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Nuclear spins in metals can undergo phase transition into an ordered state. They have been
studied for the thermodynamic properties over a wide temperature range including the transition

temperature. The metallic nuclear spins interact via the Ruderman-Kittel (RK) exchange in-

teraction in addition to the usual dipolar interaction. The oscillatory nature of this interaction

gives rise to spin-density waves as the ground-state spin arrangement. The thermodynamics is

then strongly affected by the fluctuations. Using a spherical model we calculate entropy, suscep-

tibility, and the internal energy for systems with varying RK exchange constant. The results can

be compared with experiments on copper, and the agreement is satisfactory. The spherical-

model technique yields a substantial reduction in the transition temperature from the mean-field

value. The nuclear-spin dynamics has been considered in the disordered as well as in the or-

dered phase. At low external fields, the spins absorb radiation at the Larmor frequency ~L as

weil as the second harmonic co2L, %'e study the interference between these two absorption fre-

quencies. %e derive a set of equations that generalize the usual Bloch equations and can be
used to extract the strength of the RK coupling constant.

I. INTRODUCTION

The system we consider consists of conduction
electrons with spin —, and nuclei with nonzero spin.

If the conduction electrons remain paramagnetic until
the lowest temperatures T then at some low T, the
localized nuclear spin, described by a Curie law sus-
ceptibility, are expected to condense into a spin-
ordered state. The nuclear-spin interaction is of or-
der 0.1 p, K and we expect the transition temperature
to be similar. The ordered state then becomes the
lowest energy many-body state known so far. '

In dielectrics, the nuclei interact only via the classi-
cal dipolar interaction. The resulting effects have
been studied carefully and in detail by Abragam,
Goldman, and co-workers. " They have studied,
mostly within the mean-field approximation, the spin
arrangement and the thermodynamic properties. In a
metal, the nuclei also interact via the conduction
electrons, the well-known indirect exchange
Ruderman-Kittei (RK) interaction. 4 This interaction
is oscillatory, long range, and has.magnitude usually
comparable to that of the dipolar interaction. The
two interactions compete and the resulting state turns
out to be a spin-density wave (SDW) state, as shown
by Kjaldman and Kurkijarvi. '

For copper the mean-field prediction for the transi-

tion temperature T, is 0.2 p, k. The experiments
have reached temperatures of order 0.1 p, K and seen
no conclusive evidence of a phase transition. We
propose this reduction in T, as an effect of SDW
fluctuations. The fluctiations also explain the ob-.

served temperature dependence of the susceptibility
X, the entropy 8, and the internal energy E. Briefly,
the observed X follows a Curie-Weiss law for
T & 0.25 p, K but gets steadily smaller at low tempera-
tures. The observed S decreases by 40% over the
temperature range 1.0 to O. l p, K. The observed E
decreases even more rapidly over the same tempera-
ture range.

The nature of the ground-state spin arrangement5
is a question separate from the thermodynamic prop-
erties. If the Hamiltonian H is written in a quadratic
form (at external magnetic field H = 0)

H = ——X S'„G'J„SJ
if', v

where ij refer to the lattice sites and p„, v refer to the
components of spin vector S, the eigenvalue equation
(in k space)

G„„(k)$„(k)=Z(k)P„(k)

contains most of the necessary information. The
largest eigenvalue X(k) describes the energy of the
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ground state with spin arrangement given by the cor-
responding eigenfunction. Such an analysis has been
carried out by Kjaldman and Kurkijarvi (KK) who
studied the eigenvalue X(k) as a function of the
exchange-coupling constant. The function G includes
the dipolar as well as the exchange interaction with

the ratio of the coupling constants expressed as
rl= J,„a3/y'lt2 where y is the gyromagnetic ratio and
a is the lattice constant for copper.

For g =0, KK find a ferromagnetic state. As q in-

creases, the system breaks up into patterns of large
wavelength because of the competitition between the
two interactions. For 0 & q & 1, the maximum
eigenvalue X(ko) decreases (the energy increases).
For q ) 1, the system is dominated by the exchange
interaction, the ground state consists of commensu-
rate spin-density waves (SDW) and X(ko) increases
with rt. For copper (g = 2.8), the ground-state spin
arrangements consists of antiferromagnetic orienta-
tion in x-y planes with spins in successive planes
oriented at an angle. The arrangement, shown in

Fig. 1 is described by

(&,) = (0, a~, a2) cos(k r, ) + (a3 0 0) cos(k' r;)

(3)
k= —(1,0, 0), k'= —(0, 1, 0)

8 a
The condensation of two spin-density waves in the
language of critical phenomena, makes copper an
n =4 system.

The calculations presented here have been done
using the spherical model. ' The method was invent-

ed as a technique which brought about many of the
features of Onsager's exact solution of 2D (two-
dimensional) Ising model and yet was managable in

higher dimensions. Later on it was shown to be ex-
act for a large coordination number. ' or a large

Z

Y

=X

number of components of the order parameter. In
as much as the interactions, both exchange and dipo-
lar are long range and the number of ordering sublat-
tices is n =4, we expect the spherical model to pro-
vide a considerably improved description compared to
the mean-field theory. To our knowledge, this is the
first application of the spherical model to a real sys-

tem. The calculations have been done without any
adjustable parameters and are in satisfactory agree-
ment with the experiments, elucidating the role
played by fluctuations. Our calculations here are lim-

.ited to the disordered state.
We present a brief introduction to the spherical

model in Sec. II A followed by a discussion of the
eigenvalues and density of states in Sec. II B. The
latter constitute the building blocks of this model and
we discuss them in some detail for various values of
the exchange constant. Such an analysis brings out,
in terms of the parameters of the spherical model,
the physical processes involved in the precursor fluc-
tuations of the condensed state. We also study the
density of states for CaF2 for comparison. This sys-
tem contains no exchange interaction but its Hamil-
tonian consists of only those terms in the dipolar in-

teraction that conserve the z component of the total
spin. In Sec. III, we present the thermodynamic
properties. We present the results for the disordered
phase, compare them with the experiments and offer
speculations about the sources of remaining discrep-
ancy. We also discuss the effects to be expected on
the ordered state.

In Sec. IV we consider the equations for the spin
dynamics. The dipolar interaction causes spin preces-
sion at ~L = yHO as well as ~2L = 2~L, ~3L = 3aoL,
etc. ' Usually, the intensity of the harmonic absorp-
tion is weak and unobservable. In nuclear spins of
copper (a) the Larmor frequency raL is shifted due to
demagnetization and (b) the exchange interaction
causes negative shift of comparable amount in co2L.

This results" in a level crossing at a magnetic field of
7 6, where the absorption intensities of the two lines
are equal. From microscopic considerations, we can
derive a set of generalized Bloch equations that
describe coupling between ruL and co2L lines (a
misnomer, since after the shifts are accounted for,
the frequencies are not multiples; we continue to use
the label however) in terms of a parameter that is
calculated from first principles. These equations have
been used in Ref. 11 to analyze the experimental
data. Section V consists of a concluding discussion.

FIG. 1. The mean-field-theory prediction for the ground-

state arrangement, as calculated by Kjildman and Kurkijarvi.

The spin in z =0 plane are in a relative antiferromagnetic
orientation. In the plane z -a, they are at an angle

2cos (o.3) with z =0 spins. In the absence of any anisotro-

py energy, the overall orientation is arbitrary.

II. SPHERICAL MODEL

A. Method

Copper nuclei occupy sites on an fcc lattice and in-

teract via a Hamiltonian given in Eq. (1). The func-
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tion G,J"" is given by

Gs""=— [1 + gf (2krr J ) ]8„„—1

2'
3 (rs)„(rj)„

(r,q)'

where

s&nxf (x) =cosx —,r,& = r, —rj .
x

(5)

g =— = ks [In(2S + I ) —I]9F
QT

pE =/3F +g/ks = —(1 —rp/tp )

x-'=2[rp —z(q =0)],
I = Xln[(tp —kg)/tp ]= 1

2N

(g)

(10)

Here to, a function that represents the temperature
dependence of the Curie constant, is a solution of the
equation

(12)

and approaches rp = 3ks T/2S (S + I ) in the high-

The Fermi wave vector is denoted by kq and r& are
the lattice vectors. The Hamiltonian H is written in

the units of f= y =1. The greek subscripts refer to
the spin indices. The RK interaction function f (x)
has been assumed to be free-electron form. Its
strength q is a variable in our calculations. For
copper q = 2.S.

The partition function Z contains the thermo-
dynamic information (P = I/ks T)

Z (T) = D [S(r) ] exp( —PH) (6)

where D [S(r)] represents the functional integration
over the hypercube in the space of functions S(r).
In spherical approximation, the cube is replaced by
the surface of a sphere of radius [NS(S + I) ]' '
where N is the total number of spins. The Hamil-

tonian H can be written in a quadratic form by suit-
able rotation. The condition on the radius of the
hypersphere, expressed as a delta function is rewrit-

ten in an integral representation. The integrals are
mostly Gaussian and can be done easily. The mea-
sure of the functional integral, usually taken to be a
3N-dimensional unit volume, is fixed so as to yield
the correct high-temperature limit of the entropy.
These are all the standard procedures in spherical ap-
proximation. The final results for the free energy F
(in zero magnetic field), the internal energy E, the
entropy S, and the spin susceptibility X can be written
as

PF= lnZ—
=ln(2S+I)+pS(S+1)(rp —rp ) —I, (7)

temperature limit. The Gaussian approximation cor-
responds to f0= fp at all temperatures. It yields the
Curie-gneiss law fo'r the susceptibility and E =0. In
mean-field theory the phase transition takes place at
to = A.,", the result obtained in Ref. 5.

Equation (12) states that the local susceptibility
X(r =0) must, not diverge at T = T, but should be
given by S(S + I )/ks T. It is easy to prove the in-

equality, PS(S+ I) can be shown to be greater than
or equal to the right-hand side using Bogoliubov's in-

equality", however the exact equality is an approxi-
mation. Yet this limitation on the unphyiscal diver-

gence of the fluctuations brings out (a) the fluctua-

tion caused lowering of the transition temperature.
That in turn comes from the (b) decrease in the
temperature-dependent effective Curie constant. Fi-
nally (c) all the thermodynamic quantities Eqs. (7) to
(10) appear with temperature dependence in satisfac-

tory agreement with the experiments.

B. Energy eigenvalues and density of states

The exchange part of the operator 6& is diagonal in

spin space. Diagonalization in real space can be done
by Fourier transform, notwithstanding the shape-
dependent demagnetization effects. %e are then left
with the final diagonalization of the spin dipolar term
in the spin space. This must be done explicitly.

Our calculations, from this stage onwards, have
been done numerically. The dipolar term has been
Fourier transformed by Cohen and Keffer' for 512
discrete values in the first Brillouin zone. %e use
those values. The Fourier summation of the ex-
change contribution has been done explicitly. Final-

ly, the eigenvalue matrix in spin space is diagonalized
for each point in k space. In Ref. 5 only the largest
eigenvalue was studied, here we study carefully the
entire eigenvalue spectrum.

The most useful function for our calculation is the
density of states function N () ) '4

(13)

such that all summations in Eqs. (7) and (12) can be
replaced by energy integration's with the density of
states N (h. ). One can indeed perform analytic calcu-
lations by choosing appropriate approximate forms
for N (h. ). In Eq. (12), since the integrand is the
product of a simple pole at tp and N(X), at moderate
temperatures when r p )) h. ,„=max(h. g), it is finite
only in close vicinity of A. ,„. It may be sufficient to
Taylor expand N(X) about X= A. ,„. In Eq. (11), the
integrand contains a logarithmic function which is

slowly convergent and low eigenvalue fluctuations be-
come important. The transition temperature T, is

particularly sensitive to the form of N (A. ) near h. ,„.
The transition takes place" when to= A. ,„. If
N(X,„) is nonzero, the integral in Eq. (12) is diver-



L. H. KJALDMAN, PRADEEP KUMAR, AND M. T. LOPONEN

gent and T, goes to zero. To yield a finite T„ the
density of states must approach zero at the upper
band edge as N ()t) —()I.—A. ,„)', 8 & 0. Hence in a
numerical calculation where a finite set of points are
used in a sum, special care must be taken in the cal-
culat1on of T~.

%e show the numerical results for the density of
states in Figs. 2. ln Figs. 2(a) and 2(b), we show a
collage of N(X) for q =0, 1, 2, . . . , 5. These corre-

spond to the Hamiltonian in Eq. (4) and have been
collected from the discrete eigenvalue spectrum in
the first Brillouin zone. %'e will discuss later the
method used to calculate T„here we only describe
the histograrns. As q increases, the maximum eigen-
value moves around, decreasing for q & 1 and in-
creasing afterwards. The bandwidth (A,„—X;„) is
large for q =0; it decreases rapidly as q is s~itched
on. For large q, the bandwidth is controlled by RK

0.01-

0.06-
cr.oy

0

o.oJ

L

0 03

FIG. 2. (a), (b) Density of states N(A. ) of the fluctuations eigenvalues for g=0, I, 2, 3, 4, and 5. In these figures N(A, ) has
been normalized to one. The histograrns are calculated for 20 sections of the eigenvalue band. (c) Density of states N(A, ) for
q =2.8, the exchange coupling constant for copper nuclei. Here too N(A. ) has been normalized and the eigenvalue band divided
in 20 sections. (d) Density of states N(A, ) for a truncated spin-dipolar Hamiltonian. The physical system is CaF2. The upper
curve shows the'density of states for the external field HO II [110]while the lower curve corresponds to HO II [100).
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interaction and is small compared to dipolar
bandwidths. The interesting features are the forms
of N(A. ) near the. upper band edge. With the excep-
tion of g = 1, the histograms clearly show a positive 8
and therefore a finite T, . Even for q = 1 a finer his-
togram thickness reveals decrease in N(X) as ) ap-
proaches h, ,„. Figure 2(c) shows the density of
states for copper (ri =2.8).

Figure 2(d) presents calculations for CaFz, a sys-
tem studied by Goldman et al. ' in detail, The Hamil-
tonian for this system consists of only those terms
that commute with the total spin. There is no RK in-
teraction. Our calculations refer to the two magnetic
field orientations with respect to the crytalline direc-
tions. For Hp II [100] direction, 8 is quite small
and this is reflected in a large change in T, discussed
later in Sec. III. For Hp II [1101,the eigenvalue
spectrum is more favorable for a phase transition
again reflected in a relatively small decrease in T,
from its mean-field value. An important conclusion
of these calculations is that, in contrast to the mean-
field theory predictions, the state Ap II [110]is more
robust.

III. THERMODYAMICS

The results are separated into several subsections.

A. Tc

The calculation of transition temperature T, is
strongly sensitive to numerical errors. In a discrete
sum, the pole in Eq. (12) at tp= X,„ is divergent and

T, =0. To study the temperature dependence more
carefully, we calculated Btp/BT Its temper. ature
dependence consists of three different regions. At
high temperatures it approaches 3ks/2S(S+1), the
Curie-gneiss value. At some intermediate tempera-
tures, it drops rapidly but does not reach zero. Rath-
er the actual decrease happens smoothly. If the last
slow decrease is a result of numerical uncertainties,
we can extrapolate the intermediate temperature
Btp/BT to zero yielding a T, . Another estimate of T,
can be obtained from the intersection of the low tem-
perature tp(T) line with the intermediate temperature
fall. The resulting T, differs by a small amount, typi-
cally less than 10%.

The results from such a calculation of T, are
shown in Fig. 3 as a function of q. The functional
dependence is similar to the one obtained in mean-
field theory by KK. As g increases, the ferromagne-
tism, preferred by spin dipolar interaction is weak-
ened and T, decreases. The symmetry of the ground
state also changes. The ferromagnetic state breaks up
into periodic domains of opposite spin orientation.
For q & 1, the ground state becomes progressively
antiferromagnetic and the transition temperature in-

0,2—

O.I—

0
0

FIG. 3. The transition temperature Tc as a function of
the exchange strength. The solid line shows the mean-field
results. The points show the results of the spherical model
calculation. The shift in T, is a weak function of q.

Tc 5 1 1
1 ——11—

T,stF 64 Z S(S +1) (14)

approximately the same order of magnitude as our
results.

B. Susceptibility

The fluctuations affect the susceptibility X via the
effective Curie constant C. In mean-field theory,

creases. For all g, the fluctuation reduced T, is relat-
ed to mean field Tp by the expression (in ti, K)
T, =1.19T, —0.16. For copper, q=2.8 and thus
T, =0.1 p, K, a result not inconsistent with the exper-
iments. The lowest temperatures reached so far are
in the range of 0.1 p, K.

One criticism of the spherical model has been the
lack of a well-defined (even in principle) method to
improve on this approximation and thus gauge its ac-
curacy. .The only possible test then is to study sys-
tems where T, has been experimentally measured.
Unfortunately in dielectrics where a transition to an
ordered state has been seen, " the temperature has
not been measured. %e have however calculated T,
for CaFz for two different ground states' (static fieid
Hp parallel to [001] or [110] axes) studied by
Goldman et al 3For Ilp I.I [001] we find T, =0.17
p, K (T, =0.34 p, K') and , for Apll [110]we have
T, =0.2 tA, K (T P0.31 p, K'). This could be an
overestimate of the fluctuation effects. However yet
another estimate of fluctuation effects can be found
in Rushbrook and Wood's series expansion calcula-
tion for a nearest-neighbor exchange interaction (z
being the coordination number)
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FIG. 4. The function tp(T) for several values of q. The
susceptibility X(T) is related to tp(T) so that
X '( T) = 2tp(T) —X(q =0) and can be obtained by shifting

the y axis by a constant X(q 0). Any departure from a
linear temperature dependence in tp(T) can be interpreted

as an effect of fluctuations on the Curie constant. tp(T) for
copper (q =2.8) is sho~n separately over a wide tempera-
ture range.

X = C/( T + TN ) and one can identify ro = kT/2C.
Thus a departure from linear temperature depen-
dence in tp can be interpreted as a temperature
dependence of C due to the fluctuations. This effect
can be isolated by subtracting the zero-temperature
intercept in a X

' vs T plot. The resulting to [see Eq.
(12)] is shown in Fig. 4 for several values of ri W. e
also show the calculated tp for q = 2.8.

In Fig. 4, the antiferromagnetic states (g ) 1)
have large deviations from the Curie-Weiss law,
present over a wider range of temperatures. As g de-
creases, the effect of fluctuations decreases. In the
T, —T, relationship, the slope of the linear curve is
larger than 1; signifying an increased effect on T, for
large g as well. The results for q & 1 are less sensi-
tive to the fluctuations.

Again, to compare with known systems, we calcu-
late the susceptibility for CiF2. The results are
shown in Fig. 5 and refer to two possible orientations
of the magnetic field with respect to the crystalline
axes. The calculated susceptibility appears very close
to the Curie-gneiss law indicating that the Curie con-
stant is affected only weakly by the fluctuations due
to the spin-flip terms of the Hamiltonian. The
ground-state spin arrangement in the two cases is dif-
ferent resulting in different values of T, .

C. Entropy and internal energy

The results for entropy and internal energy for
copper are shown in Fig, 6. For comparison, we
show the entropy calculation for q =0 and 2.8. The
results are limited to the disordered region and are
sensitive to q. The surprising result is the excess ob-
served entropy for temperatures belo~ 0.15 p, K. One
expects, the spherical model to overestimate the fluc-
tuations. Indeed all of the thermodynamic measure-

0
0

1

0.2
I

0,4

T(pK )

I

0.6
]

0,8

z 05—
CO

FIG. 5. The function tp(T) for CaF2 for the two orienta-

tions of the magnetic field with respect to the crystalline
axes. Curve I is calculated for field Hp parallel to [100]
direction while curve II is calculated for Hp parallel to
I100t direction. The temperature at which tp becomes a
constant indicates the transition temperature. For I,
T, 0.17 p,K and for II, T, =0.2 p, K; The mean-field values

are, respectively, 0.34 and 0.31 p.K (Ref. 3).

I

0.5
T( p.K)

FIG. 6. The temperature-dependent entropy 8 (T) is

shown for q 0 and q-2.8. The curves are drawn up to
the transition temperature.
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ments appear to have excess fluctuationlike effects at
temperatures below 0.15 JM.I|'. %e suspect the ran-
dom magnetic field due to the spatial distribution of
65Cu (concentration 30%, gyromagnetic ratio larger by
7%) as one possible source. '

D. High field effects

In the presence of an external magnetic field 00,
the parameter Io is determined from the equation [in-
stead of Eq. (12)l

ps(s+I) = X —++Hg'[tol —Ao]„„'Ho
2N ~„ to —A.q" 4

where Ao is the eigenvalue matrix for q =0. If the
phase transition takes place at to= A. ,„ the shift in
the transition temperature is given by

T, (H) = T, (0) (I H2/H')—

where H, = (X,„—)to)S (S + 1) represents a critical
field and depends on the orientation of the magnetic
field. This calculation is valid only for nonferromag-
netic states such that BT,/8H ~ 0 and h. ,„W h, o. ln
the latter cases (g 4 0), the critical field is linearly

dependent on (X,„—iso). For copper, it is about 3

6, in agreement with the experiments.

IV. MAGNETIC RESONANCE

A. T&T,

The spin dynamics at high fields is relatively sim-
ple. The spins precess with Larmor frequency aoL

determined by the external field. Among the spin-
spin interactions, the exchange interaction has no ef-
fect because of the Larmor's theorem. The dipolar
interaction is usually too weak. Th'e various interac-
tions do determine ihe damping processes.

At low fields, the Larmor precession acquires
demagnetization shifts. In copper, these dipolar
shifts correspond to maximum of approximately 6-G
field or a 7-kHz frequency shift. The dipolar interac-
tion also causes coherent precession of two spins at
frequency 2~L. This motion is affected by the ex-
change interaction in addition to the dipolar interac-
tion and because of their comparable magnitude, the
shifts are found to almost cancel each other. (The g
used in earlier sections is determined from the small
negative shift of the second harmonic. )

The spin dynamics at low fields can be studied be-
ginning with the Liouville's equation

I/s=[e-, sj, e=e,„+e, .

The Hamiltonian H is described in Eq. (4) and in
the presence of an external field Ho, includes the
Zeeman term —S Ho. The spin motion is best stud-
ied in terms of S—=S"+iS which yields, on
evaluating all the commutators

S = IaooS++i X —— , (I —3cos'8)S,*SJ+—i X, sin8cos8e '&S+S&+
(re)' (re)'

—i X — [3sin8 sc8oe'~(s S+ 2S'S')——sin 8e '4'S S*J
( )' i J i J i J

tj ~J

Here S = X,. S; with S; representing spins at site i r&.
is a lattice vector with polar coordinates 8 and g and
~0 represents the unshifted Larmor frequency.

On taking averages, if (S;.S&+) is factored out as
(S~) (SJ+), a random-phase-type approximation, then
the second term yields the demagnetization shifts,
the magnitude of the shifts being proportional to the
polarization. The next two terms, if treated this way,
provide a shift proportional to the transverse magnet-
ization, negligible since the transverse field is zero.

l

If, however these terms are viewed as operators with
their own dynamics, the S+S+ term corresponds to
correlated precession of two spins at 2coo while S S+
and S'S' terms correspond to correlated co =0 excita-
tions. These excitations have negligible intensity at
high fields (proportional to ciao ). At low fields, espe-
cially in the frequency region of interest where the
shifted mL and ao21. are equal, the coupling to the
second harmonic cannot be ignored. To consider
them we ~rite the equation of motion for

X= X(r&) 'sin8cos8e '&S+S&+,
iJ

Hex=-, XA,S S)
ij (19)

X = —2i «)OX + 2 XAk Sk X ( r J ) sin8 cos8e 'as;+S&+—12 X (r k ) ( r& ) ( I —3 cos 8 k ) (sin8 J cos8 &e '~ij )SkS;+SJ+
ki J kj/

+18 X(rk) '(r&) 'si n&8cso&8sin8kcos8ks[S, *SJ++
kjj
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We have retained only those terms that (a) contain
powers of S', the polarization and (b) couple to S+ or
(c) provide frequency shifts in X motion. The terms
that have been ignored include S+S+S+ that represent
coupling to co3L absorption.

Assuming translational invariance (except in
evaluation of the demagnetization shifts), the Eqs.
(18) and (19) can be rewritten in a form suitable for
data analysis

S+= i (a)0+—2m (S')p) S++X,

X- 2i[~-, +4~( ,'+R)-(S )p]X iAS+—,

(20)

(21)

A =18 X(r&) 3cos8ssin8~&e '&jI

jc(

x (yqq) cos8qq sin8qqe 'ski (SgSf), (22)

B. T&T,

and R = X, A&. In Ref. 11 this set of equations have

been used to analyze the NMR results. The shift in

cotL(hru2L -—2 kHz) has been used to determine R
and used in the calculations of Sec. III. The quantity
A had been treated as an adjustable parameter. Us-
ing spherical model, we can determine A and find it
(a) weakly dependent on the polarization consistent
with the assumption in Ref. 11 where the polarization
dependence has been ignored and (b) JA /2e = 2.15
kHz at T =2.6 K and JA /2rr = 2.12 kHz at T =0.1

p,K. The experiments yield vV/2n =3.1 kHz. The
difference in view of the simple nature of Eqs. (18)
and (19) is insignificant.

Z = „D[S(r)]5 $S;2 —hfS (S+1)

r

x g XS&4 —NS'(S+1)2 exp( —PH)
J

(23)

interaction and an exchange interaction of variable
magnitude. The calculations have been done using
the spherical model. The ground state of these spins
is expected to be a commensurate spin-density wave
state.

Among the thermodynamic properties, the transi-
tion temperature to the ordered state T, has been re-
duced due to the fluctuations from its mean-field
value. The functional dependence of T, on q
remains qualitatively the same. The T, decreases un-
til q =1 and then begins to increase again. The fluc-
tuation contribution to the thermodynamic observ-
ables is found to be in agreement with experiments
on copper nuclei. The strength of the exchange in-

teraction in copper is obtained from independent
NMR experiments. For copper these are the first
principle calculations without any adjustable parame-
ters.

The transition appears to be second order in the
Ehrenfest sense. However the possibility of a first-
order transition cannot be investigated within the
present frame work; nor can we look at the possibility
of an alternative ground state. Within the spherical
model, the solutions of Eq. (2) are noninteracting.
The interaction between them appears when we con-
sider a restriction (in addition to the spherical ap-
proximation) on the fourth power of the spin vectors

The KK ground state can be used to calculate pos-
sible shifts in the ordered state. Since the ground
state is antiferromagnetic the NMR frequency shift
will be given by a geometric mean" of the anisotro-

py energy and the exchange energy. The KK ground
state however is fully isotropic and the anisotropy en-

ergy is zero. As a result, the ordered state would not
have substantial shifts in the resonance frequency
(with the exception of demagnetization effects 5-6
kHz). Finally even if the ground state were anisotro-
pic, since the exchange interaction is of comparable
magnitude, the shift would remain in the 5—6 kHz
region. For the same reason, there is no exchange
narrowing in the system. The temperature depen-
dence of the shift can be used to measure order
parameter temperature dependence (b, ru —M').

V. SUMMARY AND DISCUSSION

We have studied the static and dynamic properties
of an assembly of spins interacting via spin dipolar

The second delta function can be written in its in-

tegral representation. The upshot is the appearance
of quartic terms like in a Ginzburg-Landau-Wilson
functional with coefficients determined by saddle
point methods. A detailed investigation of this prob-
lem remains beyond the scope of this paper.

In magnetic resonance, we present a microscopic
derivation of equations that have been used to
analyze the experimental data. The equations
describe coupled correlated motion of the spins. The
coupling constant JA, in the experiments, has been
considered as a polarization independent fitting
parameter. Using spherical model, we can calculate A

and find it almost independent of the polarization
and close to the fitted value. For the ordered state,
we expect small temperature dependent shifts in the
NMR frequency. Unlike an electronic antiferromag-
net where a noncubic ground state can have large
exchange-amplified NMR frequency shifts, copper
spins have weak exchange interaction and even an-
isotropic ground states would give rise to shifts only
of the order of 5 kHz.
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