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It is shown that a pure, classical insulating many-body system will exhibit nonlinear threshold behavior of the form
(E — E;)"?, where E is the applied and E is the threshold electric field. Evidence is presented, based on molecular
dynamics calculations on a model for sliding charge-density waves in an impure lattice, that the current versus field
curve will become concave upward, but will still have a well'defined threshold field in the thermodynamic limit in
qualitative agreement with experiment. It is speculated that the low-frequency noise found by Fleming and Grimes
is due to the depinning and motion of a hierarchy of soliton lattices of large lattice constant which appear in any

incommensurate system.

I. INTRODUCTION

NbSe,, which develops one charge-density wave
below 144 K and a second below 59 K, has the
unusual feature that it exhibits nonlinear conduc-
tion at fields as low as 1 eV/cm. This is believed
to be due to the sliding of previously pinned
charge-density waves.!™ Recent experiments
by Fleming and Grimes indicate that the onset
of nonlinear conduction occurs at a well defined
threshold electric field and that the current near
threshold can be fitted with

J=0 E+(E—ET)0'be'Eo/‘E‘ET’, (1)

where E . is the threshold field, E is the field,
and E,, and o,, and 0, are parameters.® This

is consistent with Lee and Rice’s theory of de-
pinning of charge-density waves by weak electric
fields.” Lee and Rice gave estimates for “break-
away” field. In previous work, Fukuyama and
Lee,® Koehler and 1ee? and Weisz, Sokoloff, and
Sacco' have discussed the linear conductivity

of a charge-density wave in the presence of im-
purities. In this article, we are concerned with
the nonlinear conduction due to the depinning of
the charge-density wave by a dc electric field.
In a previous article Sacco et al.'* discussed the
damping of a charge-density wave moving in an
impure system and found the damping force to
be a linear function of the drift velocity in three
dimensions (i.e., a Drude form). This result,
which should be applicable for larger fields at
which the charge-density wave becomes com-
pletely free, would imply a current contribution
due to the sliding charge-density which is linear
in the applied electric field. In the present ar-
ticle, the intermediate nonlinear behavior, which
occurs as the wave begins to break away, will
be treated. Since threshold behavior at 7' =0 for
pure or single-particle systems!? 314 ig usually
of the form (E- ET)I/Z, it is not easy to under-

stand why in this system there should be a current
versus E curve which is concave upwards near
threshold. Maki'® and Bardeen'® independently
proposed theories based on quantum-mechanical
tunneling of solitons which give an e~Zo/F depen-
dence of the nonlinear part of the conduction. In
view of the data of Fleming and Grimes,® which
gives a well defined threshold field at which non-
linear conduction begins, in qualitative agree-
ment with the ideas of Lee and Rice,” a simple
classical model of impurity depinning will be
treated in this article.

In Sec. II, the threshold behavior of a pure,
pinned system will be discussed. In Sec. III,
molecular dynamical studies on a simple model
for charge-density waves in an impure system
will be presented. In Sec. IV, conclusions and
speculations on the origin of the noise spectrum
observed by Fleming and Grimes will be pre-
sented.

II. THRESHOLD BEHAVIOR FOR INFINITE PURE
AND FINITE IMPURE SYSTEMS

It is well known that both a single particle in
a sinusoidal potential and a chain of atoms con-
nected by springs, situated in a sinusoidal po-
tential of the same period, exhibit threshold
behavior of the form (E - ET)l/ 2 in the overdamped
limit at zero temperature.!?** At nonzero tem-
peratures there is no longer a well defined
threshold.’?*"** In the chain system this is be-
cause of the creation of soliton-antisoliton pairs
at any nonzero temperature, which can conduct
electric current. Of course, since for two- and
three-dimensional systems solitonlike defects
can extend across the crystal, it may not be
possible for them to be thermally activated,’
and hence, well defined threshold behavior may
persist at nonzero temperature.

It will now be shown that the square-root thresh-
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old behavior is much more general. Consideraclas-
sical pinned many-body system such as the present
model which begins to conduct after a critical
field E | is reached. For E<E the system will
be in equilibrium in the applied electric field,
but when E becomes equal to or greater than E,,
the equilibrium configuration becomes unstable.
Thus, the system in the applied field must po-
sess an unstable phonon mode for E = E,. This
phonon represents the intital motion of the system
as it begins to slide in the applied field (i.e., the
sliding mode). When E is slightly greater than
E,, the systems will spend a long time very
close to the equilibrium configuration for E
slightly below E .. The reason for this is that
for such values of E, the pinning forces almost
cancel the effects of E. For this reason, we
will consider small displacements (u,) of the
atoms of the system from their equilibrium con-
figuration for E just below E . We will solve
the resulting equation of motion for the time re-
quired for the system to move far from this
equilibrium state, at which point our small dis-
placement assumption is no longer valid. We
expect, however, that this “depinning time” will
not depend significantly on the details of the mo-
tion when such large displacements are attained
because the system will spend very little of its
time at such large displacements. Once the sys-
tem has broken loose it will at a later time be-
come almost pinned again and the break-away
process repeats itself. This is similar to “stick
slip” friction. Here j labels both the particles
and components of 6u. The equation of motion

to lowest order in the 6u’s is

M8ty Sl = _2 Cyy0u,+ Y By, Su,bu,+--+ +0E.,
m

@)

where the C’s and B’s are constants, 6E=E —-E ,,
and y is the damping constant (e. g., damping
due to the effects discussed in Ref. 11), We will
consider the extreme overdamped limit for sim-
plicity. This same approximation will be made
in the molecular dynamical calculations to follow.
In doing so we are neglecting possible oscillatory
motion of the system which may explain the noise
spectrum in NbSe,,’ but the overall nonlinear
conduction should still be described correctly.

In this limit, the first term on the lefthand side
of Eq. (2) is neglected compared to the second.
Transforming to the normal coordinates of the
system for the equilibrium configuration at E

=F -

buy = ; Ujadas (3)

we get

.« .l "rra® 0
Y4y = Wogat ;, ; UG U US, Byl aan+ SEX,
m

(4)

where
SE’=5E Y U%. .
E

By our assumption, one of the frequencies w,
will be zero. Since for |E-E,_|«<E, the system
spends a long time near the E =E equilibrium
configuration, we may replace the stable modes
g, by their equilibrium values

qo =OE'/w%.

The anharmonic terms are neglected here because
they are much smaller than the harmonic terms
which are nonzero for these modes. Then if we
eliminate these modes with the above relation,

the equation of motion for ¢, , where q, is the
unstable mode, becomes

y'qao=Fq:o+D6E'qao+ 8E", (5)

Assuming that for small 6E the conducting system
spends most of its time stuck at points where it
is almost pinned, the time ¢, for the system to
break loose is given by

= ° dqajL 1
’c‘“’f FqZ +DbE'q, +OE’ VEE ° (©)

Thus, the current ~1/t,~V3E.!"® The above ar-
gument is correct for a finite system where there
is a finite frequency spacing between the modes
and will also be correct for an infinite, pure,
charge-density-wave system which is pinned

by commensurability. In a commensurate pure
system, there exists a finite number of normal
modes for each value of the wave vector (i.e., afinite
number of bands). Since a uniform electric field
only couples to the zero-wave-vector modes, the
equation of motion reduces to Eq.(4) with the a’s
referring to the band states at zero wave vector.
The above arguments follow and again give a
square-root threshold behavior. For an infinite
impure system, on the other hand, it is quite
likely that there will exist many nearly-zero-
frequency modes, and hence, our assumption
that all modes except one are in equilibrium is
probably not valid. The fact that the experiments
give no such square-root critical behavior—in
fact the current versus E curve is actually con-
cave upwards instead of downwards®—may be

an indication of the breakdown of the above theory.
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I1I. NUMERICAL WORK ON IMPURE SYSTEMS

In order to study electric field depinning in im-
pure charge-density-wave systems we have studied
the impure discrete sine-Gordon chain or Frenkel-
Kontorova!® model via molecular dynamics. The
equations of motion of our model may be written
as

. 2 2
MEryE,= —0(2x; =Xy —%;,) -;T'TVDC! Sina—”x,+E
(7a)

for 1<j<N and
2
mE  +yx, = —a(x, -x2+b)-;-"VOClL si%xﬁ-E s

(Tb)
. 2w 27
mE y+y%y= —a(xy =2y, —b) = VoCysin—xy+E,

(7¢)

where x; is the position of the jth atom, 5 and a
are the lattice constants of chain and sinusoidal
potential, respectively, o is the force constant
of the interatomic bonds, y is the damping con-
stant, m the mass, E the applied field, and C,
=1 on a site containing an impurity and 0 other-
wise. The locations of the nonzero C,’s are chosen
randomly. This model has previously been applied
as a model of an impure charge-density-wave
system,'® and is a discrete generalization of the
phase models of Fukuyama and Lee.?! The justifi-
cation of including only interaction of the chain
with impurities is that in the absence of the im-
purities, the pure incommensurate system is not
pinned anyway.?® In our model, the sinusoidal
potential represents the charge-density wave,
which is much more rigid than the lattice'® and
the chain represents the lattice. Our procedure
is similar to previous calculations by the author
on such a model.» The system is started in an
equilibrium configuration for E just below E ..
This configuration is found by iterating the
equilibrium equations [i.e., Eq. (7) with the left-
hand side set equal to zero] for many choices

of x, until the force on x, vanishes.** The lowest
energy configuration is taken. As pointed out

in previous work,?° it can become very difficult
to determine the equilibrium configuration ac-
curately for longer chains because the values of
x, at which equilibrium occurs become more and
more closely spaced as the system gets larger.
As a consequence, the equilibrium configuration
for longer chains was not found to the same ac-
curacy as for the shorter chains. Nevertheless,
the dynamical calculations should still be correct.
The dynamical calculation is performed by taking
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the system initially in an equilibrium configura-
tion, increasing E to a value above E,, and sol-
ving Eq. (7) for the overdamped case (i.e., ne-
glecting the first term on the left-hand side).

This approximation probably overestimates the
effect of the damping that is present and elim-
inates transient and oscillatory effects. Never-
theless, it should still be semiquantitatively
correct, as discussed earlier. The ratio of the
natural period of the chain to the sinusoidal po-
tential period b/a was taken to be 100/77 (which
is equivalent to 100/23, which is not far from

the value for NbSe,). Figures 1 and 2 show the
results of chains containing 77 atoms, 20 of which
are impurities, for two different distributions

of the impurities. The figures show the mean
drift velocity (found by finding the time for the center
of mass of the chain to move one lattice constant of
the sinusoidal potential) versus E/aa. The im-
purity potential was taken to be V;,=0.005aa® It
should be noted that both the value of E, and
the shape of the curve near E, depend on the
impurity configuration. As the system approaches
the thermodynamic limit, we would expect the
dependence on impurity configuration to disappear
since all possible local configurations are included
in a large system. We have calculated the value
of E, for systems of ever increasing size with the
impurity concentration fixed at the value 20/77,
by solving the equilibrium equations for increasing
values of E until E reaches a value at which equil-
ibrium solutions can no longer be found. This

is E;.. A plot of E . as a function of N where

N is the number of atoms in the system is shown
in Fig. 3. The curve appears to extrapolate to
about £,=0.001ca. Although there are no data
for very large N to rule out the possibility that
the curve dips to zero when N approaches zero,
the next paragraph argues that such behavior will
not occur.
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FIG. 1. Velocity of a 27-atom chain with 20 impur~
ities relative to the sinusoidal potential as a function
of the applied electric field is shown. Both variables
are in dimensionless units.
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FIG. 2. Velocity of a second 77-atom chain with 20
impurities with a different configuration as a function
of the applied field.

In any infinite impure system, there exists the
probability of there being a large number N, of
nonimpurity atoms in a row given by p =(1 - C)M,
where C is the impurity concentration. The net
force on each such region (of course, unopposed
by pinning due to impurities) is NE. The mean
number of atoms between such regions is ~1/p
=(1-C)™™, The unopposed force on the nonim-
purity region must drag these atoms, which pro-
vide a pinning potential ~CV,(1 - C)™*1, Thus,
it is quite clear that the force due to the electric
field on the impurity-free regions will never be
large enough to “overwhelm” the pinning due to
impurities located between such regions. This
argument implies that there should be a well
defined threshold field in the thermodynamic
limit (i.e., no tailing off of the velocity versus
E curve as E approaches zero). .

We have also calculated E . as a function for
Vo Our results are qualitatively similar to
Fig. 5 in a paper by Teranishi and Kubo.22 There-
fore, they will not be reported here.

One way one might think of interpreting the
velocity versus E behavior is to assume that our
system consists of a collection of finite strands
containing charge-density waves with a distribu-
tion in values of E,, due to variations in both the
number and distribution of impurities in each
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FIG. 3. Threshold field as a function of the reciprocal
of the number of atoms in the chain.

segment. Assuming the (E — E,)*'2 behavior (and
zero for E<E ) for each strand and averaging
over a rectangular distribution of E running from
ETo -3a to ET0+ 34 gives

(E-E, +38)"2

which has threshold at £, - 34 and is concave
upwards, in qualitative agoreement with experi-
ment. This would correspond to the case where
E . can only vary over a small range. The lower
end of that range becomes the new threshold
field, If E,, - 34 represents the infinite chain
value of Ethis would qualitatively explain the
experimental data. This interpretation is con-
sistent with Fig. 3 which shows that the lower
values of E, do occur for the longer chains. Per-
haps, a different probability distribution would
give quantitative agreement with experiment.
Another possibility is to assume an exponential
probability distribution of charge-density-wave
sizes, as assumed by Longcor and Portis,?* and
a dependence of E . on chain length of the form

Ep=Eq o +T/l,

where E; , and T" are constants and [ is the length
of a charge-density-wave segment. Figure 3
shows that this form is approximately valid for
shorter chains. Longcor and Portis have shown
that the above dependence of E, on ! combined
with the exponential distribution of ! gives the
experimentally observed form for the nonlinear
conductor shown in Eq. (1). The problem with
these interpretations is that it is not clear that
the system really consists of such extremely
short (of the order of 100 atoms) strands. Thus,
it would be useful to see if longer impure sys-
tems in an electric field can give the observed
experimental nonlinear conductor shown in Eq.(1).
Since we saw in the last section that the argu-
ments which predict square-root threshold be-
havior for a finite impure system might break
down for an infinite system, it is worthwhile to
consider longer chains, in order to see if the
current versus field curve becomes concave
upwards in the thermodynamic limit in agree-
ment with experiment. Figures 4 and 5 show the
drift velocity versus electric field for a 616-
and a 924-atom chain with a 50% impurity con-
centration. The impurity potential for these runs
was chosen to be about a tenth of the strength
used for the runs shown in Figs. 1 and 2. The
reason for this choice is that as the chain gets
longer the number of possible equilibrium con-
figurations increases rapidly. At 600 or 900 atoms
we are already approaching the limit of accuracy
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FIG. 4. Chain velocity versus field for a 616-atom
system with 308 impurities.

of the computer in trying to solve the equilibrium
equations. This is because the number of possible
dislocation configurations increases rapidly as
the size of the system increases. Decreasing
the strength of the sinusoidal potential increases
the size of a dislocation and hence fewer disloca-
tions can exist in the chain implying lower mul-
tiplicity of the number of equilibrium states. In-
creased impurity concentration (up to 50%) also
helps reduce the multiplicity because it moves
us closer to the weak impurity limit.,”%2%° The
616-atom system exhibits well defined threshold
behavior, as predicted in Sec. II for any finite
system. Thereappears tobe a more gradual falloff
of the current for E closer toE ,, however, than
occured for the smaller systems. The threshold
field found from the dynamics is 0.000138qa,
whereas the threshold field found by solving the
equilibrium equations was only 0.00012xa, which
illustrates the difficulty in finding the equilib-
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FIG. 5. Chain velocity versus field for a 924-atom
system with 462 impurity atoms.

rium configuration for such large systems. The
dynamical calculation, however, appears to

be reasonably behaved. The 924-atom system
shows a definite tendency toward the drift vel-
ocity versus field curve turning from concave
downwards to concave upwards as the size of

the system increases (it will show the square-
root behavior only right near the threshold field).
We have not done calculations on larger systems
because the runs near threshold already require
huge amounts of computer time for the 924-atom
system.

In order to illustrate how the breakaway be-
havior occurs physically, we have printed out
a 19-atom section of a 77-atom chain for several
times in Fig. 6 for a field just above threshold.
It can be seen that most of the time the system
is almost pinned in one place. At a certain time,
the impurity atoms in the chain jump rapidly by
a lattice constant of the sinusoidal potential to
the next near-equilibrium configuration. Usually
one impurity starts to shift before the others and
pulls the others along. In Fig. 6, the impurity
atom initially at x/a=57 appears to jump to about
58 before the other two atoms shown start to
jump.

Recently Teranishi and Kubo®* have reported
similar calculations to ours., They study finite
temperature effects, which we do not consider,
but we have considered much longer chains of
atoms. We have concentrated on studying the
threshold behavior of the current as a function
of electric field, whereas they do not say much
about this aspect of the problem. We disagree,
however, with their prediction that the threshold
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FIG. 6. Atomic positions of a 10-atom section of a
77-atom chain with 20 impurities in a field of 0.00295aa
(Er=0.00292ca). The circles are ordinary atoms and
the X’s are impurity atoms.
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field should approach zero in the thermodynamic
limit. Teranishi and Kubo’s argument is based on
the fact that the mean distance between impurities
diverges logarithmically with the size of the sys-
tem. This is because any average over the inter-
impurity spacing is weighted by the occasional
occurrence of very large regions which are free
of impurities. Such regions could strongly weight
the average. Thus, the average spacing of im-
purities will not be typical of interimpurity spacing.
As has been argued earlier in this article, the
fact that such an atypical region in the system can
break loose says nothing about whether or not the
whole system becomes depinned. A correct cal-
culation of the depinning field must proceed from
Eq. (3.7)in Ref. 19 and not Eq. (3.3). It is diffi-
cult to understand the assertion that the conduc-
tivity becomes infinite for E;> E, because it

was shown in Ref. 11 that there is damping even
at T=0, which implies noninfinite electrical
conduction. They do not, however, give details
of how they arrive at these conclusions,

1V. CONCLUSIONS AND SPECULATIONS ON THE
OBSERVED LOW-FREQUENCY NOISE SPECTRUM

It has been shown that in the overdamped limit
all threshold behavior in a charge-density-wave
system pinned by commensurability should be
of the square-root type, which does not agree
with the results of Fleming and Grimes.® Mole-
cular dynamical calculations on relatively long
impure systems (i.e., pinned by impurities) show
a tendency for the threshold behavior ( which for
finite system is also of the square-root type) to
become concave upwards in the thermodynamic
limit, in agreement with experiment. An average
over the threshold field for short systems gives
threshold behavior qualitatively like experiment
if the distribution in E has a low-E, cutoff. In
all calculations reported, impurity concentrations
as high as 30% to 50% were used in order to give
good statistics and to cut down on the multiplicity
of possible equilibrium states. Although the ex-
perimental impurity concentrations are much
lower, our results should still be qualitatively
correct.

Two macroscopic surfaces sliding with respect
toone another should also exhibit a similar thresh-
old transition from static to dynamical friction.
Although the actual location of the threshold force
will be impossible to determine because neither
surface is periodic (as is true in our model), once
the system begins to slide, similar threshold
behavior should be observed ( in which the system
remains stuck in several almost pinned positions

for a long time and then breaks loose). This is
the phenomena of “stick-slip friction.”

One of the most puzzling features of the data
of Fleming and Grimes® is the appearance of
low-frequency noise once the threshold field for
nonlinear conduction has been exceeded. Although
this is a phenomenon not explainable by the model
calculations presented in this article, it is inter-
esting to speculate on the possible cause of such
behavior. Indeed, the observed fundamental fre-
quency implies a characteristic length in the sys-
tem of about 1um, such that the charge-density-
wave drift velocity divided by this length gives
the frequency of the noise. This length is longer
than the wavelength or any other length in the
system. Actually, it is not difficult to under-
stand where such a length might come from in
an incommensurate system. It is well known
that an incommensurate system will distort so
as to form a structure in which the system is
nearly commensurate in most places, with inter-
mittent domain walls or solitons (where the sys-
tem is incommensurate), which form a periodic
lattice.** The wave vector of the soliton lattice
in NbSe, will be given by 4§ - b*, where § is the
wave vector of the charge-density wave and b*
the nearest reciprocal-lattice vector to 4§. As
the charge-density wave, and hence the soliton
lattice, slides past the impurities, it will give
oscillations of period equal to the lattice constant
of the soliton lattice divided by the drift velocity.
Using the experimental values of ¢, this gives
a frequency which is over an order of magnitude
too large.

Theodorou and Rice?® have shown, however,
that there exists a whole hierarchy of soliton
lattices of wave vector n§-b_* corresponding
to each integer  such that n§~ b¥%, where b*
is some reciprocal-lattice vector of the cyrstal
lattice. Each such soliton lattice will, if Fourier
transformed, contain the above fundamental wave
vector and all its harmonics. Thus, each such
soliton lattice will result in a small amplitude
periodic oscillation in the current, including all
possible harmonics. This is in qualitative agree-
ment with Fleming and Grimes,*® who find low-
frequency oscillations in the current with a hier-
archy of frequencies and all their harmonics.
This explanation is certainly reasonable in the
large field limit, at which the charge-density
wave has completely broken loose and is moving
at nearly constant drift velocity. It is difficult
to understand on the basis of this model, however,
why each new fundamental frequency appears at
zero frequency at a critical value of the applied
field. This can only be understood if the break-
away of the charge-density wave occurs as a re-
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sult of each member of the hierarchy of soliton
lattices breaking loose separately as the field

is increased. It would be expected, however,
that the soliton lattices corresponding to higher-
order commensurate “lock-ins” will break away
first. These, however, happen to have the larger
lattice constants and the lower amplitudes.
Clearly, further theoretical work is needed to
understand this phenomenon. More accurate
measurements of the charge-density wave vector
are also needed for testing these ideas.
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