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Band tailing in heavily doped semiconductors. Scattering and impurity-concentration-fluctuation
effects
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Using a self-consistent multiple-scattering method, we estimate the relative importance of both effects of scattering
and of impurity-concentration fluctuations on band states in heavily doped semiconductors and thus we account for
band tailing. We apply this formalism to the estimate of the interband absorption spectrum in a typical case, in

satisfactory agreement with experiment.

I. INTRODUCTION

A variety of experiments on doped semiconduc-
tors, most noticeably on their optical absorption,
has given strong evidence for the existence of
electronic states within an energy range extended
into the band gap of the pure material, close to
the band edges. The understanding of this band-
tail-formation mechanism in a semiconductor,
under the influence of charged impurities, has been
a long-standing problem with both fundamental
and practical bearings,! for which a comprehen-
sive solution has not yet been found. Early ap-
proaches have considered the effect of scattering
by impurities on electronic states, using pertur-
bative methods.?*® Although the multiple-scatter-
ing method® was free of unsatisfactory approxima-
tions, it has not been numerically implemented
to discuss the relevant experiments, presumably
because it was not expected to give a tail in the
density of states (DOS). On the other hand, ap-
proaches initiated by the work of Kane**® have
focused attention on the statistical properties of
the scatterer distribution and yielded exponential
tails in the DOS. These theories, however, come
to the assumption that the electron energy fluc-
tuations mirror those of the potential, forgetting
about the scattering problem. These approaches
have been widely used to discuss experimental
data, although the actual width of the potential dis-
tribution which fits the experiment has usually
been found to be significantly smaller than the
theoretical one. Finally, Halperin and Lax® car-
ried out an analysis which takes into account both
the random distribution of impurities and the
matching of the wave function to the local impurity
distribution in a self-consistent manner; unfor-
tunately, these results were restricted to the
lowest-energy range of the band tail,

In the meantime, extensive studies of the elec-
tronic structure of disordered systems have made
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clear that any approach to this problem must in-
corporate both a multiple-scattering calculation of
the electron Green’s function and a statistical de-
finition of this Green’s function or of the associa-
ted self-energy. These points have been especially
emphasized in Ref. 7. In addition, it is important,
as stressed by Edwards,® to consider the actual
disorder which an electron observes in the course
of moving a mean free path. This suggests the
analysis of the properties of a macroscopic-dis-
ordered system by averaging over the properties
of microscopic neighborhoods.® The averaging
procedure may be specified in terms of a sampling
volume which depends on the electron energy
through the energy dependence of the electron
mean free path and which has to be estimated in
a self-consistent way. Similar problems are en-
countered when one attempts to account for band-
tail formation within the coherent-potential-ap-
proximation (CPA) formalism.®

On these grounds we present, in Sec. II, a self-
consistent calculation of the band tail DOS in a
doped semiconductor. We first estimate (Sec.
IIA) the effect of scattering by calculating the elec-
tron self-energy =(k, E) via a renormalized per-
turbation expansion, assuming the impurity con-
centration to be homogeneous within the material;
we thus account (Sec. IIB) for the local fluctuations
of impurity concentration. The relative importance
of the scattering effect with respect to the local
potential fluctuation one is thus estimated as a
function of energy: we find the latter effect to
play a role only in the lowest-energy part of the
tail (Sec. IIIC). In order to make contact with the
experiment and to assess the validity of our treat-
ment, we present in Sec. III an analysis of a
standard optical absorption spectrum' accounting
for both the shift and the deformation of this spec-
trum with respect to the one of the unperturbed
material. Here again, the relative importance of
the scattering effect with respect to the one of im-
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purity-concentration fluctuations is clearly dis-
played as a function of energy. Our results are
summarized and further discussed in Sec. IV.

II. ELECTRON SELF-ENERGY
AND DENSITY-OF-STATES CALCULATION

A. Effect of scattering

At the first stage, we consider free electrons
in presence of a homogeneous distribution of
donors (concentration Np) and acceptors (concen-
tration N ;) which scatter electrons through the
Coulomb potential of their charge. We calculate
the energy E and wave-vector E-dependent self-
energy

o - 'ka'lz
=k, E) =N Zk;—-——-—r——E_eh'_z(.E,E). (1)
In (1), N=Np+N,, €, is the unperturbed band
energy, and V,,. the Fourier transform of the
screened Coulomb potential
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In (2), k is the static dielectric constant of the
matrix and the inverse screening length ¢,, given
by
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depends on the actual density of states p(E) and on
the temperature, f being the Fermi-Dirac distri-
bution function. For the sake of simplicity, we
have used the Thomas-Fermi (TF) approximation
for the wave-vector-dependent dielectric function
€, although more elaborate expressions (e.g.,
random-phase approximation) may be considered.
Equation (1) corresponds to Klauder’s third ap-

proximation (formula 63 of Ref. 2; see also Ref. 3).

This is a high-density approximation in which,
when one considers the scattering on a particular
impurity, scattering on all other impurities are
accounted for in terms of an effective medium
(specified by Z). An advantage of Klauder’s ap-
proach is that it may incorporate series of dia-
grams of higher orders, in particular, those
which would correspond to a bound-state forma-
tion. However, in Eq. (1) the latter diagramsare not
included and thus we will limit our investigationto the
doping range in which the bound-state formationis
unlikely. Other contributionsto the self-energy may
be considered: the first-order Coulomb contribution
vanishes for a homogeneous system? and, following
Wolff,® we will approximate the exchange contribu-
tionby a constantterm. Then,atagivenN,the ma-

trix integral equation (1) is iteratively solved for rel-
evant E and % values; practically, we begin
with the high-E values for which the converg-
ence is fast. From X, we get the diagonal
elements of the Green’s function G,,(E) =G(k, E)
=[E - €, - £(k, E)]™* and the DOS p(E) =(n)™*
ImG(k, E +i0). Let us notice that z(k, E) is a com-
plex quantity. In this respect, our method goes
beyond the Brillouin-Wigner expansion, truncated
to the second order. It also goes beyond the CPA-
like methods which neglect the k dependence of .
Associated to T is a spectral density C(k, E)

C(k, E) =Im=(k, E){[E - €, - Rex(k, E)]?
+[Imz(k, B)F}. 3)

At a given E, we may define &, for which c(k, E)
is maximum. Taking the imaginary part of ¥ as a
measure of the damping of the quasiparticle, we
may get an estimate of the E-dependent mean
free path (mfp), A(E):

A(E) =7 2k,,/m*Im3Z(k,,, E),

where m* is the effective mass of the unperturbed
band. Obviously A(E) as well as p(E) depend on
N.

B. Effect of impurity-concentration fluctuations

We have to take into account the statistics of the
concentration fluctuations. We then face two prob-
lems. The first one is that, as in the discussion
of the Anderson problem given in Ref. 7, Eq. (1)
has to be understood as a self-consistent relation
between the probability distributions for Z on both
sides of Eq. (1), given that the probability of having
a local concentration N is ®(N). As we have seen
(Sec. II A), for a homogeneous impurity distribu-
tion, one was able to find a self-consistent solu-
tion for ¥. We will assume this solution to be
still valid in a neighborhood, specified by its
volume , -in which the impurity concentration is
N; this approximation implies that an electron of
the neighborhood is essentially scattered within Q.
We may then calculate a set of N-dependent DOS
py(E) and mfp Ay(E). The second problem is to
find ®(N), given the mean value N of N. To this
end, we will assume ®(N) to be equal to the Pois-
son probability ®(v) of having v scatterers within
a volume §; v fluctuates around v with 7 =NQ:

eWw)=()%e™ /vl .
Clearly, the probability ®(N)=®q(N) depends on
. By averaging the sets of py(E) and of Ay(E)
with ®o(N) we get, respectively, the average
values of DOS po(E) and of the mfp Ag(E).

In Fig. 1 we have plotted, for different values of
E, the variations of p, and of Ag as a function of
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FIG. 1. Average values of (a) the density of statespg
and of (b) the mean free path Ag as a function of the radi-
us R of the sampling volume €, for different values of
energy E. The crossing of the straight line R/2 and of
the Ag curves defines the self-consistent values of R.
The vertical dashed lines which join the corresponding
curves of (b) and (a) define the self-consistent density of
states at a given energy. Energies are given in effective
rydberg ®*, lengths in effective Bohr radius a,, density
of states in states/®*a3, and donor Np and acceptor N,
concentrations in units of /3(4a)?.

the radius R of the sampling volume (Q = $7R%);
the calculations have been performed in a typical
case, at T =0 (which would correspond to, e.g.,
n-GaAs with Np=1.2%10" cm™ and N, =8x 10
cm™®). Now, as pointed out by Butler and Kohn,®
R cannot be smaller than about twice the mfp; on
the other hand, by taking a larger radius, one un-
derestimates the influence of the concentration
fluctuations on the DOS. We have thus chosen to
fix © from the self-consistent prescription

Q= AP, )

where p is a constant (u 22). Inactual calcula-
tions, we have taken y =2, which gives an upper
bound of the DOS in the tail; graphic solutions of
Eq. (4) for different values of E are indicated in

Fig. 1. The self<consistency requirement makes
it clear that the incorporation of arbitrarily large
fluctuations of N, which implies an arbitrarily
small sampling volume and which would yield a
DOS tail extending deeply in the band gap, cor-
responds to an unphysical averaging procedure.
Calculations also show that, at high energy, the
DOS becomes independent of Q.

To summarize, we have shown that the E depen-
dence of the sampling volume is essential and we
have given a reasonable estimate of the DOS in the
tail. The difficulty of the problem is less the
taking into account of the impurity-concentration-
fluctuation effect than the need to avoid overesti-
mating it. Let us notice that our approach involves
some approximations: for instance, we have as-
sumed (i) the screening radius not to vary over
the whole volume and (ii) any neighborhood to be
electrically neutral (i.e., we have introduced no
first-order Coulomb term in the local self-energy
z).

C. Results and discussion

Our formalism deals with an isotropic, single-
band semiconductor; however, it may be extended
to any complex structure, for example, to the
case of degenerate valence bands which is dis-
cussed below. For the case of an isotropic single
band our results are universal and are best ex-
pressed in dimensionless units: energies and
lengths are given in units of effective rydberg
(m*e*/2k*%?) and of effective Bohr radius a,

(k72 /m*e?), respectively.

Results of DOS calculations are displayed in
Fig. 2. We have considered the typical case dis-
cussed above which corresponds to an electron
concentration, N, - N,, about twice as large as
the critical one, #n,, for bound-state formation,

n, being estimated from ag}/®=0.25. In Fig. 2(a)
we have plotted, as a function of energy, the DOS
calculated!? (i) without taking into account the
effect of impurity-concentration fluctuations [that
is with Eq. (1), taking N =N] and (ii) with in-
corporating this effect; in addition, we have plot-
ted the unperturbed DOS and the one obtained from
the Halperin-Lax tabulation.® Three features of
these results are worth noticing. First, we
properly describe the whole band-tail energy
range: at high energy, the unperturbed DOS is
recovered and, at the lowest energies, our results
are close to those of Halperin and Lax. The agree-
ment between the results of these authors and
ours are hardly surprising for, if the calculations
are very different, the starting demand (that is,

to match the wave function or the Green’s func-
tion to the local impurity configuration) is the
same. However, data of Fig. 1 show that our de-
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FIG. 2. (a) Density of states p(E) as a function of en-
ergy. Full line, present calculations; dashed line, cal-
culations omitting impurity-concentration-fluctuation
effect; dotted line, parabolic band; dash-and-dot line,
from Halperin-Lax tabulation. (b) Density of states as
a function of energy for different degrees of compensa-
tion, keeping Np—N, constant. Full line, present cal-
culations; dashed line, calculations omitting impurity-
concentration-fluctuation effect; dotted line, parabolic
band. Units are those of Fig. 1.

finition of p,, through the self-consistency relation
(4), differs from the Halperin-Lax variational
criterion which amounts to taking the maximum of
P as a function of R and which may imply a value
of R smaller than twice the mfp. Second, we see
in Fig. 2(a) that local concentration fluctuations
lead to a finite DOS in the lowest-energy range for
which the homogeneous scattering acting alone
would give a vanishing DOS. Third, the effect of
concentration fluctuations, namely, the difference
between p(E) and pz(E), is important only in the
lowest-energy part of the band tail. In Fig. 2(b)
DOS curves, calculated for various values of Np
and N ,, keeping N, — N4 constant, illustrate the
effect of compensation.

III. OPTICAL ABSORPTION

We have used this formalism to analyze the de-
formation of the interband-absorption optical
spectra in heavily doped semiconductors, this
deformation being one of the clearest evidences
of band-tail formation. The standard calculation
of the optical absorption has to be modified to ac-
count for the fact that the spectral densities for the
conduction and valence bands are no longer given
by delta functions 6(E - ¢,). In other words, to
properly account for the wave-vector selection
rule, we have to use the whole structure of the
spectral densities. This point is worth empha-
sizing for most of the previously mentioned auth-
ors (see, e.g., Ref. 11) have merely assumed
that the wave-vector selection rules were no long-
er holding in the band tail. The absorption coef-
ficient «, at photon energy 7w, is given by

a0 =4 [ a& [ @k cOE, B +r0)cE, B)

X [f(E) - f(E +hw)], (5)

where the sum runs over the light- and heavy-
hole bands and where the constant A
_ e E(E, +A)
37%cw (E, +2A)m Kk

incorporates the interband optical matrix element
for the zinc-blende structure.’® E, is the unper-
turbed gap energy and A the spin-orbit splitting
which we have assumed to be independent of energy,
c is the light velocity, and m, the conduction-band
effective mass. In Eq. (5), the presence of the
Fermi function f accounts for the thermal occupa-
tion of the bands. The spectral function for the
conduction band C“’(R, E) and for the light-hole
and heavy-hold bands C*")(k, E) and C"(k, E)

are calculated using the formalism set up in Sec.
II. In the calculation of C®®") and of C*® and of the
corresponding self-energies Z("), we have to ac-
count for both the intravalence-band and the inter-
valence-band transitions. As the approximation
we use for the impurity potential matrix elements,
V, =4mre®/k(q® +47), involves plane waves rather
than the actual Bloch functions, these matrix ele-
ments are the same for both transitions; this, as
expected, introduces no splitting of the valence
bands at £=0. In addition, when considering a p-
type material, we have to introduce into =) the
exchange contribution Z, which we approximate

by a constant term, proportional to p*® (p being
the hole concentration) and which is calculated at
the Fermi level of the unperturbed system, taking
the valence-band degeneracy into account.3+!1:
The self-energies are then the same for both the
heavy-hole and light-hole bands and given by
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where the dispersion relation for the unperturbed
bands have been approximated by

'MW =212 f2m, , ,

m, and m, being the light- and heavy-hole effec-
tive masses. Equation (5) contains no adjustable
parameter; one readily verifies that the standard
expression?® for a(# w) is recovered when one
replaces c‘® and ¢ by & functions (that is, at
the limit of unperturbed bands). However, this
treatment is still approximate in that, beside the
electron-phonon coupling, it neglects (i) the so-
called vertex corrections to the electron-hole
Green’s functions and (ii) the electron-hole Cou-
lomb interaction.
We have considered the experimental results
on (direct-gap) GaAs, thoroughly studied by Casey
and Stern.!! In what follows, we shall discuss the
absorption spectrum of their Fig. 5 (N, =2x10%®
%, Np=4x10" cm™, T=297 K). Obviously,
at a g1ven energy E, the spectral densities C(k E)
—CN(k,E) depend on N. To account for the effect
of the local concentration fluctuations, we have to
average the products cﬁf’cﬁ,?) with the probability

eWN):
() (k, E)C)(K, E)),y = D @oN)CE (&, EXCP (&, E),
N

the average having to be performed at each energy;
at the lowest energy (C)(k, E). C®)(k, E)),, differs
from C%"’(R,E) . C%”(E,E). In the case of GaAs,
owing to the larger values of the effective rydberg
for the holes with respect to the one for the elec-
trons, the shift of the valence bands with respect
to the unperturbed band, that is the valence-band
contribution to the gap shrinkage, is much larger
than the corresponding term for the conduction
band. For the same reason, the major contribu-
tion to the low-energy spreading of the band tail
arises from the effect of concentration fluctuations
on the valence band: This suggests approx1mat-
ing (C®)(k, E)C')(k, E))uy by (C(&, E))WCE (&, B).
In Fig. 3 are displayed the expemmental data of
Casey and Stern and the results of our calcula-
tions, together with the absorption curve calculated
for an unperturbed system. The major features of
the experimental spectrum are well reproduced by
our calculations. First, with respect to the spec-
trum of the unperturbed system, we see a large
shift of the absorption toward the lower energies;
most of this gap shrinkage has its origin in the
electron-impurity interaction. Second, at low
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FIG. 3. Absorption coefficient a(em™) as a function of
photon energy Zw(eV) for a p-GaAs sample (P =1.6x 10t
em™; sample of Fig. 5, Ref. 11). Full line, experiment;
dashed line, present calculations; dotted line, calcula-
tions omitting impurity-concentration-fluctuation effect;
dash-and-dot line, unperturbed-band calculations.

energy there is a quasiexponential dependence of
o as a function of Zw which clearly differs from
the usual power-law dependence of direct inter-
band transitions. Let us notice that the electron-
impurity interaction does not merely result in a
translation of the absorption curve but rather in a
deformation of the spectrum as seen from the fact
that the curves for the perturbed system and for
the unperturbed one almost coincide at high energy
while they differ at low energy. We see that cal-
culations are in close agreement with experiment
from the highest absorption values down to a ~ 500
cm™!; below this value, the theory still gives a
fair agreement with experiment and does repro-
duce the shape of the band tail. We note that, at
low energy, the comparison with experiment is
less precise because (i) the figures of Casey and
Stern involve the subtraction of an absorption term
of 100 cm™ which is ascribed by these authors to
the free-carrier absorption and (ii) the absorption
curve of a high-purity sample does exhibit, be-
side some excitonic structure, a tailing effect.'®
In order to assess the relative importance of the
effect of impurity scattering with respect to the
one of concentration fluctuations, we have per-
formed a calculation of the absorption spectrum
in which we have used C(”)(k E) instead of
(C®)(k,E)) that is, one in which the effect of
fluctuations is suppressed. Results of these cal-
culations, in Fig. 3, show that most of the deform-
ation of the spectrum and of the gap shrinkage
arises from the scattering effect and that the
fluctuation effect is important only at the lowest
energies. The agreement between our theory and
experiment is far more significant in that calcula-
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tions involve no adjusted parameter and the mod-
ification of the absorption spectrum includes both
a shift and a deformation.

IV. DISCUSSION AND CONCLUSION

To summarize, we have presented a treatment
of the band-tail formation in doped semiconductors
which accounts for both effects of scattering and
of statistical concentration fluctuations. In so
doing, we have shown the relevance of the multiple-
scattering method first proposed by Klauder and
by Wolff, we have laid emphasis on the notion
of average over neighborhoods suggested by Butler
and Kohn, and we have incorporated in a self-
consistent way the statistics of concentration fluc-
tuations in the calculation of the average Green’s
function. Thus, we have proposed a solution to
this long-standing problem within the spirit of
recent theories of disorder. Our method yields
the k- and E-dependent self-energies; this allows
us to calculate the optical absorption spectrum and
to show that its severe deformation may be accoun-
ted for in a nonempirical way. Our method would
certainly be useful to discuss other properties
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(e.g., transport properties) of heavy doped semi-
conductors.

We have discussed the deformation of the optical
absorption spectrum in doped semiconductors
from the simplest viewpoint, that is, we have been
merely calculating the band-to-band transitions.

It is worth pointing out that this calculation which
forgets about the influence of electron-hole inter-
action accounts for the major features of the spec-
trum and especially for the non-power-law be-
havior of the optical absorption at low energy,
whereas the most common opinion is that this ef-
fect has not to be ascribed to a change in band-
to-band transitions but to the deformation of the
excitonic structure in presence of local potential
fluctuations or of random electric fields: This is
the exciton-breaking mechanism of Dow and Red-
field.'” In other words, we have shown that the
perturbation of the one-particle excitation spec-
trum by charged impurities is of prime impor-
tance. Hopefully, our approach may offer a
starting point for a more comprehensive discus-
sion including the electron-hole interaction which
is known, in some instances, to significantly
modify the optical absorption.'®
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