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The influence of crystal defects and phonons on the line shape of the low-energy tail of exciton absorption is
calculated for molecular crystals with the lower limit of their exciton band at k = 0. The exciton Hamiltonian for a
crystal with lattice defects is derived from that for a perfect crystal with lattice vibrations. Calculation of the line
shape is done assuming that the individual lattice defects have independent effects on the unperturbed exciton band.
Three examples of the molecular exciton energy bands are considered: (1) one-dimensional tight-binding exciton
band, (2) the exciton bands with Hubbard’s model of density of states, and (3) exciton bands with density of states
independent of the exciton energies. At very low temperatures where the influence of the defects is dominant, we
have found the asymmetric low-energy tail due to defects, acting as shallow traps, in all the three examples. The
observed asymmetric line shape in 1,2-dibromonaphthalene single crystals is, therefore, attributed to such shallow
traps and analogous to the Urbach-Martienssen tail observed in alkali halides. As the temperature increases and
phonons become more active, the line shape becomes symmetric due to the dominant influence of thermal

broadening.

I. INTRODUCTION

Exciton scattering by chemical impurities, lat-
tice imperfections, and phonons is intimately con-
cerned in energy transport processes in molecular
crystals and can, in principle, be studied through
spectroscopic properties. The observations of
asymmetric line shapes at low temperatures in di-
bromonaphthalene (DBN) single crystals®*? in form
similar to that of the Urbach-Martienssen (UM)
rule®+ followed in alkali halide crystals suggests
further investigation into the theory of exciton ab-
sorption line shape in molecular crystals, in order
to extract information from band profiles bearing
on the underlying scattering. It is rather common
to find the minimum of the exciton band in organic
cyrstals at K =0.! Here the usual theory of line
shape of absorption®~® is not applicable. The van-
ishing density of states beyond the band edges of
the unperturbed exciton band creates a difficulty in
finding well-defined energy states at K=0.> Sumi
and Toyozawa’ suggest that the asymmetric line
shapes are primarily due to the scattering of ex-
citons by lattice vibrations at the band edge (k =0)
in alkali halide crystals. In molecular crystals,
however, the asymmetric line shapes are observed
at very low temperatures (0-2 K) where the scat-
tering of excitons by thermally excited phonons
cannot play a large role. Where the crystal has
more than one molecule per unit cell, so that each
molecular transition gives more than one exciton
branch, exciton-phonon scattering can occur via
interbranch coupling, even at the lowest tempera-
ture, but the broadening away from the phononless
transition is very slight.® Larger asymmetry is
expected to be either intrinsic with the crystal,
arising from impurities and defects, or character-
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istic of the excitation, as, for example, caused by

local lattice deformation resulting from the excita-
tion of a particular molecular site. It is important
to distinguish between these sources of asymmetry.

Klafter and Jortner® proposed that the asym-
metric line shape can arise from microscopic
structural disorder in pure molecular crystals. In
their model Hamiltonian, Klafter and Jortner in-
troduce an additional term associated with a dis-
tribution of mnlecular excitation energies caused
by variation of the dispersion interaction. In other
words, although the crystal lacks gross disloca-
tion and other forms of disorder, there is a suf-
ficient fluctuation of structural parameters at lat-
tice points to give a spread of energies. They as-
sume that this variation follows a Gaussian distri-
bution with an energy width less than that of the
original exciton band.

Recently we calculated the effect of lattice de-
fects (not impurities) on the low-energy tail of the
line shape of exciton absorption for crystals with
the minimum of the unperturbed exciton band at k
=0.1° The Hamiltonian for such a crystal is de-
rived from the exciton Hamiltonian for a perfect
crystal with lattice vibrations and is different from
that considered by Klafter and Jortner. The mod-
ified Hamiltonian thus obtained contained an addi-
tional term for the energy changes caused by de-
fects.

In this paper we use the same modified Hamil-
tonian'® but apply a different method to calculate the
low-energy tail of exciton absorption. We consider
a class of organic crystals with the exciton state
(K =0) at the lower extreme of the exciton band.
Essentially the same results are obtained if this
state lies at the top band edge. The asymmetric
tail will then be on the high-energy side and for
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that reason, hard to observe. We begin in Sec. II
with the derivation of the Hamiltonian of an exciton
interacting with phonons and lattice defects which
destroy the translational symmetry of the crystal.
The additional operator of the exciton-defect inter-
action thus obtained is then removed by diagonaliz-
ing the Hamiltonian in Sec. III. In Sec. IV we cal-
culate the Green’s function of the diagonalized part
of the Hamiltonian (with no exciton-phonon interac-
tion operator) and derive the line-shape function of
the low-energy tail outside the unperturbed exciton
band. Two specific examples of crystals are con-
sidered: (1) Crystals in which the molecular inter-
actions are very much stronger in one crystal di-
rection than in any other so that the band structure
is nearly that of a one-dimensional lattice. An ex-
ample is in the triplet state of DBN. (2) Three-
dimensional crystals with unperturbed exciton
bands having (a) the Hubbard!! type of density of
states, and (b) the density of states independent of
exciton energy. In Sec. V we consider the complete
Hamiltonian including exciton-phonon interaction
as well, for calculating the exciton propagator and
then the line shape of the low-energy tail.

For one-dimensional crystal with nearest-neigh-
bor coupling we find that the low-energy tail ex-
hibits an exponential rise with steepness parameter,
o=B/D?, as independent of temperature, B being
the half-width of the unperturbed exciton band and
D that of the distribution of the defective-site en-
ergies. In crystals with other band structures the
low-energy tail shows behavior between Gaussian
and exponential.

In Sec. V it is shown how the presence of defects
modifies the exciton-phonon interaction operator.
The line shape due to thermal broadening is also
modified; no asymmetry is, however, produced in
the line shape. The theory is developed primarily
to study the influence of lattice defects due to the
displacements of equilibrium of lattice sites. This
can, however, be used for studying the influence
of impurities equally well. We expect the simple
model system to help the understanding of the UM
tail (asymmetric line shape) observed in molecular
crystals.

II. HAMILTONIAN

The Hamiltonian A for a Frenkel exciton inter-
acting with the lattice vibrations of a perfect mo-
lecular crystal is written in a single-phonon ap-
proximation as'?

A=Y [a€e+D(0)]B}B,+) 'Mn(0)B]B,

-, T
+ 2w, @)Y, b7, +3)
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Ac is the free-molecule exciton energy, D(0) is the
lattice dispersion energy change on molecular ex-
citation at the undisplaced lattice site, M, is the
resonance coupling energy between sites n and m,
D,, is the dispersion energy term, ws(a) is the
frequency of the phonon mode { in the s branch,
and R} is the jth displacement of molecule n.

We model the defective crystal as follows. A
number n, out of the total N lattice sites are as-
sumed to be displaced from their equilibrium posi-
tions. Such defects are intrinsic to the crystals,
usually built in at the time of crystal growth, The
energy required to produce and maintain the dis-
placed equilibrium structure is, therefore, ignored
in our discussion. We use only the fact that, in
this structure, the exciton-lattice interactions are
changed in the ground and excited states sothat the
displaced molecules can act as exciton traps to the
extent that their excitation energies have been
changed. The displacement at the pth site will be
taken to have six components, three in translation
and three in rotation: the latter are about the prin-
cipal axes of the molecule concerned. Replacing
thus R} by R} +p} in (2.1), we find the Hamiltonian
H, for the defective crystal as (2.2):

H,=H+AH, (2.2)
where
n [:]
R D, . (R +p)
AH=;; > p{,<—’ﬁ—'SR B]B,
m#p j=1 » 0
o oM .. (R +p)
+l; ’(—‘l———&) BB, +H.c.,
: mZ“:l P R}, o T
(2.3)

p stands for a defective site. The resonance inte-
grals M, will be assumed to change so little that
their contribution to H, can be neglected so that the
Hamiltonian (2.3) remains as!3 (2.4):

n
fi,,=ﬁ+2 A,B)B,, (2.4)
where
S 8D, (R
s, o0

In first-order perturbation theory we regard the
wave functions as those for the unperturbed prob-
lem, i.e., those for the perfect lattice, and trans-
form the operators according to*®
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where
$,@) = (b3, + bl5,) .
Using (2.6) and (2.7) in (2.4) we find
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The index s for the phonon branches is dropped in
(2.8). Except for the second term which represents
the exciton-defect interaction, expression (2.8) is
the usual Hamiltonian in K space!**!® of an exciton
interacting with phonons.

For calculating the energy shift and line-shape
function of exciton absorption due to the presence
of lattice defects, it should be possible in principle
to evaluate the Green’s function of (2.8) by applying
the method used by Iguchi'® and Craig and Dissado.!*
The evaluation of Green’s function in this way,
however, is complicated by the cross products
arising from the exciton-defect and exciton-phonon
interaction operators. We will, therefore, first of
all diagonalize the Hamiltonian part (1?,;) consisting
of only the first two terms of (2.8). In the previous
paper'® this diagonalization involved only a single
impurity in the crystal. Here we will follow the
procedure of Craig and Philpott.!”

III. DIAGONALIZATION OF ﬁd’
We start with

>
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(3.1

and expand the crystal wave function of an exciton
with energy E in terms of localized and delocalized
basis sets as

[¥)=3"q,(E)B]|0) (3.2)
and '

I‘I'>=ZAI(E>BT;I0>, (3.3)
where ‘

a,(E)=N"2 EA*(E etk (3.4)

The ground state |0) of the crystal used in (3.2) and
(3.3) is defined as that in which all the molecules in
the crystal are in their ground states.

We solve the Schrédinger equation

Hyl¥)=E|¥), (3.5)
by making use of (3.2), and obtain the equation
(3.6):
[E-E®))AR(E

-N1 ZZAPei(F'-f)-FA;(E)___O .
T o»
(3.6)
From (3.3), (3.4), and (3.6) we then find

A,4q ike(n-p) =

E(n n#_N Zﬁff—) "R=0. G.1)
If we assume that each defect affects the crystal
levels independently of the effect of the others,
which is an acceptable approximation, the secular
equation (3.7) reduces, for n=p, to

. A,
I_NI;E———IE‘TEY—O' (3.8)

As a result of our approximation of noninteracting
impurities, the secular equation (3.8) is the same
as the well-known result for a single impurity %18

The energy eigenvalue spectrum of an exciton in
a crystal with defective sites is obtained by solving
the secular equation (3.8). The eigenvalue ob-
tained from (3.8) is, however, a function of A, of a
single defective site, and in view of (3.7) similar
eigenvalues will be obtained corresponding to every
A,. The eventual diagonal form of the Hamiltonian
(3.1) will be written as

ﬁ;:iﬁy, (3.9)
[

where

ﬁ;p: 2 EaBLBa

()

(3.10)

E, denotes the ath eigenvalue obtained from the
secular equation (3.8) for a single A, and B is the
corresponding transformed creation operator of an
exciton with E given by

+
BY =ZA1;(a)B; ,
*
where A,(«) is derived within the single-site ap-
proximation as
Az(@)=N;'exp(iK *p)[ E - E(K) ]

Ng= (2 [E-E®K)] ‘2>1/2 .

]

(3.11)

(3.12)
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IV. THE LOW-TEMPERATURE EXCITON LINE
SHAPE DUE TO CRYSTAL DEFECTS

Equation (3.8) may be solved numerically in
cases where the energies E (k) are known as a func-
tion of k or as individual values. Here, however,
we take three models of exciton bands where E (k)
is a known function of E, and where analytical solu-
tions of (3.8) are possible. The two cases are (1)
crystals in which the band structure is essentially
one-dimensional, as in the triplet state of DBN,}
and (2) crystals where the energy density of states
may be taken to be (a) of the Hubbard type!! and
(b) independent of energy.

A. Crystals with one-dimensional band structure

The unperturbed exciton band in one-dimensional
crystals can be written as

E(k)=A +Bcosk, 4.1)

with Btaken to be negative; the minimum of E (&) is
at £ =0 and the maximum at Z=xt7. The unperturbed
bandwidth is 2B. The value of A (4.1) simply de-
termines the energy of the band center, and we

may take it that A=0.

Our aim is to study the line shape of absorption
at the band edges. It depends on levels displaced
outside the exciton band, with energies E found by
solving (3.8). For an infinite crystal the sum over
k in (3.8) can be converted into an integral which
gives, through (4.1), the unperturbed energy
Green’s function as

GO(E).:N"lZ[E - E(ﬁ)]-l = (l/zn)fv E%ﬁsm
= -n

=P,(E)+inN,(E)=(E? - B%™V/?, (4.2b)

where P,(E) is the principal value of G,(E) and
N,(E) is the unperturbed density of states.
From (3.8) and (4.2b) we then find

(EZ—BZ)‘/"’=A, or E=;t(Ba+A";)1/2. 4.3)

For each A, there are two possible energy eigen-
values, E, symmetrically below and above the un-
perturbed band. The structure of (3.8) shows that
for A, <0 (i.e., defect sites for which the excita-
tion energy is less than the normal) we find energy
levels below the band (E < B < 0) and for A,>0 they
are above the band (E >0). We consider only levels
below, contributing to the long-wave band edge,
with energy E = B(1 +A§/Bz)1/2 .

To get the line shape of the low-energy tail of
absorption we need transition moment and the dens-
ity of states as a function of E. If we denote by
T,(E,) the transition moment to the state at E,
then following Craig and Philpott!” we will have for
a single-defect site in the crystal

T L \1/2
T,,(Ea)=—ETa—_E—(O—)<; [Ey - E[E)] 2) , E,<B,
4.4)

T being the perfect-crystal transition moment and
E(0) the energy of the unperturbed exciton at £=0.
In case of infinite one-dimensional crystals the
summation inside the large parentheses of (4.4)
can again be evaluated as an integral to give

T NE,
a—B ((Ei—Bz)ﬂz
Inasmuch as there is one defect, and therefore only
a single level displaced out of the band, the density
of states is a delta function at E,, following form-
ally from the imaginary part of the energy Green’s
function G(E,E,):

-1/2
T(E,)= 5 ) , E4<B. (4.5)

G(E,E,)=(E-E +ie)!, €=0. (4.6a)
This gives for the density of states N,(E,),
1
No(Ey)=—-ImG(E,E,)=6(E - E,). (4.6b)

The intensity of absorption is proportional to the
product of T,(E,)? and N,(E,). The absorption
line shape [I,(E )] due to a number 5, of isolated
noninteracting defects is then written as

Id(E)OC "2 Tﬁ(Ea(p))Na(EU(P))

2 E S \1/2
=__§.(_E(_2é_’._’i%)) };G(E—Ea(,,), E<B.
4.7)

The low-energy tail consists of delta-function ab-
sorption peaks equal to the number of defects.

We notice that the limiting value of T,(E,) in
(4.4) as E,, approaches the band edge is equal to the
perfect-crystal transition moment T. The same
must of course be true of the integral form of in-
tensity given in (4.7). However, (4.5) contains ex-
plicitly the number N of molecules in the crystal,
whereas in (4.4) it is implicit only as the number
of terms in the sum. The intensity in (4.7) is most
conveniently expressed in terms of the intensity
per molecule through the relation T =N‘/2m, m
being the free-molecule moment.

To illustrate the intensity outside the band for
defective crystals, we take two cases: (1) all de-
fect sites have the same depth A and (2) the depths
are distributed according to a Gaussian function.

1. Identical A for all defect sites
Here I(E) (4.7) is independent of p:
I(E)=-n,m?[(E +BY/E*(E - B)]V?6(E - E,).
(4.8)
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The low-energy “tail” has a single delta-function
peak with the intensity of absorption proportional
to the number of defects. For large A this peak
will be well separated from the original exciton
band.

For deep traps, which leave the band levels un-
perturbed, we see from (4.8) that each trap mole-
cule contributes its own intensity. For shallower
traps, each contributes a larger amount. Thus in
a band for which B=-~200 cm™, a trap of depth A
=~100 cm™! produces an out-of-band level -23
cm™! to the side of the band edge, with an absorp-
tion corresponding to 8.1 molecular absorptions and
a consequent reduction in absorption to levels on
the band. In a crystal with one such trap per thou-
sand molecules and an optical density of 3 units in
the pure-crystal absorption region, the trap opti-
cal density would be about 0.9, and readily observ-
able.

2. Gaussian distribution of depths

The Gaussian distribution for A was first pro-
posed by Sumi and Toyozawa’ in connection with
asymmetric line shapes arising from exciton-phon-
on interactions in alkali halide crystals. Following
Sumi and Toyozawa, Klafter and Jortner® assumed
that the change in the dispersive interaction due to
the excitation of molecules also follows the Gaus-
sian distribution, and they averaged the energy
Green’s function calculated from their model Ham-
iltonian to demonstrate the asymmetric line shape
in organic crystals. The model of Klafter and
Jortner is that every site has an excitation energy
following a Gaussian distribution, whereas in our
case we assume that all sites except a number #,,
n, being a small fraction of the total, have the same
excitation energy characteristic of an unperturbed
structure. The n, perturbed sites have trap depths
A following a Gaussian distribution of half-width D
and energies centered at C, the unperturbed band
center being taken at energy zero. Thus the nor-
malized distribution is

P(a,) = (21D?)" V2 exp[-(a,~- C)?/2D%],  (4.9)

so that the most probable value of A, is at A, =C.

Averaging (4.7) over (4.9) [ multiply (4.7) by (4.9)
and convert the sum into an integral] we find for
the line shape

L(E)x = (27D2)"Y2m?[(E + B)*/E2(E - B)]V?
x exp{-[(E? - B®?-C]?/2D?}, E<B<0.
(4.10)

The following cases of particular interest will be
considered.
Case (1): |C|<|B|<|D|. Here the width of the

distribution of depths A is larger than that of the
unperturbed band. This implies that, while the
spread of depths is large, the most probable value
lies within the unperturbed band. For C=0.0,
-0.5|B|, and 0.5|B|, the features of this case are
illustrated, respectively, in Figs. 1(a), 1(b), and
1(c). In the region far below the band edge, for
|E|>|B| the preexponential factor in the square
brackets of (4.10) is close to unity. The line shape
I(E) becomes Gaussian centered at C. Near the
band edge, E ~B, the limiting behavior is as

(E - B)"V2, Except for the feature of our work al-
lowing for the energy dependence of transition mo-
ment, the line shape derived in (4.10) for C =0
agrees with that calculated by Klafter and Jortner®
in one-dimensional molecular crystals for the case
that all sites are included in the Gaussian distribu-
tion. For distributions centered away from the
midpoint of the band as shown in Figs. 1(a) and
1(c), the shapes of the tail vary little for the same
distribution half-width D.

Case (2): |C|>|B|<|D]|. In this case the traps
are deep, with the mean trap level falling outside
the unperturbed band, and the distribution is wide.
Two examples with C=-2|B| and 2| B| are illus-
trated in Figs. 1(d) and 1(e). Where the distribu-
tion of traps is centered below the band there is
substantial absorption in the tail, and a small devi-
ation from a smooth profile at E ~ - 4B, With the
distribution centered above the band the low-energy
tail is weak and narrow [Fig. 1(e)].

Case (3): |C|>|B|>|D|. In this case the dis-
tribution of depths is centered outside the band,
but is narrow. We show in Fig. 2 an example with
C=-1.5|B| and D=0.5|B|. As expected, the

-10.0

1

()]

b 1
-(27 D)2 1(E)

-8.0 -6.0 -4.0 -20 B 00
E

FIG. 1. Line shape of the low-energy tail of absorp-
tion calculated for crystals with one-dimensional tight-
binding energy bands and for the ratio D/B=2; (a) C
=0,0, (b) C=-0.5|B|, () C=0.5|B|,(d) C=-2|B|, and
(e) C=2|B]|.
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FIG. 2. Line shape of the low-energy tail calculated
with the ratio D/B= % ~—represents the tail for crys-
tals with the Hubbard’s type of the unperturbed density
of states and C= —3|B|, and --- represents that for
one-dimensional crystals with C= —1.15|B|.

spread of the tail is pushed out of the unperturbed
band and shows a well-developed peak.

Case (4): |C| and |D|<|B]. In this case the
depths A are very small compared with the band-
width, and thus all the energies E, (4.3) are close
to B. Let us, therefore, put B-E =8, where § is
small and positive. In this limit the line shape
(4.10) becomes (E +B ~2B)

I,(E )< —(21D?) V2 m?[8B/(E ~ B)]V2
x exp(~{[2B(E - B)]"2 - C}%/2D?),
E<B<0. (4.11)

I(E) from (4.11) is illustrated for C=0, -0.5|B],
and 0.5| B[, respectively, in Figs. 3(a), 3(b), and
3(c). Here, unlike case (1), there is a difference
between the line shapes with C < 0 and C >0. While
in the former, C <0, the tail is pushed out [ Fig.
3(b)], in the latter this is pushed into [Fig. 3(c)]
the exciton band.

In the case of C=0 [Fig. 3(a)] we find, for ener-
gies close to the band edge, a profile of the same
form as in case (1), namely, an intensity rising
much faster than a Gaussian function. At energies
farther from the band edge where the intensities
are extremely small the profile becomes propor-
tional to exp[-B(E - B)/D?], namely, exponential
rather than Gaussian, as found in the Urbach-
Martienssen rule for the low-energy absorption
onset in alkali halides. This rule is given in
(4.12):

I(E)=Iyexp[-o(E - E,)], (4.12)

where ], is the intensity of absorption at the un-
perturbed band edge E,. A comparison of (4.11)
and (4.12) shows that in our calculation the steep-
ness parameter o =B/D?. Sumi and Toyozawa’
have estimated o due to involvement of phonons for
alkali halides as

o=nB/S, (4.13)

where
S =D*2kyT.

—7.5
-15.0 __
o
EN
(o)
[
[
T
) —2.5
(b
—
{a)
(c)
| 1
.0
-3.0 -2.0 B 0.8
E

FIG. 3. The low-energy tail of absorption, similar to
the UM tail, calculated for one-dimensional crystals
with D/B=4, where (a) C=0.0, (b) C=—0.5|B|, and ()
C=0.5|B|.

In the present case, however, we have so far con-
sidered only the involvement of defects where S is
expected to be a temperature-indpendent quantity.

B. More complex band structures

The density of states used for the one-dimension-
al crystal is realistic in examples where the cou-
pling is to nearest neighbors only. In more com-
plex cases model band structures and densities of
states may be used or numerical calculations can
be made from actual band characteristics known
for particular systems. Our work in this and fol-
lowing sections is based on two model densities of
states. The first is given in (4.14) and is due to
Hubbard!!:

{(I/B)z(z/rr)(Bz—122)”2 for |E|< |B|
N, =
° 0 for [E|>|B], (4.14)
and the second is the uniform density of states,
independent of energy within the band.

1. Hubbard’s model of density of states

The density (4.14) has its maximum at the center
of the band and goes to zero at the band edges.
The unperturbed Green’s function we then find to
be

B
-B V]

=2(1/B)?[E - (E? - B2)V?]. (4.15)
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Substituting (4.15) in (3.8) the secular equation can
be solved for energies E outside the band. Each
value of trap depth |A,| yields two solutions of
(4.16a):

[E-(E?-B?W2-24,][E+(E?- B2}/2-24,]=0.
(4.16a)

Alternatively, according to (4.16b) we find one sol-
ution below the band and one above, for negative
and positive depths A, respectively:

E=a,+B%44,. (4.16b)

While the first factor of (4.16a) gives energies
(E <0) falling out of the lower band edge, the sec-
ond factor produces energies symmetrically situ-
ated on the high-energy side (E >0) of the unper-
turbed band. The low-energy tail of absorption
thus arises due to energy states obtained from the
first factor of (4.16a) and the corresponding energy
Green’s function can then be calculated as in (4.6).
The transition moment corresponding to an ener-
gy E, of (4.16a) can be calculated from (4.4) and

(4.14) as
_ T 2N[(E2 _BZ)_E -1/2
7B E R ( BY(ES - B ) '

(4.17)

According to (4.7) we can then write

B? ~(E+B\/?
Ly(B) e~ 2E[(1- BYEZY2-1] ™ -B’)
XY 6(E-E,,), E<B, (4.18)
»
-30.0
-20.0
w
_\Er
Q
[
o
{b) -4 10.0 1
(a) \ (e)
(c) ()
?m
1 —_ 1 1 o'o
-6.0 -4.0 -20 B 00
E

FIG. 4. Line shape of the low-energy tail calculated
for crystals with Hubbard’s density of states, where
D/B=2 for (a) C=0.0, (b) C=-0.5|B|, and (c) C=0.5|B|,
and D/B=0.5 for (d) C=0.0, () C=~-0.6|B|, and (f) C
=0,5|B|.

(277D2)'1/282 —y( E+B )1/2
2E[(1- BYEDZ-1] ™ ((5-3)3

SR )

2p?

I(E)x—

E<B<0., (4.19)

The low-energy tail thus derived in (4.19) becomes
Gaussian for |E|>|B| and |D|>|B]| because then

(1 - B?/E?)*?~1 - BY2E® and the preexponential fac-
tor tends subsequently to unity. This is found for I(E)
in (4.10) as well. Atenergies not very far fromthe
band edge, however, the rise of the tail (4.19) is
steeper than that of (4.10) because both the preex-
ponential and exponential factors of (4.19) rise
steeper as E tends to B. We have shown the fea-
tures of the tail in (4.19) in Figs. 2 and 4.

2. Constant density of states

In this case we assume that the unperturbed
density of states N, is a constant quantity so that
po for |E|<|B|
= 4.20
{5 1o 151> 1. .20

Following (4.15) we then find the unperturbed ener-
gy Green’s function as

Go(E)=po In[(E + B)/(E - B)] +imp,, (4.21)
so that
2 ImGo(E) =g (4.22)

Using (4.21) in the secular equation (3.8) we find

E+B
l-A,poln(———E_B)=0

which yields the energy state outside the unper-
turbed exciton band at

E=B[exp(1/a,p,)+1]/[exp(1/4,p,)-1] .(

(4.23)

4.24)

The energy E from (4.24) tends toward the unper-
turbed band edge as A,-0. In order to obtain that
A, < 0 should yield the energies falling out of the
lower band edge, we must have p, < 0.

The transition moment T(E) corresponding to an
energy state at E obtained from (4.24), is calcul-
ated from (4.4) and (4.20) as

E +B

1/2
T,E,) =TNY? (—i———) .

T (4.25)

Following now (4.7) we can write the line shape of
the low-energy tail:

I,(E)oc_'rﬁZ<.§%> 3 6(Eay=E).

The average of (4.26) over the Gaussian distribu-

(4.26)
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FIG. 5. Line shape of the low-energy tail calculated
for crystals with uniform density of states py=1/2B.
(1) C=-0.5|B| and D/B=2, (2) C=0.0 and D/B=2, (3)
C=0.5|B| and D/B=2, and (4) C= -0.5|B| and D/B=%.

tion yields

Ia(E) o =-

# (e [L10(E22)- ]/

We have shown I(E) of (4.27) for p,=1/2B corres-
ponding to (I) D®> B? and [C| < |B|, and (1I) D¥< B?
and [C|<|B]| in Fig. 5.

V. COMBINED EFFECT OF CRYSTAL DEFECTS
AND PHONONS ON THE LINE SHAPE

At higher temperatures the exciton absorption
line shape will simultaneously be influenced by the
exciton-defect and exciton-phonon interactions. In
this section, therefore, we will derive the line-
shape function from the complete Hamiltonian H,
(2.8) which comprises both the exciton-defect and
exciton phonon-interactions. After transforming
the Hamiltonian (2.8) with the help of (3.10) and
(3.11), we can write it for a single defect site as
given in (5.1):

H,=Y E,BlB, +Zh‘aﬁ)(b1b* +3)

(e
(Z[F(k D+ x@JAf,5(@)az(a) )

X B;Ba,(b_;w;). (5.1)

+N‘1/2

o,0,q

In deriving H? (5.1), the phonon part of the Hamil-
tonian (second term) is assumed unchanged by the

presence of lattice defects in the crystal.

The Hamiltonian (5.1) suggests that its time
Green’s function G(a, ) can easily be evaluated by
Iguchi’s'® method, and then the Fourier transform
of G(a, t), calculated within the damping approxi-
mation,+® yields the energy Green’s function as
given in (5.2):

G(@,E)=Y_[E - Eo,-ReS(a)
?

+iImS(a)+ie]™, €~0, (5.2)
where
ve 1+vs
—2= ), (5.3
Res(e) =" 24 Coel@(az iy - a2 69

ImS(@) =N 2, Cou (@) [730(28 0 @)

a’,q
+(1+V3)8( R0 @) ],
(5.4)

Coor@= ):[F(k,Q)+x(q)]zAkm(a)Azi:(d’), (5.52)

Qi@ =E(-E, +h0(q), (5.5b)
Q;u’(a)zEa"Ea"h_w(a), (5.50)
and

ve={exp[Bw(@)] -1}, B=1/kyT. (5.5d)

Q%o(@) and Q5,.(@q) represent, respectively, the
increase and decrease in energy due to absorption
or emission of a phonon with energy %Aw(q) during
the scattering of the exciton from state o to o’ by
phonons.

E, and S(a) both are functions of A,; the differ-
ence in the defective-site energies from the nor-
mal. Substituting Az(a) from (3.12) in (5.5a) we
can write C,,(q) as

s -2 [F&! a)+ X(a)]a
Coa(@)=(NoNe-) ZF: [Eq-E®+Q)P[E,,~ER °

(5.6)

Cuo(Q) expressed in (5.6) is in a form that can be
directly compared with the corresponding function
derived for crystals with no defects.™

For calculating the line shape of absorption due
to phonons we will assume that the transition mo-
ment T,(E) is independent of the phonon energy.
In other words we assume that the transition mo-
ments corresponding to energy eigenvalues of (5.1)
are the same as those used in Sec. IV, namely,
T,(E) as in (4.5), (4.17), and (4.25) for three dif-
ferent cases of the unperturbed density of states.

From Eq. (5.2) we can then write the line-shape
function as
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. T2[ImS(a) +€]
IE) -Z’: [E-E,,-ReS(@)]+[ImS(@)+ €] ’

E<B<0 and ¢-0. (5.7

The expression (5.7) exhibits, for every p, a thermally broadened line shape of the tail which, depending
on the strength of exciton-phonon coupling (weak or strong), becomes Lorentzian or Gaussian.5'1
A weighted average of (5.7) over the Gaussian distribution (4.9) yields

T2ImS(a)

I,(E)

I(E)cc -

Equation (5.8) is derived by assuming that S(a) is
independent of A% and € can still be replaced by the
(1/7)ImG(E,E,)=6(E - E,) calculated in the pre-
ceding section. For obtaining the first term of
(5.8) we have neglected the dependence of E, on A,
as it is expected to be smaller than ReS(a). Equa-
tion (5.8) represents the line shape of the low-en-
ergy tail as a superposition of the line shape due
to thermal broadening (first term) and that due to
the exciton-defect interaction (the second term).
At higher temperature the first term is dominant,
giving rise to Lorentzian line shape whereas at
low temperature the second term dominates to give
rise to the asymmetric line shape. We can substi-
tute E,, T2, and I,(E) from any one of the three
cases considered in Sec. IV, namely, with (a) one-
dimensional exciton energy band, (b) Hubbard
density of states, and (c) constant density of
states, to find the corresponding line shape of ab-
sorption from (5.8).

VI. DISCUSSION

The defects considered in this paper represent a
change in the excitation energy only at some of the
lattice sites of the crystal. In particular, we have
introduced such defects in an otherwise perfect
crystal by translational or orientational deviation
of the equilibrium positions of some of the mole-
cules. In principle, however, the theory is applic-
able to chemical impurities as well. The Hamil-
tonian (2.4), unlike the one considered by Klafter
and Jortner,® contains the exciton-defect interac-
tion term as a sum of the defect lattice sites only.

We have considered here three examples of the
exciton energy bands, namely, (1) one-dimensional
tight-binding, (2) with Hubbard’s density of states,
and (3) with energy-independent density of states
for which the secular equation (3.8) can be solved
exactly. Solutions thus obtained are, correspond-
ing to every defect, the possible energy states be-
yond the edges of the unperturbed exciton band. We
can, therefore, study the absorption due to transi-
tions from the ground state to any of these excited
energy states. All three examples for negative A,
have energy states lying below the bottom of the
band and the corresponding transition, gives rise

[E-E,-ReS(@)+[Ims(@)]® ' [ReS(@)P + [ImS(a)+1]?’

E<B. (5.8)

to a low-energy tail of absorption. In the method of
t-matrix approximation® however, it is not possible
to find the energy states explicitly as a function of
A,.

A. Influence of the defects

Calculation of the line shape as a weighted aver-
age over the Gaussian distribution of A,, centered
at an energy C from the center of the unperturbed
band, is based on the assumption that the most
probable value of A is C. There are three indepen-
dent parameters B, C, and D which can influence
the line-shape function. While C may be considered
a measure of the homogeneity of the defects (a,),
D is considered a measure of the width of the dis-
tribution of defects. Thus C can be large even if D
is small and one may find small C when D is very
large. C and D cannot, however, be very large if
A’s are rather small, but D can be small even for
large A.

In all three examples of crystals considered in
this paper the low-energy tail appears to have sim-
ilar shapes as can be seen in Figs. 1, 4, and 5 for
D? > B2, This is due to our assumption that A’s
follow a Gaussian distribution, and implies that for
D?>B? it is the form of the distribution that dom-
inates the line shape.

In Fig. 2 we have illustrated a special case of the
tail, where for one-dimensional crystals we have
used C=-1.5|B| and |D|=0.5|B]|, i.e., |C|>|B]|
but D% < B? and calculated from Eq. (4.10). Al-
though here D? < B2, we cannot use Eq. (4.11) de-
rived for small A or hence for small D, because
the most probable value of A is |C|>|B|. The in-
teresting feature of this case is that it shows a
very distinct additional absorption peak at an ener-
gy E ~-1.8| B|, where the exponential factor has
its maximum. Likewise in three-dimensional crys-
tals with Hubbard’s model for the density of states
and C=-3|B|, we find the additional peak at E
~-3.0|B| (Fig. 2). These peaks in Fig. 2 and the
delta-function peak for identical A in (4.8) corres-
ponds to the absorption due to the crystal defects
of trap energy levels in the crystal and represent
the localized states of excitons at energies E <B
(the trap depth C is larger than the kinetic energy
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of the exciton).

Crystals with the constant unperturbed density of
states show that the line shape (4.27) has one of the
features particularly different from those of the
previous two examples. The influence of C, the
most probable value of A, on the low-energy tail is
not very significant. For instance, when |C|<|B|
the value of C can affect the line shape of the tail
only at energies close to the band edge where the
preexponential factor, which is independent of C,
becomes dominant (see 4.27). On the other hand,
when |C|>|B]| the influence of C on the line shape
can be noticeable at |E |>[B| where In[(E +B)/

(E - B)] tends to zero. As a result the exponential
part of (4.27) depends more on (1/p,) In[(E +B)/
(E - B)] than on C. Unlike the other two cases of
the density of states, therefore, we have not found
here a well-defined additional peak due to defects
in the low-energy tail.

B. UM tail
1. One-dimensional crystals

As a result of [A] being very small the magni-
tudes of |D| and |C| have to be small, and then the
limiting line-shape function becomes derived as in
(4.11). Most of the contributions to the low-energy
tail, therefore, come from energies close to the
edge of the unperturbed band where the rise of the
tail is much steeper than a Gaussian. The observed
asymmetric line shape in the absorption spectra of
1,4-DBN crystals® does show a steep rise of the
low-energy tail at a temperature 2 K, similar to
those shown in Fig. 3. The line shape shown in
Fig. 3(c) for C=0.5|B| has a rise steeper than that
of the Fig. 3(a) for C=0.0 and Fig. 3(b) for C
=-0.5|B|. As A’s are regarded small, it is very
likely that C will be close to zero which implies
that the line-shape curves of Fig. 3(a) may be ex-
pected to represent the observed line shape. A
more precise comparison of the present theory
with experiment, however, requires the knowledge
of the ratios of D to B and C to B for which no ex-
perimental data are available.

Another argument in favor of Eq. (4.11) being
possibly the correct representation of the asym-
metric tail in DBN crystals is the exponential de-
pendence of I(E ) on E that represents the correct
Urbach-Martienssen tail” with the steepness pa-
rameter o=B/D? for C =0 and the temperature-
independent D.

In organic crystals of large molecules, DBN for
example, such defects (due to translational or ori-
entational displacements of the lattice sites, as
considered here) can possibly always grow with the
cyrstals in the form of small changes in the orien-
tations of even a part of the molecules. Conse-

quently, the distribution of such defects in crystals
can vary from one to another even if they are grown
in the same laboratory. Subsequently the degree of
asymmetry in the line shape can also vary from
crystal to crystal of the same material. This ex-
plains the results on 1,4-DBN crystals by Burland
and Macfarlane? and Peretti and Ranson®® observed
independently. Peretti and Ranson have observed
more asymmetric line shape than that observed by
the former workers.

2. Three-dimensional crystals

In case of small trap depths the line shape (4.19)
for exciton bands with Hubbard’s density of states
reduces to

Bz 1/2 2
I(E)c l—ﬂ[2B/(E - B)*]*2exp[~ (E - 2C) /8?62]1.)

Considering that this condition represents the UM
tail at a particular value of C, say C=0, we find
that 7(E) in (6.1) rises much faster than that in
(4.11) (see Figs. 3 and 5).

Klafter and Jortner® have calculated the UM tail
arising due to the static disorder for exciton bands
with unperturbed density of states of the Hubbard’s
type. Their results are derived through the appli-
cation of single-site average f-matrix approxima-
tions (ATA) for D?« B2 and C=0. The exponential
dependence of I(E) in (4.19) is in agreement with
that derived by Klafter and Jortner.

The exciton bands with constant density of states
are expected to have UM tails as shown in Fig. 5,
with (4) corresponding to D* «< B2. The rise of the
tail is found to be faster than the corresponding line
shapes of the other two examples as shown in Figs.
3 and 4.

C. Combined effect of defects and phonons

As shown in (5.1) the presence of crystal defects
modifies the usual exciton-phonon interaction op-
erator in a perfect crystal.’? Thus the presence
of defects gives rise not only to the asymmetric
tail (Sec. IV) of absorption but also modifies the
thermal broadening due to phonons.

At higher temperatures the effect of phonons is
dominant and the line shape observed is primarily
due to thermal broadening. Consequently the asym-
metry in the line shape, caused by the crystal de-
fects, is expected to disappar at higher tempera-
tures. This has been observed in the 1,4-DBN
crystals at 25 K; the line shape of absorption be-
comes symmetric and Lorentzian, It would prob-
ably be of academic interest to observe the critical
temperature at which such a transition takes place.
If both interactions, exciton-defect and exciton-
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phonon, are strong, the line shape of the tail will
be Gaussian due to both defects (4.19) and phon-
ons.! Depending thus on the values of C and D the
combined effect of defects and phonons will then be
added together, but the line shape will remain
Gaussian.

The theory presented in this paper corresponds
to situations where the optical transitions are very
weak and exciton-photon interactions can be omit-
ted. However, in crystals where the transitions
are strong exciton-photon interaction gives rise to
polaritons which exhibit rather complicated line

shapes of absorption.?! A theory encountering the
interactions of polariton-defects and polariton-
phonons is not yet fully developed. Work is in
progress in this direction.
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