
and a spatial average over sites in the sample. The
hole density of states, essentially p, (—E), can be
measured directly by photoemission spectroscopy as
discussed earlier. 9 " Evaluation of Eq. (23a) for
identical molecular ion sites gives

goo

p, (E, e) = (2~@)-'„ut exp[i (E—.+E, )t/g]

x ff F (T,t), (23b)

F (Tt)=exp[& (Tt) —
Q (T, 0)l

y, (T,t) = Xg„'P„(T,t), a=0,
(23c)

P (T, t) = Xg'(q) }M(q) ~'P. (q, T t), (23e)

a=1, 2, 3

in which P„(T,t) is given by Eq'. (8), P (q, T, t ) by

Eq. (10), and M(i[) by Eq. (Ic). We have
suppressed the site index i on e;, g;„, E„, and M, (q)
because we are considering an average in Eq. (23a)
over nominally identical molecular ion sites. Noting
that

Ep- XE.- (24a)

states, p, (E), defined by

p, (E)= (2m') ' J3 dt exp(iEt/g)

x (c;(t)e (0)), (23a)

P(e) =(no „) '"exp[ (—e e—o)'/o, '„], (26)

ln which 60 is the ITlean value of 6 and the subscript
"in" designates the inhomogeneous contribution to
the density of states. The total density of states is,
therefore, given in terms of Eqs. (23)—(26) as

p, (E)= Ji de P(e) p, (E, e)

=p (E) PII p.

The corresponding quantity for holes, p&(E), is
probed by valence-electron photoemission spectros-
copy, so that, in principle, the density of states given
by Eq. (27) is a measurable property of pendant-
group or molecularly-doped polymers.

We see from Eqs. (20) and Table I that the low-

frequency intermolcular ("torsional" ) longitudinal
polarization fluctuations (a = I ) iie the semiclassical
limit specified by Eqs. (14) and (15). Therefore the
partial density of states associated with the electrons
interactions with these fluctuations are given by

pI(E) = (4rrE~ikT) 'i'exp( E2/4E~ikT)— (28a)

in which E~~ is given by Eq. (24c) for a = 1. For the
point-ion model

Ep( = (e'/280) {au,'t/a)2))

these partial densities of states on which we focus our
attention for most of the remainder of this section.

The spatial and compositional disorder in the poly-
mer sample is incorporated into the model by taking
the molecular-ion eigenvalues to exhibit a Gaussian
distribution, so that the probability of finding an
eigenvalue ~ is

Epo Xgn g~» ~ (24b) = (e'/280) [e '(a) =0) —e '(a), (( co « co2) ]

-Xg2 (q) }M(q) }2gcu (q), a=1, 2, 3, (24c)

we can write Eq. (23b) as

(25a)p, (E, e) = po(E —e)» pi» p2» p3,

p (E)=(2nt) 'J dtexp[i{E+E, )t/g] F (T,t)

goo
Po(E) II P~= JI po E —Xx„Qdx„p„(x,) .

y 'y
I t

(25c)

~hereas for the s-wave ion model

E, )
= {5e'y/16) f e '(cu = 0) —e '(~) && r &( ~2) l .

From Table I we see that E» =g&'tcvI = 2.53 eV for
point ions in poly(2-vinylpyridine).

For the intermolecular vibrations and the vibra-
tional and electronic longitudinal polarization fluctua-
tions we must utilize the exact form for p (E), i.e., '5

p (E) =exp[ —g'(2n +I)]

[(n +I)/n ]ImI/2

Therefore the total electronic density of states p, (E)
is expressed as a convolution product of the partial
densities of states, p (E), associated with the elec-
tron interactions with the intramolecular vibrations
(a =0) and with each branch of the longitudinal po-
larization fluctuation spectrum (a = I, 2, 3). It is

x I [2g'[n (n +I)]'i'}

X5(E+Ep —ntttco )

n = [exp(itch /kT) —ll ',
(29a)
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in which the I are the modified Bessel functions, ~

the g are defined by Eqs. (20) and (22), and their
magnitudes for o. -2 and 3 are given in Table I for
point ions in poly(2-vinylpyridine}. Using the asymp-
totic form of Eq. (29) in the limits that g & 1 and
n (( I (i.e., t'ai, » kT) we obtain

p.(E)-exp( —g.') X (g.' /m!)
m 0

x g(E+Ep —mt' ) . (29c)

From Table I we see that Eq. (29c) is the suitable
limit for describing the interaction of the extra elec-
tron with the valence-electron longitudinal polariza-
tion fluctuations (n =3). Equations (25)—(29) speci-
fy our model of the density of states associated with
an extra electron (hole) injected into a pendant-group

I

or molecularly doped polymer containing only a sin-
gle type of site with mean energy e0.

C. Electron-transfer probabilities

The site-to-site electron-transfer probability per
unit time, P, ~2, is given ln closed form by Eqs.
(5)—(11). The form of P, i2 given in Eq. (5) is
identical to that for the electron density of states
given in Eq. (23) with minor changes of variables.
Thus, the formulas presented in the previous subsec-
tion for the electron density of states have direct ana-
logs for electron-transfer probabilities. Examples of
such analogs can be found in the Gaussian forms of
Eqs. (13)—{15)and Eq. (28a). for the strong-coupling
semiclassical limits of the electron-transfer probability
and the electron density of states, respectively,

The formula for the partial electron-transfer densi-
ty associated with the modes labeled by a is [in anal-

ogy to Eq. (29)]:

P i2(T, ted) =exp[ Ep f2(a, R—)(2n + I)/tol, ]

x X [(n +I)/n ]I II21 [2Ep i2(a, R)[n (n +I)]'i'/trs }8(tro —mtai ) {30a)

in which the I are the modified Bessel functions, the n are given by Eq. (29b), and the E, i2(a, R ) are ob-
tained from Eqs. (16). For the intramolecular contributions we obtain

Ep i2(O, R ) -Ep i2(0) = Ei+E2

independent of R. The intermolecular contributions i.e., Ep (i2n, R), n-1, 2, 3, are given by

E ( R)-e'(R, ' —R ')[(I/e ) —(I/e. i)] (30c)

in the point-ion model, and by

Ep i2(aR ) = ((5e'7/8) e'R '[1 —-[exp( 27R }/48][—8(7R )'+36(yR )'+667R +481})[(I/e ) —(I/e i)]
(30d)

x X ( I/m! ) [E, i2 (a,R )/tee ]
rn 0

x 5(toi —mtco ) (31)

Estimating the magnitude of E, i2(a, R ) via Eqs.

in the s-wave model. The dielectric constants are
given by e0=4.81, e) =2.81, a2=2.56, and &3=1.00
for poly(2-vinylpyridine). ' The magnitudes of the

Ep i2(a, R ) can be estimated from Table I for the in-

teraction of point ions with longitudinal polarization
fluctuations in poly(2-vinylpyridine). The intramo-
lecular contributions are obtained from Eq. (20) (i.e.,
Ei = E2=gotcuo). The asymptotic form of Eq. (30a)
in the limits that n « 1 (4.e., tra » kT) and

Ep i2(R )/tN~ ( I is given by

P, i2(T, ta&) =exp[ —Ep i2(a, R )/tai ]

]

(17c)—(17e) and Table I we see (as in the previous
section ) that Eq. (31) is the suitable limit for
describing the interaction of the extra electron with
the valence-electron longitudinal polarization fluctua-
tions (a-3). Similarly, Eqs. (13)—(15) are the ap-
propriate limit for approximating the interaction of an
extra electron with the low-frequency longitudinal po-
larization fluctuations (n = 1). In the case of the vi-
brational modes (i.e., a =0, 2) the general formula,
Eq. (30a), must be used to obtain the partial
electron-transfer densities.

%hen the electron interacts with multiple excita-
tions, as in the case of the electronic density of states
given by Eqs. (25), the total electron-transfer proba-
bility P, i2(T, toi), is expressed as a convolution pro-
duct of the partial transfer densities, P i2(T, tru) as-
sociated with the electron interactions with the in-
tramolecular vibrations {a=0)and with each branch
of the longitudinal polarization fluctuation spectrum
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(a =1,2, 3). Thus, Eq. (5a) can be written as

P, i2 ( T &c«) = (2~/&) Ui'2 (R )Po, i2{T &ai) "Pi;» ' P2, i2" P3, » (32a)

P. »(T&~) = (2w&)-' J" d«xp(i'~r) exp Xg i (q) IiMi(q) -itI2(q) I'[P.(q, Tr) —P.(q, T0)], {32b)

Pp ii(T, tran) g«P. , i2= J—Po, i2 T, t«i Xx.—Ddx.P. »(T,x.),
in which P (q, T r ) is defined by Eq. (10), and P« i2(Thr«) is obtained by inserting Eq. (30b) into (30a).

When the convolutions indicated in Eqs. (27) and (32) are performed, using the appropriate limits discussed
above, the total electron density of states is given by

p, (E) = exp[-g02 (2no+1) -g2 (2n2+1) —gi' ]

x X Hg3)'"/pl] X [(bio+1)/bio]~'i" [(n2+1)iigli in I, {2go' [no(no+1) ]'"}I {2g22 [n, (n, +1)]'n }
p~o /, m--co

x (4m E~ ikT) 'n exp[ —(E —Its«0 mIr«i2 —pt«i3) 2/—4E,ikT] (33)

where the disorder term, Eq. (26), has been omitted. Similariy, the totai electron-transfer probability, using the
appropriate l1mltlng fofiils fol' P~ i2( T, t«i) is

P, i2( T, tru, R )= (2n/g) Ui'2 (R )exp {—[(E,+E,)(2n +01)/g «] i—o[E, „(2,R )(2n, +1)/t«i, ] }exp[ —E, „(3,R )/ir«i3]

X [(Ep i2(3 R )/g„, ]./p! X [(n, +1)/„,]tqln[(„, +1)/„,]I'u2[(„+1)/„]i In

paw 0 g, I„m~-oo

x I, {2E, [no(n«+1) ]'~'/t«io }I,{2E2[no(no+1)1'n/tcuo }

& I {2E, ig(2, R ) [n2(n2+ 1)] 'I'/tru2 }

x [4wE, „(i,R )kT]-'~'exp[-E, ",„,(R)/kT],

E,", p(R ) =Ep i2(1,R) {1—[(Irai {I+q—)g««0-mg««2-pt«ii)/E, i2(1,R )]}'/4 . (35)

Separate expansions for the consequences of in-

tramolecular electron-molecular-vibration coupling in

the initial (Ei,sum) and final (E2isum). have been
retained in Eqs. (34) and (35) for illustrative pur-

poses even though ~c have taken the initial and final
states to be identical (i.e., E;/h««= go ). Only a 'single
sum (roughly corresponding to an index s = I +q)
eras utilized in the numerical calculations reported in
the following section.

It is noteworthy that expressions similar to Eqs.
(34) and (35) have been derived earlier within the
context of incorporating the consequences of both
inner coordination shell and "medium" vibrational
modes in theories of electron transfer in solution. 36 38

Ours differ from these earlier formulas both via their
incorporation of a compiete (experimentally deter-

mined) three-branch longitudinal polarization fluctua-
tion spectrum of thc mcdluAl and via our utHiza-

tion of Eqs. (8)—(10) and Eq. (29) in which all of the
effects of thermal averaging over the initial vibration-
al states have been incorporated into the single sum
over modified Bessel functions given by Eqs. (29)."
The compact form for p (E) given by Eqs. (29) and
its analog for P i2(T, t«i) given by Eqs. {30) render
the detailed form of i and q sums in Eq. (34) a little
different from earlier formulas for P, ~2 in which ei-
ther the thermal averaging vedas incomplete" or less
compact expressions than Eqs. (29) and (34) were
used to describe the influence of electron coupling to
intfamolecular modes prior to thc derivation of llAlit"

ing cases of the electron-transfer probability. 36 37

Aithough the technical differences between Eq. (34)
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and its predecessors" " in electron-transfer theory
are minor, the effects of incorporating the influence
of the infrared and electronic longitudinal polariza-
tion fluctuations are not. Both E~ ~q(2, R ) and

E~ ~q(3, R ) exhibit strong dependences on R by virtue
of Eqs. (30b) and (30c). Therefore both the spatial
and temperature dependence of the electron-transfer
probability given by Eqs. (34) and (35) differ signifi-
cantly from those derived earlier for electron transfer
in solution.

While Eqs. (33) and (34) may appear complicated,
it is not difficult to discover the physical effect of the
various excitations (a = 0, 1, 2, 3) on the electron
density of states and electron-transfer probability. In
both the density of states, Eq. (33), and the transfer
probability, Eq. (34), the Gaussian term is due to the
large coupling of the electronic motion to the low-

frequency "torsional" (a = 1) modes of the
polymeric pendant groups. This Gaussian form leads
to the temperature-dependent linewidths found in the
photoemission density of states, " as expressed in
Eqs. (28a) and (33), and also leads to the activated
form for the electron-transfer probability, as ex-
pressed via Eq. (34). The ir mode (a = 2) coupling
constant, g& =6.91, can be viewed as intermediate
coupling (see below) so this mode contributes to the
photoemission linewidths and transport activation en-
ergy. The valence electron excitations (a =3), exhi-
bit weak coupling to the electron motion and a small
thermal population. Hence, they make no contribu-
tion to the activation energy (only the p = 0 or
"zero-phonon" term is appreciable), but rather con-
tribute a distance-dependent prefactor to the
electron-transfer probability. In the photoemission
density of states, however, the valence electron p =0
"zero-phonon" term is shifted to lower energy by
amount E3p f3AN3 accounting for the dominant
contribution to the relaxation energy. Due to the in-
termediate size of both the intramolecular (a =0)
and intermolecular (a = 2) vibrational interactions
with the electron motion, it is necessary to investigate
numerically their importance for linewidths, relaxa-
tion energies, and activation energies.

In summary, in Sec. III we have indicated the form
of the parameters used to describe the coupling of
electron motion to intramolecular. vibrations and to
intermolecular polarization fluctuations in two
models: the point-ion model and the s-wave model.
Using these models, the magnitude of the coupling
constants have been shown to lie in three regions: a
strong-coupling region (g~' )) I), a weak-coupling
region (gq (( 1), and an intermediate-coupling re-
gion (gj —gj —1). The valence-electron modes
have been shown to be responsible for photoemission
relaxation energies, while linewidths and the
electron-transfer activation energies are caused by
coupling to low frequency and possibly ir modes. In
the next section we illustrate these results by consid-

ering numerical calculations for "typical" values of
the model parameters.

IV. NUMERICAL RESULTS

In our numerical analysis we wish to examine three
issues: (i) the dependence of the density of states
and electron-transfer densities on the magnitude of
the "coupling constants" g' and E~ ~q(a, R )/geo,
and the region of applicability of the semiclassical
[Eqs. (12) and (28)] and weak-coupling [Eqs. (29c)
and (31)] limits, (ii) the temperature dependence of
the electron-transfer probability, and (iii) the depen-
dence of the electron-transfer activation energy on
the distance R between the sites as predicted by the
point-ion and s-wave models, respectively.

In discussing the region of applicability of the semi-
classical and weak-coupling limits, we confine our
discussion to the electron density of states deter-
mined by the coupling constants g~ [Eq. (33)],
although we could equally well discuss the electron-
transfer probability [Eq. (34a)] with the analogous
coupling constants E„~ (taR )/flu The ex.act form
of the partial density of states is given by Eq. (29a).
In order to ascertain whether the semiclassical [Eq.
(28a)] or "weak-coupling" limit [Eq. (29c)] applies,
we examine the magnitude of the argument of the
modified Bessel function, i.e., 2g~ [n (n + I) ]'~~.

For the values of g and h~ quoted in the previous
section, at room temperature the Bessel function ar-
gument assumes the value 0.28 for intrarnolecular vi-
brations (a=0), 4.72 & 10" for low-frequency ("tor-
sional") modes (a =1), 2.16 for ir modes (a =2),
and 0.00 for valence-electron excitations (a = 3).
Hence we see that the strong-coupling Gaussian form
(Eq. 28a) is valid for the low-frequency modes
(a = I ), while the valence-electron modes (a = 3) lie
in the weak-coupling limit of Eq. (29c). The in-
tramolecular modes (a = 0 and ir modes (a = 2) are,
however, in an intermediate region which must be in-
vestigated numerically. The results of numerical
evaluation of Eq. (29a) for the intramolecular vibra-
tional contribution to the density of states are shown
in Fig. 2(a) by the discrete line spectra. The semi-
classical Gaussian approximation (dashed curve) also
is shown for comparison. These calculations reveal
that the intramolecular partial density of states
p 0(E) is well described the asymptotic form of Eq.
(29c). The ir partial density of states is shown in Fig.
2(b) by the discrete spectrum representing the exact
formula [Eq. (29a)], the dashed line indicating the
Gaussian strong-coupling approximation. %e see
that although the position of the envelope of the
discrete spectrum is well represented by the Gaussian
envelope with a maximum at nr =g'

q (a general
result), the width of the Gaussian is not. Indeed,
numerical studies reveal that the Gaussian width is
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poorly approximated by Eq. (12c) unless, in addition
to the requirement that the argument of the Bessel
function

2g ' [n (n + 1)j'I' » 1,
we also impose the condition that II' /2kT & 1. 1n

the case of poly(2-vinylpyridine) at room tempera-
ture, only the torsional oscillations satisfy these two

FIG. 2. Partial densities of states for a molecular cation of
radius Ro =1.67 A, temperature T =300 K calculated using
Tab'le I and Eqs. (20a)—(20d), via Eqs, (29). Panel (a): the
calculated density of states for the intramolecular (e 0)
mode, yielding 2go tno(no+1)]' =0.28 (small-argument

limit). Panel (b): the calculated density of states for the ir

(o, 2) mode, yielding 2g (n2(n2+ 1)]'I = 2.16
(intermediate-argument limit). Panel (c): the calculated

density of states for a mode with g =6.91(a=2), but with

~a=0 025 eV, yielding ga ~ a( a( a+ )] 2

(large-argument limit). In each case the semiclassical Gauss-
ian approximation is shown as a dotted line for comparison
with the discret densities of states shown by solid vertical
bars.

conditions. This additional requirement that
tm/2kT & 1 for the correct prediction of the Gauss-
ian width, o, by Eq. (12c) is due to the exp( i ru—t)
term in Eq. (8), which cannot be neglected in the
derivation of the strong-coupling limit when
2IV(co) cos(rut) is small. Whentro /2kT ~1, how-
ever, an increased Bessel function argument of 13.26
results and the exact discrete line spectrum agrees
well the Gaussian approximation in both width and
position as shown in Fig. 2(c).

From the above analysis we determine that the
semiclassical expressions are not generally adequate
to describe photoemission line broadening. In addi-
tion, since the electron-transfer activation energy is a
result of the Gaussian form of Eq. (12a), it is unclear
whether an activated transport of the form of Eq.
(15a) occurs in poly(2-vinylpyridine) when ir modes
are considered in the calculation. In an effort to clar-
ify this question, in Fig. 3 we plot lnP, ~2, deter-
mined from Eq. (34), in the R ~ limit as a func-
tion of 1/kT for identical sites (i.e., tee =0). We ex-
pect, for an activated transport of the form of Eq.
(15a), to find

d( —lnP, 12)/d(1/kT) = (kT/2)+—E' . (36)

Using Eq. (36) to analyze the numerical evaluations
of Eq. (34) we find E"= 1.50 eV over the wide tem-
perature range shown in Fig. 3. This is less than but
comparable to the R = ~ result of E"=1.71 eV
predicted semiclassically by Eqs. (15b) and (18c), us-

ing Ro = 1.67 A. and a(&o =0) =4.81.~ lf only the
1 = m =p = q = 0 term is retained we find
E'= [E~12(1,~)/4) =1.27 eV, i.e., only the low-

frequency longitudinal polarization fluctuations con-
tribute to the activation energy. As expected, there-
fore, the calculated effective value of E'=1.5 eV
exceeds the low-frequency-mode contribution alone,
but is less than the semiclassical result in which all

three branches of the longitudinal polarization spec-
trum contribute to E' as described by Eqs.
(12)—(15). The slight curvature of the plot of
log, (P, 12) vs T ' shown in Fig. 3 is a consequence
of the anticipated increase in the effective value of
E" as the temperature increases. "

In evaluating the electron-transfer probability from
Eq. (34) it is necessary to keep several terms in the I,
m, and q sums in order for the result to converge.
Although the zero phonon term (i.e., I = n1 = q -0)
is the largest, it typically contributes from 10% to
50% of the total. Thus, in order to obtain accurate
activation energies and transfer rates, it is necessary
to utilize Eq. (34), rather than a simple single-term
formula like Eq. (12a).

Thus far we have discussed the dependence of the
density of states and asymptotic electron-transfer pro-
bability on (i) strength of coupling to elementary ex-
citations of the polymer and (ii) the temperature. 1n
doing so we assumed Ep 12(a,R ) = 2E, . Since this is



ELECTRON TRANSFER IN PENDANT-GROUP AND. . .

70-

60-

50-

50-

20-

5-

LU

/

8 NAVEl
/

/
/

t

0 2 4 6
1 I t

S IO I 2 l4 l6 IS

R(A)

IO-

0
IO 20 50

I/xT (eV ')

I

40
I

50

FIG. 4. Variation of E~2(inter) calculated via Eq. (18c) in

the semiclassical limit for the point-ion model, and via Eq.
(19d) in the semiclassical limit for the s-wave model. The
dashed line indicates the asymptotic Forster-Dexter limit.
Parameters are taken from Eqs. (20a) —(20d) and Table I for
poly(2-vinylpyrid inc) .

FIG. 3. Variation of the total electron-transfer probabili-

ty, given by Eq. (34), as a function of 1/kT for has =0 in

poly(2-vinylpyridine). The values of E~ ~2(a, R ) utilized

corresponded to the For@ter-Dexter (or R ~). limit of
2g hem . From this plot the value of the effective activation

energy may be obtained via Eq. (36).

actually only a limiting result true as R ~, we now

investigate the behavior of E~2(inter) as a function of
R. In previous sections we developed two models for
the coupling constants. The point-ion model, based
on classical electrostatic arguments, leads to Eq. (18c)
for E~2(inter) in the semiclassical limit. The s-wave

model, based on direct evaluation of Eq. (7d) for s-

like molecular orbitals, yields Eq. (19d) for E&2(inter)
in the semiclassical limit. Each model has one adju-
stable parameter: Ro in the point-ion model, and y
in the i-wave model. In Fig. 4 we compare the semi-
classical predictions of these two models for
E~2(inter), using the value a(co =0)=4.81 (Ref. 9)
and assuming R0=1.67 A and

-8

Sr -I 0

Jg
-l2

-l4
CC

Al

ei "l6

20

y=gjSRO . (37)

From Fig. 4 we see that the s-wave model and the
point-ion model are in excellent agreement in the
range R ~ 2RO where the point-ion model is valid,
For smaller separations, i.e., R ( 3.5 A, it is neces-
sary to use the quantum mechanical s-wave model.

Finally, using the exact form for the electron-
transfer probability, Eq. (34), with E~ ~2(a, R ) given

by Eq. (30c) and 7 by Eq. (37), we evaluated the to-
tal electron-transfer probability as a function of site
separation R and temperature T. The results are
shown in Fig. 5 normalized to reveal the conse-

FIG. 5. Variation of the total electron-transfer probabili-

ty, given by Eq. (34), as a function of R for k&a = 0, utilizing
parameters for poly(2-vinylpyridne) taken from Eqs.
(20a)—(20d) and Table I. The s-wave form tEq. (30c)j for

Ez ~2(n, R ) is utilized, assuming y =0.96 A and the values

of the dielectric constants are those given in the text.
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quences pf the increasing activation energy with in-
creasing R. The plot is not a straight line because the
rate of decay becomes smaller as R increases. This
phenomenon is incorporated in models of electron
transfer is solution by using a suitably chosen "most
probable" distance of approach between the charge
exchanging ion pairs in the expression for the solute
contributions to E, ~q(R )."""It is neglected, how-

ever, in modern models of electron transfer following
radiolysis is glassy media. In particular, the R
dependence of E~ ~2(R) predicted by Eqs. (30c) and
(30d) recently has been verified experimentally in
studies of electron transfer between Ru complexes
separated by 7 & R & 14 A and in polar solutions. 4'

Consequently, comparable effects of the R depen-
dence of E~ ~2(R) should be observable in the solid
state, even though they are superimposed on the ex-
ponential R dependence of U~'2 (R).

Due to the rapid decay of the electron (or hole)
transfer rate with increasing distance, virtually all

hops are expected to occur between nearest-neighbor
locations in the solid state. As we have seen previ-
ously, the activation energies for this hopping process
are largely caused by E~ i2(I,R ), which is determined
by (i) the size of the pendant group, as expressed
through y (s-wave model) or Ro (the point-ion
model), and (ii) the dielectric response of the materi-
al as expressed via the (I/e —I/a ~) terms in Eqs.
(30b) or (30c). It is evident therefore that good
electron-(hole) transport is achieved via utilizing
large molecular ions and either rigid or nonpolar
polymer matrices. In particular, a trade-off exists
between the flexibility of the polymer matrix, which
implies low-frequency mechanical relaxation
processes, and the value of the electron-(hole) tran-

sport activation energy. Efficient electron hopping is
achieved either by suppressing the low-frequency re-
laxations, or by rendering such relaxations dielectri-
cally inactive. by proper choice of polymer composi-
tion. The important point is that the suppression of
dielectrically active rel'axations with leo ( kT should
result directly in increased electron-transfer rates
ceteris paribus.

V. SYNOPSIS

In this paper we have specified a model Hamiltoni-
an, Eqs. (1) and (3) which describes the influence on
electron transfer in a dielectric medium of the in-

teraction of that electron both with the intramolecular
vibrations of the molecule on which it resides (a la

the Forster-Dexter 'model, ' ' Holstein's molecular-
crystal model, " ' and Hopfield's biological tunneling
model3') and with the longitudinal polarization fluc-
tuations characteristic of the dielectric medium in
which the molecules are embedded (a la Frohlich, 4'

Levich, "Dogonadze and Kornyshev, " and Duke
and co-workers~ "'6). The major new feature of this
model relative to its predecessors is its incorporation
of a description of the interaction of the electrons
with a complete, experimentally-determined, spec-
trum of longitudinal polarization fluctuations with
frequencies ranging from Hz through the vacuum ul-

traviolet. ~

Applying standard techniques, the one-electron
density of states and the intersite electron-transfer
probability were evaluated using this model. The for-
mal expressions for the intersite transfer probability,
P, ~2, and the density of molecular ion states, p„are
given by Eqs. (S)-(11) and Eqs. (23)—(27), respec-
tively. Manipulation of these expressions for our
specific model of polymer dielectric response led to
Eqs. (34) and (3S) for P, ~2 and to Eq. (33) for p, .
These formulas were evaluated numerically for
parameters characteristic of poly(2-vinylpyridine), a
"typical" polar polymeric dielectric. The results of
this evaluation were presented and discussed in Sec.
IV. Specifically we showed that each branch of the
intramolecular and of the longitudinal-polarization
fluctuation spectrum exerts a characteristic influence
on the observable electronic properties of the
molecularly doped composite medium. The high-
frequency (tru —10 eV) valence-electron fluctuations
cause shifts (relative to the gas phase) in photoemis-
sion and uv absorption lines9 and spatially varying,
temperature-independent prefactors in the electron-
transfer probabilities. The low-frequency
(ru —103—106 Hz) macromolecular relaxations cause
temperature-dependent linewidths in photoemission
and uv absorption spectra9 " and spatially-
dependent activation energies for electron transfer.
The ir longitudinal polarization fluctuations cause
(nearly-temperature-independent) contributions to
photoemission and uv absorption linewidths, " in-
crease the effective activation energies for electron
transfer, and produce spatial variations both in these
activation energies and in the prefactors for electron
transfer. The intramolecular ir modes produce the
same type of phenomena as the ir longitudinal polari-
zation fluctuations without inducing any spatial
dependence thereof.

These calculations permit, therefore, a comprehen-
sive assessment of the consequences of both in-
tramolecular and nonlocal medium" dielectric relax-
ations on the electronic (i.e., photoemission, optical,
and transport) properties of molecularly doped dielec-
tric media. Scaling laws relating both the local pro-
perties of the molecules and the dielectric response of
the media to the electronic properties of the
molecularly doped composites are embedded in the
formulas presented above and are suitable for use in
the molecular engineering of such media to yield
prescribed optical and transport properties. Conse-
quently, in this paper together with Refs. 9 and 23 we
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have presented a complete microscopic model of the
electronic properties of molecularly doped dielectric
mcd1a based on thc supposltlon of thc disorder--

induced localized electron (exciton) states and the
Hamiltonian specified by Eqs. (1) and (3). A

number of the model's predictions already have been
confirmed in a variety of photoemission and uv ab-

sorption experiments. 9 ""A critical test of the
predlctlons of clcctlon-tl'ansfcr probabilltlcs rcqulrcs,
however, the systematic acquisition of transport data
for several active molecules in varying host polymers.

Suitable data for this purpose are, unfortunately, not
yet available, although these predictions are con-
slstcnt with cxlstlng. mcasul'cmcnts.
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