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Exchange and yolaron corrections for excitons in the degenerate-band case
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Corrections to the exciton energies due to exchange interaction and polar electron-phonon coupling are considered

for the degenerate-band case. Mass renormalization and electron-hole interaction potentials induced by the Frohlich

coupling to longitudinal-optical phonons have been established in a previous paper by a tensor operator formalism.

Here we present a formulation of the electron-hole exchange in the same theoretical concept. The screening of the

exchange interaction is rediscussed. %e conclude that the exchange term is screened by a background dielectric

constant whose origin is the exchange coupling between all excited electronic states. On the basis of this theory

exciton energies for cubic III-V, II-VI semiconductors and CuBr are computed and the influence of band

degeneracy, polar electron-phonon couphng, and exchange interaction on the exciton states is discussed.

I. INTRODUCTION

Shallow excitons, whose binding energy is much
smaller than the width of the valence or conduc-
tion band, can be treated in the frame of the ef-
fective-mass approximation. Since Wannier and
Mott introduced the hydrogenic model, shallow
excitons in semiconductors have been the subject
of a large number of studies which either deal
with the effective electron-hole intexaction or
consider the details of the energy bands. Among
the fix st group of studies we mention the influence
of electron-phonon interaction in polar semicon-
ductox's, ' ' the many-particle aspects of the el.ec-
tron-hole interaction, "and the effect of dynam-
ical screening'" of local-field corrections' and
of the electron-hole exchange interaction. "-"
Most of these studies were based on the assump-
tion of simple isotropic energy bands. 'The second
group of papers is concerned with band-structure
effects, in particular with the degeneracy of the
valence bands in cubic semiconductors. After
previous attempts, "-"essential progress was
made only recently by use of tensor operator
techniques. ""In this second group of papers,
election and hole were assuDled to inte1'act by a
Coulomb potential screened by the static dielectric
constant.

In a previous paper (Hef. 6) the exciton Hamil-
tonian was treated by one of us without electron-
hole exchange interaction in two limiting cases:
for weak electron-phonon interaction and weak
binding the exciton was assumed to consist of an
electron-polaron and a hole polaron. This model
applies to excitons in III-V compounds and to ex-
cited states in II-VI compounds and copper halides.
For stronger binding, when the exciton radius is
smaller than the sum of the polaron radii, the
exciton was coupled as a whole to the longitudinal-
optical phonons. This model introduced by Haken'
and refined by Pollmann and BNtner' for the non-

degenerate-band case, is more realistic for the
exciton ground state in II-VI compounds and cop-
pex halides. In the degenerate-band case the
electron-phonon interaction is the origin of the
well known phonon-induced scalar electron-hole
interaction (Haken potential), as well as of a ten-
sox' force,

The intention of the present paper is to con-
sider the combined effect of electron-phonon in-
teraction, band degeneracy, and exchange inter-
action on exciton states in polar cubic semicon-
ductors with direct gap. For this purpose we
discuss the screening of the electron-hole ex-
change interaction and refox'mulate it in texms of
tensor operators (Sec.II) . The essence of the treat-
ment of electron-phonon interaction in the degenerate
band case' wil. l be reported in Sec. III together
with an interpretation of the resulting Hamiltonian.
Some details of the numerical procedure and
repx esentative results for some III-V, II—VI com-
pounds, and for CuBr are presented in Sec. IV. Fin-
ally we discuss the validity of the model for the
interpretation of experiments, to obtain band
parameters from exciton data.

11. EXCHANGE INTERACTION

If for the moment we disregard the electron-
phonon interaction, the envelope function
B,„(k,Q) for an excitonic state of wave vector Q is
determined by the Schrodinger equation in k
space:

+ a„,.„.(k, k', Q)+ a,„,.„.(k, k', Q) |H, „(k', Q)

[Hef. 12 and Hef. 13, Eq. (2.48)]. Here a direct
gap at the center of the Brillouin zone is assumed.
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Pseudo-Bloch functions are used for the one-
particle states" which, for the valence-band
states, are time reversed. H„and H„; are
the Luttinger matrices for the electron and hole
kinetic energies. The Coulomb interaction II' is
screened by the optic dielectric constant e„.' lt
should be noted that the leading term of H'„; is
diagonal in the band indices, i.e., proportional
to 6„6„„.

The exchange interaction can be separated into
two parts, which in the limit of vanishing Q are
(a) the analytic exchange interaction:

~ exa

G/p

& ((v'~T')e ' '" ~c'),
and (b) the nonanalytic exchange interaction:

a;*„,,„,= lim M,„(Q)M, , (Q},
Q~P

where

~

4vem
~

8 (c I Q 'p(T I v))
I,Vq') m E, -E„

~c) and ~v) are the zone-center Bloch states for
electrons of energies F-, and E„, respectively,
serving as the basis for the matrix representation
of the effective mass Hamiltonians. The integra-
tion volume is the unit cell. 6 denotes a recipro-
cal-lattice vector, T the time inversion operator,
and V the crystal volume.

In the many-body treatment of the exciton pro-
blem, ' electron-hole exchange is part of the
irreducible particle-hole interaction. In the dia-
grammatic formulation the exchange interaction
enters with a bare Coulomb line, i.e. , it is un-
screened. However, in contrast to the Coulomb
interaction even the leading terms of the exchange
interaction are nondiagonal with respect to pairs
of band indices (cv). Thus excitonic states as-
sociated with the lowest conduction and uppermost
valence bands are coupled by H to particle-hole
states of all other pairs of conduction and valence
bands, which constitute the dielectric background.
This coupling leads to an effective screening of
H'"", as derived below.

If II'" is formulated in a basis of Wannier func-
tions, it also falls into two parts: a short- and a
long-range part. There is a close correspondence
but no identity between the short-range part and
the analytic exchange on one side, and the long-
range part and the nonanalytic exchange on the
other side

A. Screening of the exchange interaction

The Schrodinger equation (1), which due to the
exchange interaction is of infinite rank with re-

spect to the band indices and does not divide into
block-diagonal form, can be reduced to finite
size by a renormalization of the nonanalytic ex-
change, as shown by Kiselev and Zhilich. ' These
authors transform Eq. (1}into an expression ident-
ical with the phenomenological equation for the
energy of longitudinal excitons:

& a(Q ~)@ @a/@ =0 &=~/@. (5)

For this purpose they assume Eq. (1}to be solved
without H'"", the envelopes and energies of the
solution being C,"„(k,Q) and E"(Q), respectively.
The eigenfunctions of the complete Hamiltonian
are then expanded as

S,„(k,Q) =g 0"(Q)f:"..(k, Q),

where p~(Q) is determined by the equation

[& -&'(Q)]4"(Q) -~, (Q) Q~*,(Q)4"'(Q) = 0,

(7)

M. (Q) = g C,"„(k,Q)*M,„(Q)
cvk

= g V.".(r=0,Q)'~..(Q) .
Ctl

(a,"„ is the Fourier transform of 0;„(k,Q} for
fixed c, v, and Q. Since

and

~ &'(Q)Pa(Q)
&na(Q& ~) =5na ~ E g~(g) (9)

&"(Q) = g ~" (r =o Q)—
m V & E, -E„

(10)

Eq. (7) can be cast into the form of Eq. (5). This
reformulation is obviously only possible because,8'""can be factorized. No similar treatment is
possible for H'*'. Equation (5) and (9) are equi-
valent to the implicit equation

IM (Q)l&'(Q)=& "(Q)+, (- .(@))q @~@2

@~"(Q) =~"(Q)

for the exact exciton energy E"(Q).
Thus the correction of the unperturbed energies

is equal to a first-order perturbation term of the
sn eened nonanalytic exchange interaction. The
screening is due to the electronic dielectric con-
stant of Eq. (9), evaluated at the frequency of the
excitonic state considered, but without its con-
tribution and therefore denoted by a prime.
The preceding analysis opens a way for a practical
solution of the exciton binding energies under the

folio&ring additional approximations:
(a) We replace the "background" dielectric con-
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stant in the denominator of E(l. (11& by the optic
dielectric constant q„. This constant has been
introduced phenomenologically already by sket-
trup and Balslev. ~~

(b) As experimental and numerical data indicate,
8 ' does not have a profound influence on binding
energies and can be treated as a first-order
perturbation.
Under these assumptions, the solution of E(l. (11)
is equivalent to the eigenvalue problem of Ham-
iltonian (1) projected onto the space of the band-
edge states, with H'"" screened by c„. After a
Fourier transformation the exchange interaction
terms assume the following form:

4 2I

H,'„"',„,= &~
c,e ' T v v' Tt e ' ' c' 5 r

580
(12)

ex' . 4me 52 2

Hgyggy llm
Q m e„

&c IQ 'p(T Iv))(&u 'I 7')p 'Ql c ')
x 2 5r,

e

(13)

where c,c ' and v, v
' refer to the Bloch states at

the conduction-band minimum and valence-band
maximum, respectively; thus E, -E„=Z„-Z„,
=F., is the gap energy.

H'"'=C —,'(1 (r, -c2)5(r), (15)

where

~ 4me'c = ~ &', f&H (e-*n' (z&('.

Jf for the nonanalytic exchange term the spin-
orbit. splitting is neglected in the energy denomin-
ators, H'" also can be factorized, the spin part
b'eing identical to that of H'"'. The orbital part
equals

4we I
2E &f ~Q p(7'~ft&)(«[7')Q p~~'&, I .

(17)

The orbital part is diagonal in j and j', since the
operator in the large parentheses is invariant
under all operations of the crystal point group,
which is O„or T&. The matrix for the spin part
is 2(1 —c, 'o„), where o, and O„denote the vector
operators whose components are the Pauli ma-
trices for electron and hole, respectively. This
operator contributes only to exciton states of zero
total spin —,(o, +o„) (singlet states). Thus the an-
alytic exchange terms can be formulated as matrix
representation of the operator

"&S.((7' [Sa)&(&Sa' (7') P.')5(r) ~ (14)

B. Tensor formulation of the exchange terms

For cubic or tetrahedral semiconductors the
exciton effective-mass Hamiltonian is usually
expanded into products of angular momentum
operators. In order to implement the exchange
interaction terms into this formalism we special-
ize to the standard situation of cubic semiconduc-
tors with direct gap and restrict ourselves to a
basis consisting of the two states of the conduc-
tion-band minimum and the six states of the
uppermost valence band at the zone center.

We introduce the basis sets

~v) = (gS„);j=—(&+iy')(v 2, Z, (& iy')(v 2-, S„=i&

for the valence band, and ~c) = ~RS,),S,=N, 0 for
the conduction band, where X, p, g, and g denote
the orbital parts of the zone-center Bloch func-
tions. The analytic exchange term can immediate-
ly be factorized into an orbital and a spin part
and, after minor regrouping of terms, be written
as

:::... HII Z. &)a ' "&&'IR=»&«I~)~' ')I)'&

The expression in large parentheses is equal to
the usual k - p perturbation matrix, where k is
replaced by Q and only the interaction with the
lowest conduction band is regarded. One obtains
the expansion of this operator into I=1 angular
momentum operators from the Luttinger matrix
by retaining only the interaction matrix element

z= —s'= —f&f~)P, [z) j'

q(2) q(2)yq2 (18)

Out of the manifold of exciton states upon which
these operators act, we restrict ourselves to those
formed by the 1"6 conduction and I 8 valence band,
neglecting the influence of the split-off band.
This can be done by projecting the spin operators

and subtracting the free-particle kinetic energy
+ &)f Q /2m, where m is the free-electron mass.
Upon introduction of the spherical tensor oper-
ators Q'2' and f&2' (Refs. 19 and 24), H'"" assumes
the following form:

4))(.2 p2
Hexna ~~ ( (1 & . }th (q(2) .1 &2))]

E,'g 2m '
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I, o„, and products thereof to the space of J= &

eigenfunctions of the spin operator J =I+~e„.
Diagonalization of H'"' and H'"" in the basis con-
sisting of the eigenfunctions of the total spin oper-
ator

F=J+ go~

leads to the following results: the triplet states
I' =2 are unaffected, since the projection of I
into their eigenspace vanishes. For the singlet
states E =1 we obtain the following representa-
tions:

H'*'=~PCS(r),

ffexaa Q 4ve g E [& (q(2), F-(2))]b(r)
Eg &„2'

where E(" is formed from E=1 angular mo)"en-
tum matrices. For Q =(001), the term in square
brackets becomes the matrix

5g 0 50~

in a standard basis. Thus only the E = 1 exciton
of magnetic quantum number I",=0 with respect
to the wave vector Q as quantization axis, i.e.,
the longitudinal exciton, is affected by the nonan-
alytic exchange interaction. The splitting pattern
for the eight exciton states is given schematically
in Fig. 1. The I'8~ I'8 manifold is decomposed
into irreducible components I'3+. I'4+ I"~. No ex-
change corrections. result for the I'3+ I'4 states
(E =2 triplet excitons), while the analytic exchange
reduces the binding energy of I'q excitons (E =1
singlet excitons). The nonanalytic exchange splits
the longitudinal exciton F» (E=1, E,=O) from
the transverse excitons I'» (E =1, E,= +1). Some
remarks about the general background of the in-
variant expansion of the exchange interaction,
together with hints for a generalization, are given
in the Appendix.

III. EXCITON-PHONON INTERACTION

In the spherical model the effective-mass Ham-
iltonian for excitons interacting with longitudinal-
optical phonons, but without the exchange inter-
action, has the following form:

p2 ( , g28 = +T~~ + Qlgobb~
2m~

+ g[r;b;(e" " 'e(-'&)+h. c.] ~

w
Q.

Here the influence of the split-off band is neg-
lected. The electron kinetic energy is described
by a single parabolic band of bare mass m, .

(20)

[p2 (p(2) g(2))]
2m

(21)

is the spherically averaged Luttinger Hamiltonian
for the hole kinetic energy, "where y&/m is the
mean inverse hole mass and p, „=(6j3+ +$)/5p(
is a band-splitting factor given in terms of the
Luttinger parametersp~, y2, y 3. The coupling
to the phonons is expressed by the last term,
where

. 2ve I~(&&~ 1 1 1
(22)

VERDI'E E» Ep'
denotes the Frohlich coupling factor. V is the
crystal volume, qo the static dielectric constant,
"Lo the longitudinal-optical frequency (assumed
dispersionless), and bt~, b; are the creation and
annihilation operators, respectively, for an LO-
phonon of wave vector q. In Ref. 6 this Hamilton-
ian has been dealt with by two methods. In both,
the phonon variables are eliminated by a varia-
tional procedure and effective Hamiltonians are
established in configuration-spin space. In method
I the polaron aspect of electron and hole is
stressed. Accordingly the exciton wave function

exa Hexna

FIG. 1. Splitting of the eightfold exciton ground state due to analytic {H'~) and nonanalytic exchange {&~~I).



EXCHANGE AND POLARON CORRECTIONS FOR EXCITONS IN. . . 1965

Q„=f(r) iL =0, 8=-', E= ', E,)—
+g(r) (I, =2, 8= , ,E=-', ,E,)-, (24)

an ansatz for the ground-state wave function in
configuration-spin space according to Baldereschi
and I ipari, 5 with

f(r) = 2c((2'~' exp(- (2r)

is expanded into products of electron-polaron
and hole-polaron wave functions. The resulting
effective Hamiltonian contains a constant self-
energy term and a phonon-induced electron-hole
potential consisting' of two parts: The first is
equal to Haken's potential, ' averaged over the
light- and heavy-hole band. The second is a
tensor force term proportional to (r' ' J' ').
Henormalized band parameters are inserted in
the kinetic-energy terms. The eigenvalue prob-
lem of this Hamiltonian was solved by expanding
the wave functions into eigenfunctions of total
angular momentum F =J +L, where L denotes the
orbital angular momentum. The radial parts were
expanded into Gaussian functions, just as Bald-
ereschi and Lipari did for determining the eigen-
states of their spherical model Hamiltonian. 2'

In method II, the trial wave function is

b, =exp( —i gbeb;i( ((Ie 4, ~0b, (bb)
a

where I0) is the phonon vacuum, R=S2r, +S&r„ the
center-of-mass coordinate of electron and hole,

three contributions

g —g +g +g

(29)

are obtained. Eo is the energy of an exciton de-
coupled from phonons, as in Ref. 25, the static
dielectric constant &0 being replaced by the optic
dielectric constant q . F-, is the polaron self-
energy and 8» is the mean value of the phonon-
induced electron-bole potential. F-, +F-» vanishes
when the exciton radius becomes much smaller
than the polaron radii. F.» is the mean value of
the phonon-induced electron-hole potential. F., and

@pg are lengthy rational functions of the polaron
radii. In E the only parameters left are the
mixing coefficients c&, c2, and the exponents n

and P. Minimization was performed by a standard
variational program for four parameters. The
exchange correction was performed perturbative-
ly with Q„and the operators H'" and H'" of E(l.
(19). Caution must be exercised in the numerical
variation for the following reason: a number of
higher-order commutators of the form

If&((l),[f(.((l') f(..((l")]] (3o)

had to be omitted in H„"' which are proportional
to powers of tf,

'- f, ~, l =1,2. To keep the in-
fluence of the commutato'rs small, the range of
variation of q, c2, n, P, should be restricted such
that

Z(r)= -' P'"rexp(-Pr) .
v3

The operator

(26)

[f ((l)e ~2'(' f2((lp '~&~ '2]b(t + h.c.
I(dgp

S&
—(m/r&)/M, S2 =m, /M, M =m, ™/rib (26)

(~) b[( +(~ (2) . ()(2))]
(27)

where the scalar functions f((q, Q„)p' &(+,-],
l = 1,2, depend on the parametrized function (((b„.

For the transformed Hamiltonian

a„'"=&o iU'e„v io)
Q

U=exp -i b&b&q ~ H
e

(28)

we refer to Ref. 6. To the variational expression

contains spin-dependent displacement amplitudes

f, (q), l =1,2, which are expanded into projection
operators:

f(((l) =f('((l 4*)p.(@+fi(& 0'.)&-(@

This value is the maximum value for the case of
shallow excitons where the neglect of the commu-
tators was found to be reasonable.

A critical remark is in place concerning the
simultaneous treatment of electron-phonon and

exchange interaction. The exciton wave vector
Q in Sec. H refers to the electronic part of the
exciton wave function only and is, therefore,
not a good quantum number of the eigenstates of
H„[El. ((20)] since the total exciton momentum
contains also the momenta of the virtually excited
phonons. Hence Q has to be interpreted as an

operator mean value. In an exact treatment of both
interactions one would expect a mutual influence
of electron-phonon and exchange interaction in the
exciton problem. %e believe, however, that this
effect does not become important in the relative
motion of the electron-hole pair.

IV. RESULTS AND DISCUSSION

In this section we present the numerical results
obtained for some representative III-V and II-VI
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compounds and for CuBr.

A. Input parameter

Table I contains the input parameters for the
calculation of the exciton binding energies of
Table III. Since the accuracy of these parameters
and the experiments from which they are obtained
differ strongly for the different compounds, these
input data require some comments. The most
reliable band parameters are those for GaAs, for
which we quote the parameter sets obtained from
magneto-optic data of excitons28 and from cyclo-
tron resonance. ~~ Both experiments yield polaron
data. Moreover, from these parameters a polar-
iton dispersion relation has been deduced which
is consistent with data from resonant Brillouin
scattering. The data quoted for GaSb originate
from interband magneto-optic experiments and
are interpreted as bare-mass parameters. For
ZnSe the first set of parameters is obtained by
using the model of method I and fitting the cal-
culated 2P-exciton states to the two-photon ab-
sorption data of Ref. 30. In a spherical model,
these correspond to the binding energies E(P~~2)
=4.18 meV, E(PS~2) =5.90 meV, and E(PS~2)
=4.97 mev. The second set of parameters for

ZnSe is taken from Ref. 31. In this reference,
doubts are expressed concerning the effective
rydberg derived in Ref. 30. For ZnTe we used
cyclotron resonance data, and for CdTe, theoret-
ical bare-mass parameters. The band paramet-
ers for CuBr were obtained from the two photon-
absorption data of excitonic P states' in the same
way as the corresponding parameter set for ZnSe.
The binding energies in the spherical. model are
E(P«2) = 14.74 meV, E(P,~2) = 19.34 meV, and
E(P,~,) = 16.84 meV. Since the two-photon ex-
periments of Ref. 32 yielded only the reduced
effective mass for method 1 (however, the masses
of both electron and hole are required), we used
in addition, the electron-to-hole mass ratio ob-
tained from electron-exciton collision experi-
ments. The conversion between bare and polaron
mass parameters was performed according to
to Ref. 24. To determine the exchange splitting
of the exciton ground state we calculated the con-
stant C of Eq. (16) and the momentum matrix ele-
ment P from band-edge wave functions obtained
with the pseudopotential method. Alternatively
P can be determined also from the electron ef-
fective mass values, which yield within 30% the
same values as the pseudopotential calculation.

TABLE I. Parameters for calculating exciton binding energies. Experimental mass parameters are polaron or bare
mass parameters indicated by the references. The renormalization is considered according to Ref. 24.

GaAs 1.519 ' 36.2

Gasb O.S1'
InP 1.42 f

ZnSe 2.82 ~

2e.s"
43.3'
30.5"

Zn Te 2.25 '
CdTe 1.49 ~

CuBr 3.07

25.4'
20.83"
20.0

E~(eV) Su~z(meV) m,*/m

15.69 b

12.30
8.66 ~

14.44 0.0405
9.56 0.0803
5.90" 0.16 ~

9.6V '

10.23
V.28 ' O.11'
7.21 0.101
5.4 0.21

12.87 10.9 0.0665 6.85
6.84

13.12
4.95
3.00
4.3'
4.o "
4.23
0.84

2.10
2+11
4.34
1.65
0 53"
O.59'
1.15"
1.52
0.207

2.90
2.74
5.62
235
0.92
1.34'
1.29'
1.98
0'49

m./m

0.0657

0.0403
0.0788
0.149

0.104
0.096
0 20mgn

7.12
7.11

13.3'
5.40
3.45
4.8
4.484
5.29
1.1

2.19
2.19
44~
1.80
0.64
0.67
1.307
1.se '
0.26

3,02
2.84
57
2.56
1.09
1.53
1.464
2.46'
0.62

Reference 26.
E. Kartheuser, in Polarons in Ionic Crystals and Polar Semiconductors, edited by J, T. Devreese (North-Holland,

Amsterdam, 1972), p. 717 and references therein.' Reference 27,
Reference 29.

'D. Bimberg and W. Ruble, in Proceedings of the 12M International Conference on the Physics of Semiconductors,
Stuttgart, 1974, edited by M. H. Pilkuhn (Teubner, Stuttgart, 1974), p. 561.

S. B.Nam, D. C. Reynolds, C. W. Litton, T. C, Collins. , P. J. Dean, and B.C. Clarke, Phys. Rev. B 13, 1643
{19V6).

~Reference 31,
"Reference 3O.

M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev. 154, 696 (1967).
H. Venghaus, P. J.Dean, P. E. Simmonds, and J. C. Pfister, Z. Phys. B30, 125 (1978).

"R. A. Stradling, Solid State Commun. 6, 665 (1968).
R. Lawaetz, Phys. Rev. B 4, 3460 (1971).
Reference 32.' B. Honerlage, C. Klingshirn, and J. B.Grun, Phys. Status Solidi 8 78, 599 (1976).
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56.3
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30.8
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14.3
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8.8
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15.9
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TABLE ID. Binding energies of excitons (in meV) calculated from the parameters of Table
I. For method I and II see text. For 1$3/2 and 283/2 the energy refers to the transverse ex-
citon. &LT (in meV) is the correction due to the nonanalytic exchange interaction (longitudi-
nal-transverse splitting).

Method I
1 g/2

Method II
1~3/2 LT 2 3/2 2+2/2 2+6/2 2+3/2

Gasb
InP
ZnSe

ZnTe
CdTe
CuBe

4.09
4.08
1.58
5.81

27.05
23.74
13.54
12.10
74.71

0.09
0.09
0.02
0.29
2.9
2.0
0.75
0.9

10.5

3.94
3.92
1.56
5.41

22.62
20.12
12.01
10.23
69.1

0.08
0.08
0.02
0.23
2.0
1.4
0.5
0.6
9.3

1.02
1.02
0.40
1.43
5.72
5.08
3.12
2.74

19.89

0.75
0.76
0.29
1.04
4.18
3.56
2.32
1.81

14.78

0.95
0.95
0.38
1.31
4.93
4.35
2.79
2,36

16.79

1.18
1.17
0.48
1.64
5.92
5.36
3.38
3.07

19.33

m, 4

elf= 2S

I'
off 2 O~i &

me

f m
Yi

me

and the polaron radii

I2 Z/2
Ps = S=e, lh, hh,

2msN

where the masses for light (Ih) and heavy holes
(/gh) are

TABLE IV. Exciton binding energies (in meV) for ~
p

approximation (using renormalized band parameters and
a Coulomb potential screened with &p) and & approxima-
tion (using bare-mass parameters and a Coulomb poten-
tial screened by &„). The 1'/2 energies correspond to
the transverse exciton, states. For GaAs and ZnSe the
first set of parameters of Table I was used.

183/g 283/2 2P) /2 2P~/2 2' /2

ZnSe

CuBr

E'
p

~p

5.41
3.95

39.6
20.1
78.2
67.5

1.38
1.01
9.97
5.05

19.63
16.89

1.03
0.76
8.1
4.19

16.46
14.62

1.30
0.95
9.6
4.88

19.0
16.45

1.62
1.18

11.3
5.70

22.0
18.65

m m
tlzlp

( )
and mh/ ( )

'

The numerical values of Table II demonstrate
-that the sum of electron and hole polaron radii
is definitely smaller than the Bohr radius a,~
for III-V compounds and for excited states of the
II-VI compounds. This justifies the application of
the polaron concept (method I). For the exciton
ground states of II-VI compounds and of CuBr,
the sum of the polaron radii is larger than the ex-
citon radius which favors the application of meth-
od II.

C. Discussion

The data of Tables III and IV and of Pig. 2 will
be used to discuss the influence of the electron-
phonon interaction on the exciton binding ener-
gies. A comparison with experimental results
is made only for some of the compounds.

For GaAs the experimental value of E(1S,/, )
-E(28~/, ) =3.15 +0.15 meV (Ref. 34) is repro-
duced most appropriately by the unperturbed
polaron model (method I). The electron-phonon
coupling, in general, increases the binding
energy of the 1S excitons significantly compared to
the a, approximation (compare Tables III and IV).
It causes a remarkable Lamb shift, lifting the de-
generacy of the 2S and 2P states (see Fig. 2 for
p„=0). Accurate experimental data for this shift
are not available yet, and a simultaneous evalua-
tion of the existing S and I' exciton series data has
not been performed. In Ref. 3 an experimental
value of 13+ 0.3 meV is reported for the 1S3/2-
2S3/2 separation of excitons in ZnSe. This split-
ting cannot be reproduced with either of the param-
eter sets discussed so far. Even the parameters
of Venghaus et al."yield too large a separation,
since the model from which the parameters were
extracted does not include a phonon-induced elec-
tron-hole potential. Thus a consistent evaluation
of exciton data is still missing for ZnSe, which is
mainly due to the uncertainty of the experimental
value for the effective rydberg. For CuBr the
parameter set producing the proper energies of
the 2P states does not provide the correct bind-
ing energy of 110 meV (Ref. 35) for the 18,/,
state. Since, however, the experimental binding
energy of 20 meV (Ref. 35) is reproduced quite
well for the 2S,/, . state, the most likely defi-
ciency of our calculation is a breakdown of the
continuum approximation. The 1S,/, exciton
radius of 5.86 A becomes comparable to the lat-
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tice constant for CuBr. In Befs. 30 and 32 the g,
approximation was applied to deduce the following
parameters: for ZnSe (Ref. 30) y~~=3.23, yf
=0.59, and y,*=1.01, with m,*=0.17m„and zo
=8.66; for CuBr (Ref. 32): y,*=5.84, y,*=0.2, and

y,*=0.56, with m,*=0.20, and p, =6.0. We in-
cluded in the fit the electron-phonon interaction
by method I and obtained parameters which are
consistent with these (see Table I). It is evident,
however, from Table III and IV and Fig. 2 that
the influence of the electron-phonon interaction
on the energies is not negligible. A more accurate
fitting of the parameters is not reasonable since
the k linear terms have been neglected. This only
slightly influences 8 states, but for I' states it
may become more important with increasing
ionicity of the compounds.

Finally, we want to emphasize the overall good
agreement of the calculated longitudinal-trans-
verse splitting d z, T (Table III) with more recent
experimental data: GaAs, 0.08 meV (Refs. 36,
37), InP, 0.1 meV (Ref. 37) and 0.2 meV (Ref.
38), ZnSe, 1.5 meV (Ref. 39), ZnTe, 1.1 meV
(Ref. 40), CdTe, 0.4 meV (Ref. 36), and CuBr,
12.2 meV (Ref. 41).

In conclusion, we have calculated excitonic
binding energies for semiconductors including
exchange, electron-phonon interaction, and va-
lence-band degeneracy. All the terms modify
significantly the hydrogenic exciton model and

have to be considered if band parameters are
determined from exciton data. Concerning the
phonon Lamb shift, experiments determining both
8 and I' states of the same crystal with compar-
able accuracy would be. desirable. For deep ex-
citon states, as the exciton ground state in CuBr,
the continuum approximation is insufficient and
central cell corrections must be considered.

glv&=Q lv»i". '(g)

gl&&=Z I&»I."(g), ger, .
C

A change to the basis (g-'l c), g-'
l v)), g ~ T„and

simultaneous change of the wave vector from q
tog 'Q must leave the Hamiltonian invariant,
which, accordingly, has to satisfy the invariance
condition

D"-'(g) D'"'( g) II-'*- (g '@D"'(g ')D'"'(g ') =H'* (4
For the zinc-blende-structure compounds we can
choose the irreducible representation matrices
of 0(3):

~(c) ~+

L""'=&i D~(2 ~ (Al)

which allows a change to a basis of total spin
& = I+ 2o, + & v„by Clebsch-Gordon coupling. Note
that for this, one has to choose hole states(T lv))
in the construction of H'"; otherwise D'"' has to be
replaced by D'"'* and the angular-momentum cal-
culus cannot be applied. Due to the choice (A1)
of the representation matrices, the effective-
mass Hamiltonian for the exchange operators
can be expanded into polynomials in Q„I~,c'„,v"„
ijkf c(1,2, 3), which transform according to I', .
In Eq. (18) the most important of these poly-
nomials are retained.

APPENDIX

The basis sets(lc), lv.)j. which are used for the
representation of the exchange Hamiltonian, can
be chosen so as to transform according to irredu-
cible representations D'" and D'"'.
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