VOLUME 23, NUMBER 5

Individual Co site contributions to the magnetic anisotropy and NMR investigation of $Y_2(Co_{1-x}M_x)_{17}$ (M = Cu,Al)

K. Inomata

Metals and Ceramics Laboratory, Toshiba Research and Development Center, Toshiba Corporation, Kawasaki, Japan (Received 4 January 1980)

Co-site crystalline fields in YCo₅ and Y₂Co₁₇ are calculated using a point-charge model. It is shown that the 2c site in YCo₅ and the 18j site in Y₂Co₁₇ make positive contributions to the magnetic anisotropy, while the 3g site in YCo₅ and the 18h, 9d, and 6c sites in Y₂Co₁₇ make negative contributions, in agreement with Streever's NMR result. Through an NMR investigation, M substitution for Co in Y₂(Co_{1-x}M_x)₁₇ (M = Cu,Al) is demonstrated to occur at random in M = Cu and with a site preference in M = Al. Al is found mainly to prefer a 6c dumbbell site. Consequently, it is shown that the different magnetic anisotropy behaviors between Y₂(Co_{1-x}Cu_x)₁₇ and Y₂(Co_{1-x}Al_x)₁₇ arise from the differences in site preference between Cu and Al for Co.

I. INTRODUCTION

Rare-earth cobalt intermetallic compounds, such as $R \operatorname{Co}_5$ and $R_2 \operatorname{Co}_{17}$, have been attractive as highenergy-product permanent magnets, which possess high magnetic anisotropy. The high magnetic anisotropy of the compounds is mainly contributed from the crystalline field acting on rare-earth atoms coupled with spin-orbit interaction which governs the magnetic easy-axis directions of the compounds.¹ However, the rare-earth cobalt compounds with nonmagnetic rare-earth elements, such as Ce, La, and Y, also have a large magnetic anisotropy, which suggests the importance of the cobalt atom's contribution to the magnetic anisotropy of the compounds.

Y₂Co₁₇ possesses an easy direction of magnetization along the basal plane, while YCo₅ possesses an easy c axis. Recently, Hamano et al.² measured magnetic anisotropy of Y₂(Co_{1-x} M_x)₁₇ single crystal (M = Al or Cu) and revealed that magnetic anisotropy hardly changes with Cu substitution, while it drastically changes with Al substitution and goes from negative (easy c plane) to positive (easy c axis) at x exceeding 0.12.

The easy axis change with substituted atoms for Co has also been observed in $Y_2(Co, Fe)_{17}$ compounds.³ This easy axis change has been interpreted in terms of a site preference of Fe atoms for Co atoms.⁴ This suggests that the anisotropy behavior in $Y_2(Co_{1-x}M_x)_{17}$ might be explained by the difference in the site preference between Cu and Al for Co.

The idea of site-preference contribution to the easy-axis change implies the existence of the significant difference in the crystallographically different individual Co site anisotropy, which has been suggested by the author.⁴ Recently, Streever⁵ has revealed the anisotropy difference of an individual Co site in R -Co intermetallic compounds by NMR study.

This paper first calculates the Co anisotropy in YCo₅ and Y₂Co₁₇, based on the crystalline field using a point-charge model, to reveal the difference in the site preference between Al and Cu for Co in $Y_2(Co_{1-x}M_x)_{17}$ through NMR study and then shows how site preference can be used to determine anisotropy behavior in $Y_2(Co_{1-x}M_x)_{17}$ compounds.

II. Co ANISOTROPY IN YCo₅ AND Y₂Co₁₇ COMPOUNDS

Recently, an analysis was carried out on the crystalline field in 3d metals using the localized-moment model.⁶ In the analysis, expressions have been obtained for the contributions from lattice ions and conduction electrons to the crystalline field. Numerical values of the potential for hexagonal Co metal were found to be well coincided with the values calculated using point-charge models in sign and also in magnitude. Therefore, the contributions from Co atoms to the crystalline field were calculated, using a pointcharge model to estimate Co anisotropy in the YCo₅ and Y₂Co₁₇ compounds.

Crystal structures for $R \operatorname{Co}_5$ and rhombohedral $R_2\operatorname{Co}_{17}$ are shown in Fig. 1. $R_2\operatorname{Co}_{17}$ structure, which crystallizes in a rhombohedral or a hexagonal form, depending on the rare-earth element, is derived from the more basic $R \operatorname{Co}_5$ structure by ordered substitutions of R atoms by pairs of Co atoms. $R \operatorname{Co}_5$ has

2076

©1981 The American Physical Society

FIG. 1. Crystal structures (a) $R \operatorname{Co}_5$ and (b) rhombohedral $R_2 \operatorname{Co}_{17}$.

two crystallographically different sites applicable to Co atoms. R_2Co_{17} structures of rhombohedral and hexagonal types are closely related. Both structures have four crystallographically different Co sites, whose corresponding sites in the two structures have nearly the same environment. The local environments for each Co site, including the first and second neighbors, are drawn in Figs. 2 and 3 for $R Co_5$ and rhombohedral R_2Co_{17} structure, respectively.

A. RCos

The Co₁ site in Fig. 2 has C_3 and σ_h symmetries, so that crystalline-field parameters, other than B_2^0 and B_4^0 , are zero. The Co₁₁ site has a *c*-plane symmetry plane, which makes B_2^1 , B_4^1 , and B_4^3 zero. There are two additional Co₁₁ positions in the *R* Co₅ unit cell having local environments equivalent to the Co₁₁ site described in Fig. 2, whose neighbor Co₁ atoms in Fig. 2 are rotated by $\pm 2\pi/3$ around the *c* axis. Parameters B_2^2 , B_4^2 , and B_4^4 are, therefore,

FIG. 2. Local environment around Co in $R \operatorname{Co}_5$. Atomic distances are shown for YCo₅.

eradicated by averaging over the three Co_{II} positions. Thus, the Co_{II} site has also only B_2^0 and B_4^0 in the crystalline-field potential.

B. R₂Co₁₇

The Co₁ site in Fig. 3 has a *c*-plane symmetry plane, so that B_2^1 , B_4^1 , and B_4^3 vanish. There are two additional Co₁ positions in the R_2 Co₁₇ unit cell, other than the Co₁ site described in Fig. 3, in which the surrounding atoms around Co₁ in Fig. 3 are rotated by $\pm 2\pi/3$ around the *c* axis. Parameters B_2^2 , B_4^2 , and B_4^4 are eradicated by averaging over the three Co₁ positions.

FIG. 3. Local environment around Co in rhombohedral R_2Co_{17} . Atomic distances are shown for Y_2Co_{17} .

Likewise, there are three Co_{II} positions in the R_2Co_{17} unit cell equivalent to the Co_{II} site described in Fig. 3. Parameters B_2^1 , B_4^1 , and B_4^3 are eradicated by averaging over the four Co_{II} positions. B_2^2 , B_4^2 , and B_4^4 values are calculated to be an order of magnitude smaller than those of B_2^0 and B_4^0 , respectively.

The Co_{III} site in Fig. 3 has C_3 and σ_h symmetries, so that the crystalline-field parameters, other than B_2^0 and B_4^0 , are zero. There is one more Co_{IV} position other than Co_{IV} described in Fig. 3, in which each atom around Co_{IV} in Fig. 3 is rotated by π around the *c* axis. Then, B_2^1 , B_4^1 , and B_4^3 are eliminated by averaging over the two Co_{IV} positions. B_2^2 , B_4^2 , and B_4^4 are calculated to be an order of magnitude smaller than those of B_2^0 and B_4^0 , respectively.

Thus, neglecting the smaller B_2^2 , B_4^2 , and B_4^4 terms, the crystalline-field potential, acting on each Co site in $R \cos_5$ and $R_2 \cos_{17}$, can be described as

$$V = B_2^0 [3L_z^2 - L(L+1)] + B_4^0$$

× [35L_z^4 - 30L(L+1)L_z^2
+ 25L_z^2 - 6L(L+1) + 3L^2(L+1)^2] , (1)

where

$$B_{2}^{0} = -\frac{e}{4} \frac{5}{\pi} \gamma_{20} \alpha \langle r^{2} \rangle , \quad B_{4}^{0} = -\frac{3e}{16} \frac{1}{\pi} \gamma_{40} \beta \langle r^{4} \rangle ,$$

$$\gamma_{no} = 4\pi \sum_{j} \frac{q_{j}}{(2n+1)R_{j}^{(n+1)}Y_{n}^{0}(\theta_{j}, \phi_{j})} ,$$
(2)

and -e is electronic charge. q_j is atomic charge, assumed to be +3e for Y atoms and $+Z^*e$ for Co atoms. The summation of γ_{no} is carried out to the environment atoms with distance R_j from the reference cobalt atom drawn in Figs. 2 and 3. α and β are the Stevens multiplicative factors. The magnetic moment of the cobalt atoms in YCo₅ and Y₂Co₁₇ is 1.46 (Ref. 7) and $1.64\mu_B$,⁸ respectively, with the assumption that the Y atom be nonmagnetic, which leads to 0.74 in YCo₅ and 0.82 in Y_2Co_{17} for the cobalt spin moment. If the cobalt spin moment is roughly assumed to be S = 1 in YCo₅ and Y₂Co₁₇ from the localized model, cobalt atoms have a $3d^8$ configuration, which leads to $\alpha = \frac{2}{105}$ and $\beta = \frac{2}{315}$. $\langle r^2 \rangle$ and $\langle r^4 \rangle$ are taken from the Slater function. $Y_n^m(\theta, \phi)$ is spherical harmonic function with spherical coordinates (R, θ, ϕ) , and L is the angular momentum.

At first, consider the neighboring Y-atom contribution to the Co magnetic anisotropy in YCo₅. As seen in Fig. 2, three Y atom neighbors around Co₁ are in the c plane, which leads to positive B_2^0 in Eq. (1). B_4^0 is shown to be one order smaller than B_2^0 in magnitude. Therefore, the Co₁ spin orientation arising from the Y-atom neighbors favors a c plane. This is in conflict with Streever's result of an easy c axis for the Co₁ spin. Four Y-atom neighbors around a Co₁₁ atom are in a plane perpendicular to the c plane, which leads to negative value for B_2^0 . B_4^0 is also shown to be one order smaller than B_2^0 in magnitude. Consequently, Co_{II} spin orientation arising from Y atom neighbors favors a *c* axis, which is again in conflict with Streever's result that the Co_{II} spin is favorable in the *c* plane. Accordingly, the contribution of Y neighbors to each Co anisotropy in YCo₅ will be considered not to be dominant. Likewise, it can also be shown that Y-neighbors contribution to the crystalline field in Y₂Co₁₇ is not dominant.

The Co neighbors contribution to each Co-site crystalline field can be calculated using Eqs. (1) and (2). For the ${}^{3}F$ state $(3d)^{8}$ of the Co atom, the energy levels for each Co site in YCo₅ and Y₂Co₁₇ are shown in Fig. 4. As seen in the figure, the ground states for Co₁ and Co₁₁ in YCo₅ are $L_z = \pm 3$ and 0, respectively, supporting the polarized neutron studies⁹ that Co_1 atoms have large 3*d* orbital moment, and magnetization densities of CoII atoms are more isotropic. This implies that Co_1 site spin favors c axis and Co_{II} spin favors c plane through spin-orbit coupling. This result agrees with Streever's result. For Y_2Co_{17} , the Co₁ ground state is $L_z = \pm 3$, while states for Co_{II} , Co_{III} , and Co_{IV} are all $L_z = 0$. This result also signifies that, in Y_2Co_{17} , Co_1 spin favors c axis and other Co site spins favor c plane, which agrees again with Streever's result.

Energy Level

FIG. 4. Energy levels for each Co site calculated by Eqs. (1) and (2) in (a) YCo₅ and in (b) Y_2Co_{17} .

It is noted that, in YCo₅, first excited state $(L_z = \pm 3)$ energy difference from ground-state energy ΔE of Co_{II} is very small, compared with that of Co_{II} . The small ΔE in Co_{II} will make a smaller Co_{II} contribution to the magnetic anisotropy. Namely, magnetic anisotropy of YCo₅ will mainly arise from Co_I contribution. In Y_2Co_{17} , on the other hand, magnetic anisotropy will mainly arise from Co_{II}, Co_{III}, and Co_{IV} contributions, which all favor c plane of Co spin in agreement with experimental magnetic easy axis of Y_2Co_{17} . In particular, Co_{III} contribution to the c plane of Co spin seems to be the largest. It is also noted that in YCo₅ ground orbital states for crystalline fields are $L_z = \pm 3$, that is, degenerate and in $Y_2Co_{17} L_z = 0$, that is, nondegenerate. Consequently, magnetic anisotropy will be larger in YCo₅ than in Y₂Co₁₇ because degenerate ground orbital states make rather large magnetic anisotropy through the first-order spin-orbit coupling. This may explain the difference in the magnitude of magnetic anisotropy between YCo_5 and Y_2Co_{17} .

III. NMR IN $Y_2(Co_{1-x}M_x)_{17}$ (*M* - Cu OR Al) COMPOUNDS

Alloys for NMR study were prepared by arc melting using 99.9 wt. % Y, 99.5 wt. % Co, 99.99 wt. % Cu, and 99.9 wt. % Al constituent elements. Thus obtained ingots were annealed for 10 days at 1100 °C and then rapidly cooled to room temperature. Single phase of each sample was confirmed by x-ray analysis. The annealed ingots were ground into powders whose particles were 10 μ m in diameter and which were used for NMR measurement.

NMR observations were accomplished using the spin-echo method at liquid- N_2 temperature within a cold-finger-insert Dewar, which fits into a resonance coil. The NMR equipment used is conventional. The NMR intensity was measured by obtaining a maximum echo signal for each frequency observed on the oscilloscope. Echo intensities obtained at each frequency were divided by that frequency.

The ⁵⁹Co NMR spectra in $Y_2(Co_{1-x}Cu_x)_{17}$ and $Y_2(Co_{1-x}Al_x)_{17}$ at liquid-N₂ temperature are shown in Fig. 5. The ⁵⁹Co NMR spectrum in Y_2Co_{17} has four peaks, corresponding to four crystallographically different Co atom sites in R_2Co_{17} structure. The four peaks at 166, 174, 203, and 219 MHz in Fig. 5 correspond to Co₁₁, Co₁V, Co₁, and Co₁₁₁ in Fig. 3, respectively.¹⁰ Namely, the greater the number of local cobalt atoms, the higher the ⁵⁹Co resonance frequency. As shown in Fig. 5, the NMR spectra behave differently between Cu and Al substituted compounds. In the Cu substituted compounds, the peak resonance frequency at each Co site scarcely changes up to x = 0.10. At x = 0.15 a new resonance peak appears at 152 MHz and the resonance peak

FIG. 5. NMR spectra for ⁵⁹Co in $Y_2(Co_{1-x}Cu_x)_{17}$ and $Y_2(Co_{1-x}Al_x)_{17}$ at liquid-N₂ temperature.

corresponding to Co_{III} disappears. In the Alsubstituted compounds, on the other hand, a new resonance peak at 152 MHz appears at x = 0.05 and the resonance peaks disappear at $x \ge 0.05$ for Co_{IV} and $x \ge 0.10$ for Co_I and Co_{III} , respectively.

The NMR intensities at Co_I, Co_{IV}, and Co_{III} sites normalized by the intensity at Co_{II} site are shown in Fig. 6 as a function of x in $Y_2(Co_{1-x}Cu_x)_{17}$ and $Y_2(Co_{1-x}Al_x)_{17}$. In the Al-substituted compounds the Co_{III} intensity rapidly decreases, which is suggestive of site preference of Al for Co_{III}. On the other hand, Cu substitution for Co atoms in $Y_2(Co_{1-x}Cu_x)_{17}$ seems to be at random, because the intensity at each Co site gradually changes with x.

Hyperfine fields of ⁵⁹Co in Y_2Co_{17} can be estimated⁴ by

$$H_{\rm Co_i} = (-30.4 - 7.8N_{\rm Co_i})\mu_{\rm Co} \quad , \tag{3}$$

where, *i* implies I, II, III, and IV, μ_{Co} is the magnetic moment, and N_{Co_i} is the number of Co neighbors around Co_i atom site which are 11, 9, 13, and 10 for Co_I, Co_{II}, Co_{III}, and Co_{IV}, respectively, as shown in Fig. 3. If some Co_{III} atom pairs are substituted for by Al, Co_{III} resonance intensity will diminish. The hyperfine field for Co_{II} whose neighbor one Co_{III} pair is substituted for by Al, can be estimated as 152 kOe, using Eq. (3) with $\mu_{Co} = 1.64\mu_B$ and $N_{Co_{II}} = 8$, which leads to 154 MHz resonance frequency. This value

FIG. 6. NMR intensity of each cobalt site, normalized by that of Co_{II} atom in $Y_2(Co_{1-x}Cu_x)_{17}$ and $Y_2(Co_{1-x}Al_x)_{17}$.

coincides well with the observed 152 MHz resonance peak frequency. The resonance frequency corresponding for Co_{IV} , whose neighbor two Co_{III} pairs are substituted for by Al, is also estimated as 154 MHz. Because the numbers of Co_{II} and Co_{IV} atoms whose neighbor one or two Co_{III} pairs are substituted for by Al atoms increase with increasing Al concentration, 154 MHz resonance intensity will increase with Al substitution, which is observed in Fig. 6.

IV. INTERPRETATION OF ANISOTROPY IN $Y_2(Co_{1-x}M_x)_{17}$ (*M* = Cu OR Al)

It was shown in Sec. II, that Co_I contribution to the magnetic anisotropy was positive, while Co_{II}, Co_{III}, and Co_{IV} contributions were negative. In particular, Co_{III} was the largest in the negative contribution. The Al substituted compounds are first considered. According to the NMR results, Al atoms prefer Co_{III} atom sites. In $Y_2(Co_{1-x}Al_x)_{17}$, the resonance of Co_{II} and Co_{III} with negative contributions to magnetic anisotropy are still observed at x = 0.05. At $x \ge 0.10$, on the other hand, Co_{III} resonance disappears and only two peaks at 152 and 165 MHz are observed. As indicated in Sec. III the resonance at 152 MHz corresponds to the contributions from Co_{II} and Co_{IV}

neighbors substituted by Al and Co_{IV} with one Co_{III} atom pair of the two substituted by Al, which have $N_{Co} = 9$, respectively. The crystalline field at each Co atom site with $N_{Co} = 8$ or 9 at $x \ge 0.10$ in $Y_2(Co_{1-x}Al_x)_{17}$ is similar to that of the respective Co atom site with $N_{Co} = 8$ or 9 in YCo₅, except that one or two Y atom neighbors around each Co atom are replaced with two nonmagnetic Al atoms. Thus, the magnetic anisotropy in $Y_2(Co_{1-x}Al_x)_{17}$ will become positive from negative at x exceeding 0.1 because YCo₅ has positive anisotropy. This explains the magnetic anisotropy behavior of $Y_2(Co_{1-x}Al_x)_{17}$ observed by Hamano *et al.*

In $Y_2(Co_{1-x}Cu_x)_{17}$, on the other hand, Cu replaces Co atoms at random, thus, Co_{III} resonance peak is still observed up to x = 0.10 and Co_{II} and Co_{IV} resonance peaks up to x = 0.15, whose contributions to magnetic anisotropy are all negative, as calculated in Sec. II. Consequently, the sign of magnetic anisotropy in $Y_2(Co_{1-x}Cu_x)_{17}$ will not change with x up to 0.15, at least. This also supports the experiments reported by Hamano *et al.*

V. SUMMARY

Co site crystalline field in YCo₅ and Y₂Co₁₇ was calculated using the point-charge model. It was shown that Co neighbor contribution to the each Co site magnetic anisotropy was larger than the Y neighbor contribution. Consequently, 2c site in YCo₅ and 18*j* site in Y₂Co₁₇ make positive contributions to the anisotropy, while 3g site in YCo₅ and 18h, 9d, and 6c sites in Y₂Co₁₇ make negative contributions, in agreement with Streever's NMR result.

NMR study in $Y_2(Co_{1-x}M_x)_{17}$ (M = Cu, Al) revealed that Cu substitution for Co was at random, while Al substitution for Co succeeded with a site preference. Al mainly prefers 6c dumbbell site. Thus, in $Y_2(Co_{1-x}Al_x)_{17}$ the change of the magnetic anisotropy in sign appears to depend on diminution of the negative 6c site contribution to the magnetic anisotropy through Al preference for 6c site, while in $Y_2(Co_{1-x}Cu_x)_{17}$ it appears not to occur with Cu substitution because Cu dimunishes each cobalt site contribution, equally.

ACKNOWLEDGMENT

The author thanks Mr. M. Yamada for alloy preparation.

- ¹J. E. Greedan and V. U. S. Rao, J. Solid State Chem. <u>6</u>, 387 (1973).
- ²M. Hamano and S. Yajima, Trans. Jpn. Inst. Met. <u>18</u>, 185 (1977).
- ³T. Katayama and T. Shibata, J. Crys. Growth <u>24-25</u>, 396 (1974); R. S. Perkins and H. Nagel, Physica (Utrecht) <u>80B</u>, 143 (1975).
- ⁴K. Inomata, Jpn. J. Appl. Phys. <u>15</u>, 821 (1976); J. Deportes, D. Govord, R. Lemaire, H. Nagai, and Y. T. Yang, J. Less-Common Met. <u>44</u>, 273 (1976).
- ⁵R. L. Streever, Phys. Rev. B <u>19</u>, 2704 (1979).

- ⁶A. M. Leushin, M. V. Eremin, and G. G. Khaliullin, Sov. Phys. Solid State <u>18</u>, 1740 (1976).
- ⁷S. K. Malik, F. J. Arlinghaus, and W. E. Wallace, Phys. Rev. B <u>16</u>, 1242 (1977).
- ⁸J. Laforest, R. Lemaire, R. Pauthenet, and J. Schweizer, C. R. Acad. Sci. <u>262</u>, 1260 (1966).
- ⁹F. Tasset, Ph. D. thesis (University of Grenoble, 1975) (unpublished).
- ¹⁰R. L. Streever, in *Magnetism and Magnetic Materials* 1974, edited by C. D. Graham and G. H. Lander, AIP Conf. Proc. No. 24 (AIP, New York, 1975), p. 462.