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First approach to the band structure of a-rhombohedral boron
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We report a calculation of the energy-band structure of n-rhombohedral boron. The lack of theoretical studies of
solid B (a technologically interesting material) can be explained by the difficulties of a quantitative calculation:
twelve atoms in the cell and a very open structure. The "muffin-tin-orbitals" method for atomic spheres having a
large overlap has been used. The total potential is a superposition of individual potentials of finite range, built from
the atomic charge density. The Kohn-Sham exchange potential is correctly calculated using the superposition of
atomic densities and then numerically fitted with a superposition of individual functions. The results show a
nonmetallic behavior of a-B with an indirect bandgap. But this agreement with experiment is not quantitative: The
gap is significantly too large and the occupied band too narrow. The modifications required for improving this
calculation are reviewed.

I. INTRODUCTION

Boron was the last common solid element to re-
sist having any of its forms structurally eluci-
dated, although most of its physical properties
are surprising. For instance, solid boron is a
nonmetal with low chemical reactivity, unlike
aluminum which has the same electronic config-
uration s P' but is metallic. Its hardness and
thermal stability are also quite exceptional. '
Such interesting properties and others (neutron-
stopping power, etc. ) lead to various technological
applications which will stimulate theoretical in-
vestigation of the electronic structure of solid
boron. Two main questions have to be answered
first: (i) Do band-structure calculations account
for the nonmetallic behavior of solid B and (ii)
what is the exact nature of the bond between atoms
in this material?

In the present paper, we try to study the first
point by proposing a crude band structure of B
which, to our knowledge, has never been calcu-
lated up to now. We use the nonlinearized "muf-
fin-tin orbitals" (MTO) method with a potential
derived from a superposition of atomic potentials.
Owing to the complexity of the crystalline struc-
ture (we have chosen the simplest one, that of
a-B) and the importance of nonspherical effects,
such a calculation is faced with considerable
practical difficulties. Our results will show an
insulating character of O'-B, with an indirect band

gap, a conclusion which agrees with experiment.
A short description of the +-B lattice is given

in Sec. II. In Sec. III, the construction of the one-
electron potential is described. The main features
of the MTO method are presented in Sec. IV; a
discussion of the removal of singularities due to
the divergence of the structure coefficients at the
center of the Brillouin zone is given in the Appen-
dix. The results are reported and discussed in

Sec. V, and the modifications of the model re-
quired for a self-consistent calculation are then
examined as a conclusion.

II. ALPHA-RHOMBOHEDRAL BORON

The three well-known forms of crystalline
boron are the following: alpha-rhombohedral
boron (a-B) with 12 atoms in the unit cell, beta-
rhombohedral boron (105 atoms), and tetragonal
boron (49 atoms). ' Of course, we shall focus our
attention on &-B. The primitive arrangement of
solid boron is the 12-atom icosahedron shown in
Fig. 1. The atoms are located on a sphere of ra-
dius R and each of them has five nearest neigh-
bors on the same icosahedron, at a distance

AI

FIG. 1. 12-atom icosahedron of boron.
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d= [2(1-1/W5)]'/'R. The center of the sphere is
a center of inversion. The figure has three axes
of symmetry: one of twofold rotational symmetry,
one of threefold symmetry (A in Fig. 1), and one
of fivefold symmetry (B in Fig. 1). In polar coor-
dinates, with the z axis along', the positions of
the atoms are

z = z„p= (1+ v 5 )z„P= 0, 2v/3, 4v/3,

z = —z„p=(1+W5)z„g=z/3, w, 5v/3,

z =-z, p= (3+MS)z, Q =0, 27//3, 47//3,

z =z, p=(3+ W5)z, y =r/3, m, 5'/3,

with

&5+2W5~"'„
X

FIG. 2. Irreducible part of the Brillouin zone for the
n-rhombohedral lattice.

and

(5-2/5 )"'
tential used in a band-structure calculation must
take into account properly the strong overlap of
individual potentials. This has been done in the
following way.

The structure of e-B is a close-packed array
of rhombohedral unit cells, each of them contain-
ing one icosahedron. The angle e between any
two of the primitive vectors of the lattice is
&=58', instead of e =60'in the face-centered-
cubic lattice. As the fivefold symmetry is incom-
patible with any crystal structure, the icosahedra
are slightly distorted. Each atom has five near-
est neighbors in its own cell, and another one in
an adjacent cell, at a distance 1.016R (strong
bond) or 1.213R (weak bond). This is the second
reason for which the coordination polyhedron
based on the six neighboring atoms is distorted. ~

The lattice of +-B is a very open structure: The
fraction of the unit cell filled by 12 touching
atomic spheres is only 0.399. Inserting an addit-
ional empty sphere at the center of the icosahe-
dron would only slightly increase this fraction to
0.423. This clearly prevents the use of the "muf-
fin-tin" approximation for the potential, as will
be discussed in the next section. According to
Slater's textbook, ' the space group is &~, which
includes 12 operations; the reciprocal lattice is
rhombohedral too. The irreducible part of the
Brillouin zone (BZ) is shown in Fig. 2.

III. OVERLAPPING ONE-ELECTRON POTENTIAL
FOR n—B

f(r) = [n(r) -Ae +]8(S—r) (2)

[where 8(r} is the Heaviside function], so that the
superposed density for the crystal is

p(r) = gg()r- R-Q()
R, Q

gS(K) -z /4a iK r (3)

where R is a lattice vector and Q the vector which
fixes the position of one atom in the cell. K is a
vector of the reciprocal lattice, S(K) the structure
factor, and Q, the volume of the WS sphere. If
a is small enough, the sum in (3) may be restric-
ted to the term K= 0 so that

A. Superposition of atomic charge densities

The charge density needed to construct the
crystal potential is generated by a self-consistent
free-atom calculation with Kohn-Sham (KS) ex-
change. This density n(r} may be approximated
rather accurately for r ~ S by a Gaussian:

n(r) =Ae ~ for r & S

as shown in Fig. 3. 8 will be the range of the
overlapping potential; the choice S=3R,/2 ap-
peared to be adequate. Let us define the function

In B at normal density, the radius of the touch-
ing "muffin-tin" (MT) spheres is R„~=1.62 a.u.
and the radius of the Wigner-Seitz (WS) sphere is
R„z=2.27 a.u. , so that their ratio is R„~/R„z
=0.71, instead of 0.90 as in fcc aluminum. The
electronic charge outside the MT sphere is 1.7e,
compared with 0.73' in Al. The one-electron po-

m IS(2
noQO=A q

fQ)

The electrical neutrality requires that

(4)
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n[r")

I. el /a. u3)
where B and P are chosen in such a way that zo

and its derivative are continuous at r =$:

w n(S) 1p$' =-— +—,
o.s v(S) 2 '

B=v (S)ess (10)

0.03-

0.02-

Using the technique of the preceding paragraph,
with

v. (r) = [v (r) —Be s" ]9(S - r),

(12)

the superposed Coulomb potential is

Ve(r) = ~ &(lr-R-ql)+ Vco
a, g

where Vc, is the average value of w(r), given by

2vS x 1 1 v& e~V, = v(S) —,-1+, ——,+, erf(v))0 y' 2y' x' 2 x'

with& =P$ andy =z$ .

C. Exchange potential

R 2 R 5
MT %5

FIG. 3. Plot of the total electron density in atomic
boron. The relative positions of the muffin-tin and
Wigner-Seitz radii are shown. $ is the range of the
overlapping potential used in the calculation.

noQo = Z — f(r)dr, (6)

The problem with exchange is approximating the
potential for the solid, which is a nonlinear func-
tion of the total charge density, by a superposi-
tion of individual potentials of finite range. In
the KS approximation, the "exact" potential is

Vx(r) = -K[p(r)]&1s (14)

where p is given by (4). K is a numerical con-
stant equal to (3/m)' '. Vxcan be numerically
calculated at any point r. We want to obtain an
accurate representation of ~& in the form

and the comparison between the two values of
n„given by either (5) or (6), indicates the accu-
racy of the approximation. In our calculation they
agree within 5%. In the following, we shall use
the value (6) in order to exactly preserve neutral-
ity. Equation (4) expresses the total density as
the sum of a uniform background plus finite-range
contributions centered on each site.

V„(r)=Z g((r —H —Q~) -Kn', ".
R, Q

The function g is written

g(r) =K[[f(r)+no]'~s-n~o~ )6(s -r)

+ a„r"e""e(r—s)e(S —r).
n=

(15)

(16)

B. Crystal Coulomb potential

Let v(r) be the atomic Coulomb potential cor-
responding to the individual density n(r). With
the approximate form (1) of n(r) for r ~ S, we ob-
tain the approximate potential in the same do-
main:

2@A O„2v(r) =— e "dr for r ~ S.ax'

We now define an auxiliary function so(r):

Be ~ for r~$,
u (r)=

v(r) for r &S,

The range of the function f appearing in the den-
sity (4) is limited to S so that there is no overlap
in the domain r & s =28, —S: In that region g (r) is
given by the first term of (16). In the overlapping
region s ~ r ~ S, g(r) is expanded according to the
second part of (16). The coefficients of the ex-
pansion are determined by a least-squares fit of
the numerical values of Vx(r) given by (14) on a
three-dimensional mesh of 132 points. The con-
tinuity of g (r) for r = s and the value g(S) = 0 are
imposed. The value of y is varied until the best
fit is obtained. With five basis functions (%=4) an
accurate fit corresponding to a mean error of
0.0005 Ry in Vz is obtained.



FIRST APPROACH TO THE BAND STRUCTURE OF. . . 2007

IV. MTO BAND-STRUCTURE MODEL

The number of basis functions required to ob-
tain a reasonable accuracy is a major aspect of
the choice of the method adapted to an open-
structure band calculation. In the case of + -B,
the number of reciprocal-lattice vectors K with
length smaller than Skz (P|„is the Fermi momen-
tum) is 496. An augmented-plane-wave calcula-
tion (imperatively including a treatment of non-
MT effects) would need, according to the criter-
ion K ~,= 6 Q states), ' about 500 basis func-
tions. The Green's-function method is, from that
point of view, the most suitable: The size of the
secular determinant would be 106 for a full treat-
ment of the l =0, 1, and 2 angular momenta and

only 48 if the d component could be treated as a
perturbation.

The MTO method without an "atomic-sphere
approximation, " as proposed by Andersen, ' is
equivalent to the Green's-function method where
the structure coefficients are calculated at zero
energy. The secular equation is in that case

Z 2(2I+ 1)' "'+"'
D (E) —I

" «' ' l5'+S ~ ~ ', aiiCs @—0 (17)

S
g Q i Q ls the structure coeffi cie nt, the ex-

pression of which can be found in Ref. 6. This
coefficient is independent of energy and does not
change in a uniform scaling of the lattice. D, (E)
is the logarithmic derivative (multiplied by r) of
the L-momentum radial orbital at energy E, in
principle, calculated at the MT radius. The very
interesting point is that Ball has shown that the
Green's-function equations, and consequently the
MTO equation (17), remain valid for overlapping
potentials, ' with the single condition that there
exists a region around each ion in which only the
potential of that ion is nonzero (i.e., the range S
of the potential is smaller than the nearest-neigh-
bor distance). The fundamental reason why the
band structure is correctly determined by Eq. (17)
for overlapping potentials is that they can be de-
rived not from a variational principle requiring
knowledge of the wave function everywhere, but
from a condition on the scattering amplitudes.
So we shall use Eq. (17) for our overlapping po-
tentials in +-B, with the structure coefficients
corresponding to a sphere of radius S (the range
of the potential) and D, (E) calculated at r =S in
the individual potential. A very important point
of Ball's demonstration is that Kq. (17) does not
determine the electron wave function entirely.
As a consequence, it is impossible to perform
self-consistent calculations for overlapping

where I' contains the L = 2 elements only, so
that the equation detM = 0 is equivalent to
det(N-QP 'Q') =0. In the present case, the value
of E,(E) for I = 2 is always large compared with
the structure coefficients so that the approxima-
tion which consists in replacing P ' by a diagonal
matrix with all elements equal to I/E, (E) is en-
tirely justified. Finally, we obtain

j) jg jk jk 2
k

with 1 &i,j & 48 and 49 & k & 108 (see the Appendix
for F,).

V. NUMERICAL RESULTS

Andersen has shown that an accurate fit of the
logarithmic derivatives D, (E) in a particular
branch is obtained from

j -s
D(E) —D(E) E —E

+ (E —E„)Sp„,(Q„), (18)

depending on a correctly chosen reference en-
ergy E„andfour "potential parameters" D,(E„),
Q„„g„„andg&„,). In Table I, we give the
values of these parameters calculated in the po-
tential described in Sec. III for the reference
energy E„=-0.90 Ry on the absolute scale (the

TABLE I. Potential parameters used for the band-
structure calculation of cy-B.

4vs

-0.3253
0.4443
0.6581

-1.5445
-0.0146
1.6137

0.2407
-0.1972
-0.0779

0.1072
0.0803
0.0087

spheres based on Eq. (17) only: The use in whole
space of wave functions calculated with the vec-
tors C, o determined by (17) is incorrect, es-
pecially when the amount of overlap is large.

Some difficulties are encountered in the calcu-
lation of the band structure at the center of the
Brillouin zone that are due to divergence in
S", z. , e at R=O. A particular study of the solu-
tion of Eq. (17) for this point is presented in
Appendix A.

We mentioned that the l =2 momentum can be
taken into account in Eq. (17) by perturbative
techniques without increasing the size (48 at a
given point k in the BZ) of the secular equation.
This can be done using Lowdin's partitioning
scheme. ' The full matrix of the system including
the l =2 terms is divided according to

(N Qi
M=I(qe p)



2008 F. PE R ROT

uniform constant potential is Vp ——Vco-K~20
= -1.202 Ry on that scale). The range of the po-
tential is S=2.4243 a.u. The lattice constants,
as defined in Ref. 4 are a =9.5621 a.u. , s/a
=0.5598, and r/a=0. 8286.

The band structure has been calculated on a
regular mesh with 14 points in four layers in the
irreducible part of the BZ. Additional points on
the faces have been also calculated. The energy
levels for eight of these points are given in Tables
II and III, and the energy bands along the direc-
tion I'~ are shown, as an example, in Fig. 4.
The origin of energies in the tables is the lowest
level at I', the value of which is -1.442 Ry on
the absolute scale. This calculation shows that
the 18 bands fully occupied by the 36 electrons in
one cell are well separated from the higher bands,
leading to a nonmetallic behavior of a-B as in-
dicated by experiment. This result is a con-
sequence of the crystalline structure: A similar
calculation for the fcc lattice gives a band struc-
ture entirely analogous to that of metallic Al.
We find that the gap between valence and conduc-
tion bands in &-B is indirect from I' to B. Its
value is 2.88 eV (0.212 Ry). Unfortunately, we
know the experimental' gap for P-B only. How-
ever, the band-structure properties may be ex-
pected not to vary strongly from n-B to P-B.'
Photoemission measurements on P-B show that
this material is an indirect band-gap semiconduc-

0.102
0.134
0.228
0.277
0.332
0.378
0.408
0.430
0.483
0.512
0.545
0.554
0.574
0.600
0.620
0.658
0.699
0.706

1
2
1
2

1
2
2
1
1

1
2
2
1
2
1
1

0.119
0,162
0.176
0.255
0„305
0.389
0.438
0.454
0.460
0.495
0.571
0.573
0.593
0.622
0.631
0.640
0.649
0.699

0.118
0.160
0.178
0.263
0.308
0.369
0.444
0.444
0.470
0.535
0.570
0.577
0.581
0.601
0.621
0.639
0.688
0.693

1
2

2

1
2

1
1
1
1
2
1
2
1

2

0.3.25
0.176
0.179
0.206
0.370
0.387
0.404
0.412
0.486
0.533
0.567
0.569
0.595
0.610
0.622
0.646
0.660
0.692

0.945
1,029
1.080

1 0.987 + 0.944 2 0.963
2 0.989 — 1.008 1 1.029
1 1,035 + 1.042 2 1.029
2 1 056 — 1 084 1 1 037

E(.Ry)

TABLE III. Energy levels in a-B for some symmetry
points. The origin of energies is the lowest state at
the center of the zone. Units are rydbergs.

TABLE II. Energy levels in o-8 for some symmetry
points. The origin of energies is the lowest state at
the center of the zone. Units are rydbergs.

1.P ——
A
Z
0-s

0,0
0.295
0.310
0.310
0.326
0.372
0.380
0.380
0.447
0.447
0.464
0.527
0.527
0.627
0.671
0.714
0.714
0.726

1 0.085 1
1 0.116 4
6 0.301 4
6 0,301 3
1 0.311 1
5 0 361 1

0.361 2

5 0.466 1
5 0 466 4
3 0.534 2
1 0 549 3
3 0.578 4
8 0.597 4
6 0.614 1
6 0 614 3
6 0.631 4
6

' 0.631 2
2 0 676 1

0.093
0.120
0.283
0.287
0.313
0.370
0,386
0.467
0.472
0.499
0.523
0,529
0.583
0.587
0.624
0.657
0.718
0.718

1 0.118
3 0.145
3 0.244
4 0.254
1 0.287
1 0 295
2 0.475
1 0.483
2 0.501
3 0.534
4 0.534
3 0.571
4 0.576
3 0.605
1 0.622
3 0.628
4 0.665
1 0.714

0.5—
3
5
5
1

6"-
3

6
36

3

5
Ld
O

5 QJ
Z

6

1 0.964
5 1.049
5 1.049

5 0 980 1
5 0 980 2
1 0.992 3
2 1.072 1

0.949
1.031
1.081
1,100

1 0.938
2 0 987
1 1.039

0.0
l z

FIG. 4. Energy-band structure of n-B along the I'-Z
direction.
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tor, with a gap of 1.5-1.6 eV/, ' '" significantly
smaller than our calculated value. Our theoreti-
cal model gives an occupied bandwidth of 0.726
Ry, which seems to be underestimated compared
with the value of 1.14 Ry obtained for the 2p val-
ence band of ~-B from x-ray K-emission spec-
tra. '

In order to prove the large influence of the
strong potential overlap, we have made a similar
calculation at 1 for a potential with a smaller
range S' = 1.25RMr (instead of S= 1.50RM~). The
valence bandwidth in that potential is 1.186 Ry
(instead of 0.726 Ry} and the band gap is 0.392
Ry (compared with 0.238 Ry), in much poorer ag-
reement with experiment. These important var-
iations are due to the tail of the potentia1 itself,
but also to the replacement of the radial solutions
of the Schrodinger equation by the energy-in-
dependent MTO (of the form r "') when the at-
omic sphere radius is reduced from S to S'.
Clearly, the use of the largest possible value of
S is imperative.

V. CONCLUSION

We have presented a calculation of the energy
bands of &-B using a method which is most likely
the simplest of those expected to give a realistic
description of such a complex structure. The re-
sults are in qualitative agreement with experi-
ment: They explain that &-B is a nonmetal with

an indirect band gap. The calculated gap is ap-
proximately twice the observed value and the es-
timated bandwidth is significantly too small.
These numerical discrepancies may be attribu-
ted to the following shortcomings of this first
approach: (i) use of a non-self-consistent po-
tential and (ii} use of the KS exchange approx-
imation without the correlation effects to which

the gap is rather sensitive, particularly in non-
metals.

As we are now sure that band models can give
a relevant answer to the question of electronic
structure of solid boron, the problem of self-
consistency must be examined. To solve this
problem, it is necessary to generate the wave
functions. As shown previously, this is not pos-
sible in the MTO method with spheres having a
large overlap. So, adjacent (i;e. , MT) spheres
should be used, raising the difficulties of band
calculations with strong non-MT effects. A

scheme allowing a fast computation of the matrix
elements of the non-MT part of the potential is
to be presently developed. We hope that a self-
consistent calculation along these lines will be
successful. The influence of various correla-
tion potentials commonly used in solid-state

theory could be easily tested in relation with
these improvements of the present work.

APPENDIX

Here we present a particular treatment of Eq.
(17) at the center of the BZ. According to their
general form given in Ref. 6, the structure co-
efficients can be written

tt - &O'-Q)
Irma'i imp e ~ t'm'Q'i lmQ

T"i;~~.i.Qni Q
= Fi(-E}~i-~

fmQ

(A1)

where the notation

&,(E}+&+1
F,(E) = -2(2l+ 1)

(A2)

has been used. We are interested in the solu-
tions of (A1} for k-0. The choice of k along the
the z axis does not restrict the generality of the
following study. With such a convention, the ma-
trix T can be divided into regular and irregular
parts:

~Q ~0
g t gpt

l'm'Q e1mQ 1 m'Q ~ fmQ g mQ elmQ &

where R' has a finite limit for k =(0, 0, k} -0 and

~ '+ O(k'} for l' = l =0,

(A3)

p „&k5 .05 0+O(k2)
I'm'Q'& imQ

for l'=0, l=1 or l'=1, l =0,
(A4)

0+O(k') for l'=f =1

A and B depend on geometrical quantities only,
but neither depend on the particular values of Q'
and Q nor on k. As we search for eigenvalues

E=ED+Eik +' ' ' (A6)

the expansion of F,(E) near the center of the zone
1s

(crF (E)=-I ~+V+" (A6)

The form of the wave function inside the sphere
Q(p=r-Q) is

lp =
~ &E $}&0pQ $0(E, p)YD(P)

E pm
(E $) $/ I(E $) y mQe 1(EP P}Y1(P} 1

(A7)

so that, after the appropriate unitary transforma-
tion, Eq. (17) becomes
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where P,(E, p) is the normalized radial part of the
Schrodinger equation. The l =2 angular momen-
tum is not included in (A7) for simplicity but can
be added without difficulty since it does not con-
tain any irregular term. Expanding the a, Q

in powers of k and treating separately the suc-
cessive orders appearing in Eq. (A1) leads to
the following results'.

(i) There exists a solution I', with full s sym-
metry, which satisfies

Do(EO) = 0 [Uo o 0 in Eq. (A6) ],

npog/$0(Ep S) = li (independent of Q),

(A8)

a, Q=o.

these solutions are given by the following system'.

(ii) There are hybridized s-P solutions for
eigenvalues E, such that both U, and U, [Eq. (A6)]
vanish. With the expansion

&ra iQ ~&A &&4

QppQ y

~) ~, r g
—

~ &i i&ra& 0& 0
fmQ

(A9)

PPQ
+B 1PQ

Higher orders in k should be included to obtain a
complete determination of all the variables P, y,
but, at k=0, the wave functions are entirely
known from the &'s.

—i'ia ~6--6« l~i- o+ i"6« —0

where there are 48 unknown variables n, Q and
one unknown value of p =Z+(Ayooo +BP«z) Th. e
numerical quantities A and B are defined in (A4),
and the expression of B'/A -is 2wS'/&, = 1.8212.
System (A9) in & and p is homogeneous and there
are particular values of Ep for which its deter-
minant vanishes.

The treatment of (Al) up to order k also gives
the following relations:

P~ Q=o
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