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Single-particle energy levels in doped semiconductors at densities below the metal-nonmetal
transition
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The single-particle density of states is calculated for a random distribution of shallow donors in semiconductors at
densities below the Mott density. The donors are described within the effective-mass approximation. Calculations of
the energy bands to add an electron (D band) and to remove an electr'on (D+ band) are presented in three parts: (i)
At low densities, where the broadening of the D+ and D levels arises primarily from donor pairs which are closer
together than the average, we have employed the donor-pair approximation to calculate the energy bands. This leads

only to a small broadening in single-valley semiconductors but in a many-valley semiconductor a D, complex can
have an electron affinity as large as 0.4 Ry. (ii) Next, the band edges are presented for a simple cubic lattice of
donors, which would be relevant in estimating mean band positions, mobility edge, etc., in the disordered case in the

intermediate doping region. The D band is calculated using a potential derived by the method of polarized orbitals.
The energy gap does not shrink appreciably until a factor of 4 below the Mott density. The energy gap is found to go
to zero at a density very close to the Mott criterion (n~"a~ = 0.25) for single-valley semiconductors and at a lower

density in many-valley semiconductors. (iii) Finally, to estimate the localized tail states in the many-valley case, the

energies of small dense donor clusters are calculated using a local-density approximation. Because many electrons
can be placed in the bonding. orbitals of these clusters without violating the Pauli principle, they are found to have

very large electron affinities. We find that clusters of four donors or more can attract an electron from an isolated
donor. As a result there is no Mott-Hubbard gap due to correlation in many-valley semiconductors and their
insulating property is due to Anderson localization. The very large fluctuations in the one-electron potential imply
an Anderson transition to the metallic state.

I. INTRODUCTION

In a semiconductor lightly doped with shallow
donors, the donors are essentially isolated and
the system is simply a collection of noninteracting
impurities with localized states below the conduc-
tion band that are described by an effective-mass
theory. As the donor concentration (n~) is increased,
the average separation between donors decreases,
and interactions among donors begin to play a.

role. One of the major effects of donor interac-
tions is to delocalize the isolated donor wave func-
tion until finally, at large enough donor concen-
trati, ons (n =n»)i, one undergoes a transition to a
metallic state with a half-filled band of itinerant
electrons. This transition has been the sub-
ject of considerable interest in recent years. ' '
'The subject of this paper is the behavior of the
single-particle energy levels through this transi-
tion.

While the solution of the exact problem in
doped semiconductors, with all the complications
of many valleys, central-cell effects, disorder
and electron correlation is extremely difficult,
we can hope to make our approach reasonably
realistic. For example, though we treat the
donors within the effective-mass approximation
with an isotropic mass tensor (so that central-cell
and anisotropy effects are left out except for a
qualitative discussion at the end}, we do not make
radical simplifying assumptions as are made, for

example, in the Hubbard model with only on-site
Coulomb interactions. 4

We determine an average position of the one-
electron energy bands by considering the problem
for a lattice of donors at the same density. We
choose a low-coordination lattice (simple cubic,
z = 6) which is believed to be appropriate for lower
density systems. ' We use a potential for the neu-
tral donor based on the method of polarized orbi-
tals. This method gives a good description of
low-energy phase shifts for electron-donor scat-
tering and enables us to calculate the position and
width of the energy bands accurately at low densi-
ties and approximately for densities nD=n«. In
this latter region Rose, Shore, and Sander' have
recently reported calculations of the single-parti-
cle energy bands of a ferromagnetic donor lattice
using a local density functional treatment of cor-
relation and exchange. 'The agreement between
these two different methods is only fair. At

lower densities, the density functional method

breaks down. ' An important point of this paper is
a discussion of the role of the extra degeneracy in
Si or Ge due to the many electron valleys, i.e. ,
equivalent conduction-band minima, and the dif-
ferences between single- and many-valley semi-
conductors, which we shall cover at length later
on.

It must be recognized, however, that a lattice
model provides reasonable results only for a limi-
ted number of quantities —the mobility edge, an
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effective average band gap (though the true band

gap, as we shall see, may be zero for these
systems), and perhaps a clualitative form for the
dielectric enhancement as the effective band gap
closes. On the other hand, the true system con-
sists of randomly distributed donors, with density
fluctuations and statistically occurring dense do-
nor clusters. The effects of these clusters are
apparent in a number of experimentally accessible
properties such as optical absorption' "and mag-
netic susceptibility. ""In fitting the absorption
data at densities below 2 x 10" cm ' (-0.05 n„z) in

Si:P, it was shown" that randomly occurring do-
nor pairs are the dominant effect on the isolated
donor spectrum. At higher densities, calculations
based on statistical cluster distributions fit the
absorption data, including the tail, remarkably
well. ' " Similarly, the susceptibility data in
Si:P at donor concentrations below 10"cm '
(-0.25 n„,) shows no spin ordering down to 5 mK

(Ref. 12) (-10 ' Ry) when the coupling for an aver
age lattice is =1 K, and clearly demonstrates the
importance of randomness. In fact, the data are
in good agreement with calculations of susceptibil-
ities of spin clusters given by the random distri-
bution. ""Even at densities approaching g„~,
cluster effects can have a very important effect on
the single-particle density of states (i.e. , the
density of states to add or remove an electron),
particularly for donors in many-valley semicon-
ductors such as Si or Ge. Our calculations show

that in these cases, because of the multiplicity of
valleys (which leads to not just 2, but 12 ls states
in Si and 8 in Ge), dense random clusters of
as few as four closely spaced donors can pull

electrons off isolated donors. 'Thus there is no

gap in the single-particle density of states, a
statement which is equivalent to saying that doped
many-valley semiconductors are never, in the
strict sense, Mott insulators. "

We have divided our calculations into three
natural sections. First, in Sec. II we discuss low

densities where the pair approximation applies.
For a single-valley semiconductor there is a
complete analogy between the electron states in a
pair of donors and in a pair of hydrogen atoms.
We make use of the detailed calculations of the
latter to obtain the single-particle density of
states. In many-valley semiconductors the addi-
tional degeneracy introduced by the possibility of
distributing the electrons among different valleys
reduces the energy of a complex with three or
more electrons and modifies considerably the en-
ergy of a D, complex (3 electrons on 2 nearby do-
nors). We report calculations showing a large af-
finity for the D, complex in the limit of zero sep-
aration.

8'e ~emark here Nat throughout the pcrper see
have used the donor Bohr radius as the unit of
Length and the rydberg as the unit of energy. Be-
cause of the latter choice, i e ., .of the rydberg in-
stead of the hartree, motivated by the greater use
of the former, many of our formulas differ from
the form usually seen, by the Presence of an addi-
tional factor of 2.

In Sec. III we consider the average energy bands
to add an electron (D band) and to remove an
electron (D' band) by considering a lattice array
of donors. These band edges are calculated using
a modification of the Wigner-Seitz method. First,
for the D band, the potential for an electron scat-
tering off a neutral donor is presented following
the application of the method of polarized orbitals
by Temkin and Lamkin" to the scattering of elec-
trons from hydrogen atoms. This potential, which
allows for the polarization of the 1s electron is
--9/2r4 as the separation r-~ and is - -2/r asr- 0. The band edge is calculated by solving for
the lowest eigenvalue of this potential with the
boundary condition of a flat wave function at the
Wigner-Seitz sphere. The neighboring donors are
assumed to be on a simple cubic lattice and their
effect is also included through their polarization
potentials. This is appropriate for the propaga-
tion of a down-spin electron in a ferromagnetic
arrangement of up spins. It is also appropriate
for an extra electron in a many-valley semicon-
ductor with a large number of valleys since in
this case the probability that the extra electron
will encounter an electron with the same quantum
numbers is very small. However, a lattice of
donors in a single-valley semiconductor will have
a ground state with an antiferromagnetic arrange-
ment of spins. In this case there is a band nar-
rowing due to spin-flip scattering which has been
estimated in tight-binding theory" to be =25@.
In the present case there is additional ~2(P/g band
narrowing due to the fact that propagation re-
quires the interchange of the loosely bound elec-
tron with a tightly bound 1s electron.

The D' band is calculated in a similar way with
the difference that the electron sees a bare po-
tential on the central atom. 'The top of the D' band
is determined by the boundary condition of a node
in the wave function at the Wigner-Seitz radius.

he polarization correction raises the D' band
since it reduces the energy of the final state after
the electron is removed and a net positive charge
remains on the ionized donor. The polarization
forces and the broadening of the D' and D bands
lead to a collapse of the energy gap at a density
close to the Mott value in single-valley semicon-
ductors but lower for many valleys. This is in
qualitative agreement with experiments"" on
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Ge doped with Sb in which the number of valleys is
changed by the application of uniaxial stress,
though the difference in density is larger in the
experiments than in our calculations. At higher
densities, a description in terms of a metallic
phase is more appropriate. The single-particle
density of states in the metallic approximation is
compared with the description in terms of a D'
and D band.

The random positions of the donors cause large
fluctuations in the local concentration and clusters
with several donors close together. The electron-
ic structure of such clusters is considered in Sec.
IV. In the case of single-valley semiconductors,
it can be qualitatively predicted from the electron
affinity and ionization energy of atoms. 'The elec-
tron affinity never gets very large but the ioniza-
tion energy of clusters of three close donors,
which resemble an Li atom, is much reduced.
Golka and co-workers" have calculated the elec-
tron affinity and ionization energy of clusters of
three donors in a single-valley semiconductor and
confirmed that the electron affinity remains small
but the ionization energy is much reduced in mag-
nitude when the donors are close. An energy gap
remains, however, between the D and D' bands at
low density. For a many-valley semiconductor
such as Ge or Si, the energy levels of small clus-
ters are greatly modified because of the freedom
to place many electrons in bonding orbitals by dis-
tributing them among different valleys. We have
made a series of calculations using the local den-
sity formalism to obtain the electron affinity and
ionization of small clusters. The valley degener-
acy enters through the exchange and correlation
functional that is used and, more importantly,
through the freedom to put all the electrons (up
to a maximum of 8 in Ge and 12 in Si) in the low-
est eigenstate of the cluster. (The overlap and

scattering between electrons in different valleys
is ignored. ) Both the electron affinity and ioniza-
tion energy increase in these clusters with large
numbers of donors. We find that for clusters with
more than three donors the electron affinity can
actually be greater than 1 Hy, the binding energy of
an isolated donor. This means that such clusters
will be able to take up an electron from an isola-
ted donor. As a result there will be no gap in the
single-particle density of states. The effect of
correlation is to reduce the density of states to a
very small value at low densities but not a.ctually
to zero. The absence of conductivity other than by
hopping is then to be attributed to Anderson local-
ization of the single-particle states at the Fermi
level rather than to an energy gap due to correla, -
tion. Estimates are presented of the amount of
charge transfer and the density of states at the

Fermi level. Finally in Sec. 7 some concluding
remarks are made regarding the comparison of
our calculations with experiment and their impli-
cation for the insulator-metal transition.

II. PAIR APPROXIMATION

At very low densities there will be a small num-
ber of donor pairs which are much closer together
than the average. The number of close triples
will be much smaller again. This can be seen by
examining the nearest-neighbor distribution func-
tion

P „„(R) = 4vnDR' exp(-4vnDR'/5) . (2.1)

This is the probability density of finding a nearest
neighbor between R and R+ dR for an uncorrelated
distribution of donors of concentration nD. 'The

distribution of next nearest neighbors is given by

P (R) = ~ w'nDR' exp(-4mnDR'/3) . (2.2)

Since the electronic interactions between donors
are short ranged, typically 45a~, pairs of nearest
neighbors will be the dominant cluster for nD
~ 5x 10 'a~', which is approximately a concentra-
tion thirty times smaller than the Mott concentra-
tion ( —,',a~').

We consider first the case of single-valley semi-
conductors, ignoring central-cell corrections. In
this case, we may simply scale the known energy
levels of two hydrogen atoms. " 'The energy to add
an electron to a pair of donors, of separation R,
may be obtained by subtracting the energy of the
initial state [D,(R)] from the energy of the final
state [D,(R)j. For large values of R the D, com-
plex will look like separate D and D centers and
there will be an attractive polarization potential
-R '. This is larger than the polarization poten-
tial between two neutral D centers which at large
R goes like R '. As a result, the electron binding
energy is increased at large R. However, at
small R in the corresponding hydrogenic system
there is an exchange repulsion between the elec-
trons since two are in the same spin state and one
electron is forced into an antibonding wave func-
tion. 'The binding energy has a shallow maximum
(-0.06 Ry) at R = 6 as and drops quickly, passing
through zero at R = 3.5 a~." Fitting to a Morse
form we obtain

(2.4)

(R)= —Q.Q555+ Q.01(e &"-') 2e "&" ')) (2.5)

(In the above equation the energy is measured in
rydbergs and the length in Bohr radii. ) The densi-
ty of states in the pair approximation is obtained
by convoluting with the pair distribution function
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The result is shown in Fig. 1 at a density of n~
= 0.002 (-8 the Mott density). The shift in energy
from an isolated D is very small.

However, in many-valley semiconductors such
as Si or Ge there is another degree of freedom,
namely that the electrons can be distributed
among different valleys, thereby removing the ex-
change repulsion. Clearly this will have a drastic
effect. If R ~ a~ then the complexes are like
atoms, but now the periodic table is changed-
since the first closed shell does not occur in Si
until there are 12 electrons (8 for Ge). The elec-
tron affinity will clearly increase across a row in
this new periodic table and will be largest for the
last "element" before the closed shell —in Si that
will be D, , Thus our conclusion is that the bind-
ing energy of a D, complex is a monotonically de-
creasing function of R. In Sec. IV we report cal-
culations using a local density functional method
for a variety of very small clusters in which all
the positive charge is located at a point. In the
case of D, at zero separation, i.e. , 3 electrons
bound to a charge of +2~ s~ at the origin, we find
a binding energy for the last electron =0.4 By.
This is a large binding energy, roughly 8 times
larger than D . While we are unable to make a
pair calculation in the absence of a complete
curve for the R dependence of the binding energy,
it is clear that the D, is considerably more stable
in a many-valley semiconductor.

'Turning to the lower Hubbard band, we need the
energy to remove an electron from a D, complex,
leaving behind a D;. Since only 2 electrons are
involved, valley degeneracy does not play a role.
The energies of the analogous hydrogenic states
H, and H; are known accurately. " Again at large
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R the D; state has the larger binding energy be-
cause of the stronger polarization force. At small
R the D, is more stable. Therefore, the ioniza-
tion energy of the D, complex initially decreases in
magnitude as R decreases, passes through a min-
imum value (=0.957 Ry) at R = 3.7as, and then in-
creases passing 1 By atR=2.5a~. As R-O, the
complex is a He atom with an ionization energy of
1.81 By. We have parameterized the energy of the

D,(R) and D;(R) complexes by a Morse form

(A(exp[-28(R —C)] -2exp[-B(R -C)]])
using the values listed in Table I. The energy dif-
ference is then convoluted with the pair distribu-
tion function to obtain the single-particle density
of states. 'The results for a series of concentra-
tions are shown in Fig. 1. 'There are two singu-
larities in the density of states at -1 By corres-
ponding toR- and at -0.957 By which is a
square root divergence arising from the mini-
mum in the ionization energy at R = 3.7a~. The
relative weight of the two singularities depends
on the concentration (see Fig. 1) and as the aver-
age nearest-neighbor separation drops, the weight
at the upper edge of the D' band increases. (We
note that there will be a smearing of the square
root divergence in the actual system due to the
presence of other neighboring donors, but this
will be small at low concentrations. )

The energy in a many-valley semiconductor does
not change so long as we ignore the valley-orbit
coupling, since there are no more than two elec-
trons involved in these states. In the presence of
valley-orbit coupling, the bounds on the hole band
remain the same but the weight at the band edge is
much reduced. The ground state of the electron on
each donor is a particular combination of the val-
leys (usually the symmetric combination relative
to the donor site) and the overlap of the ground
state on two neighboring donors is multiplied by a
factor which is a rapidly oscillating function of the
donor separation [~Z„„,cos(K„~ R)]. As a result,
the average overlap is much reduced and so is the
broadening of the D' band.

In the pair approximation, the lower edge of the
D band and the upper edge of the D' band do not
overlap and the energy gap due to correlation, al-
though reduced in magnitude, remains finite.

- I.O -0.98 -0.96 -0.94 -0.06 -0,04 -0.02 0.0
E (RYDBERGS)

FIG. 1. The single-particle density of states to add an
electron D and remove an electron D' at different con-
centrations (expressed in units of a ~) at low densities
where the broadening arises from donor pairs much
closer than the average. The results are for single-
valley semiconductors and the modifications in many-
valley semiconductors are discussed in the text.

Q (R)

Dt+(R)

A (By)

0.348 96

0.205 44

a (a~')

1.044 35

0.71g 35

C (ag)

1.400 83

2.003 13

TABLE I. Morse parameters for the energy of the
Q(R) and Dt'(R) (including internuclear repulsion)
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HI. SINGLE-PARTICLE DENSITY OF STM'ES
FOR A CRYSTALLINE ARRAY

Before considering lax'ger clusters it is inter-
esting to examine a crystalline array of donors-
we shall investigate a simple cubic lattice with
varying lattice parameter A. In the large-A limit
there is an energy gap, due to on-site correlation,
between the D' and D bands while, at small R, the
system is simply metallic. For the lattex case,
we can use the Wigner-Seitz approximation to
describe the single-particle bands.

At large A an extra electron scatters off essen-
tially isolated donors. 'The corresponding pro-
blem in atomic physics is the scattering of an
electron off a neutral hydrogen atom. The method
of polar ized ox'bits developed by Temkln and
Lamkj. n' which allows for the virtual excitation of
the Is electron on the hydrogen atom into a p
state, gives a good description of the low-energy
pha, se shifts of this problem. We will adapt this
method to calculate the single-particle enexgy
band.

In this IQethod the wave function ls written in
the product form which, for the present, we do
not symmetrize:

by the inner electron. As r-0 however, the
screening is ineffective and the potential is a bare
Coulomb potential. 'The defect of this potentia. l is
that lt omits the polarization of the inner electron
by the outer electron and as a result the outer
electron is not bound in this approximation.

'The inner electron sees a. perturbing potential
from the outex electron of the form

{3.7)

which for z»x' can be expanded to give

2fV(r', r)=, cos8, r&~' (3.8)

2 2 2g
V-, —-1 P'(r, r') =, cosa/„(r') . (3.9)

in the dipole approximation where 9 is the angle
between r and r'. Following 'Zemkin and Lamkin"
we solve for the change in enex'gy of inner electron
in second-order perturbation theory, ignoring a,ll
higher multipole terms in the expansion of Eq.
(3.S). The calculation of the change in energy can
be elegantly made by solving for the first-order
change in the wave function Q':

4'{r,r') = [Q„(x')+Q'(r, r')] E(r).. (3.1) Substituting

The coordinate r' denotes the position of the
tightly bound electron and r the position of the
scattering electron. The appropriate boundary
conditions will be applied to E. The P' term rep-
resents the change of the inner-electron wave
function in the presence of the outer electron. If
one ignores that change and sets Q'=0, then the
variational principle on E

gives a radial equation of the form

The solution of (3.11) is

(3.10)

(3.11)

(3.12)

where the Hamiltonian is

(3.2) The change in energy to second order is obtained
by integrating P' with the perturbing potential and
the unperturbed wave function, leading to

(3.3)

gives a Schrodinger equation for E
[-Vp+ U, (r) -E]F(v)= 0 (3 &)

2 2
U (r) = d'~'Q' (r') Ix'-r't

2—+ 2 exp 2'v

(3.5)

(3.6)

'The energy unit is the rydberg and the length unit
the Bohr radius and Q„(x)=m '~'exp(-r). The
effective potential is the Hartree potential of the
neutral donor. At large distances it falls off ex-
ponentially due to the screening of the ionic charge

2
2r' Ix cos'8 — e "
~2 ~1/2 (3.13)

=—,[-,' —e '"(-,'+ 9r+ &v'+ Sr'+ 3r'+ 3r')] . —

(3.14)

The total potential U(—=U, + U, ) has the desired
form; at large x it correctly describes the polari-
zation-induced interaction between the outer elec-
tron and neutral donor, and at small r it has the
form of a bare Coulomb potential with the ionic
charge. The derivation given above could be mod-
ified to include the effects of an additional short-
range central-cell potential or the change of the
inner-electron wave function from a 1s form as
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the lattice constant R decreases, but we shall re-
strict ourselves to using the forms (3.6) and

(3.14) at all densities.
First we consider the large-R limit. In this

case we can impose the boundary condition the
E(r)-0 at r-~. Using the form (3.1) without
symmetrizing the wave function, we have made a
variational calculation using a trial wave function
of the form

E(&) e- a + (&-(1-v/2& &-(&+a/2)r)
y

(3.15)

The second term is exact for a Hulthen potential
and gives accurate results for a Coulomb potential
with Thomas-Fermi screening. " We find a bound
state with a minimum energy of -0.015 Ry with
the parameters a = 0.34, b = 7.3, and p, = 1.78.
However, in an isolated D the two electrons are
in a spin singlet state and one must use a sym-
metrized wave function. In this case there are
substantial exchange contributions to the energy.
Using the value that Temkin and, I.amkin" found
for the low-energy scattering' amplitude (5.7as ),
we can estimate from an effective-range expan-
sion" the va, lue of the bound-state energy of the
symmetrized wave function as -0.046 Ry. This
value is much closer to the exact value" (-0.0555
Ry) and shows that this method gives a reasonably
accurate description of the bound state.

Qur interest lies in the location and bandwidth

of an extra electron propag'ating in a, lattice of
neutral donors. In this case, the extra electron
does not correlate with each individual inner elec-
tron. 'The bandwidth depends on the spin arrange-
ment of electrons on the neutral donors. This
problem was investigated some years ago in the
atomic limit of the Hubbard model by Brinkman
and Rice." They found that if the donors are fer-
romagnetically aligned there is no reduction in
bandwidth and the extra electron propagates freely
in the lattice of donors, but if the donor spins are
randomly or antiferromagnetically aligned the
extra electron can propagate only by reordering
the spin arrangement and the bandwidth is reduced
to =75% of the value for the ferromagnetic case
due to spin scattering.

We start by calculating the bandwidth for the
case of ferromagnetic spin alignment. We replace
the cubic Wigner-Seitz cell by a sphere of the
same volume, an approximation which seems jus-
tified in view of the randomness in the actual sys-
tem we are interested in. The top and bottom of
the band are determined by imposing the boundary
condition E= 0 and BE/Br= 0 at the Wigner-Seitz
radius R~s[=(3/4w)~'R] of a simple cubic lattice. The
potential U(r) is taken at the central site and also
summed over all other lattice sites. The eigen-

E(r)=1+ o.'e '"+Pre '". (3.16)

With this form we calculate the bottom of the band
by solving the Schrodinger equation with the
boundary condition,

I
BE/Br

~,
,=&w~ ~= 0, using the po-

tential U(r) on the central site and on all the other
sites as well. 'The results are shown in Fig. 3.
'The bottom of the band drops dramatically around
R = 4 from a combination Of the polarizability of
the surrounding donors and the band broadening.
This result is appropriate for a single-valley
semiconductor only if the donor spins are ferro-
magnetically aligned. It applies also to the many-
valley semiconductor essentially independent of
the alignment of spin and valley indices. This is
because, with the large degeneracy, the extra
electron rarely sees an exchange repulsion on a
donor site and as a result it can propagate essen-
tially freely through the lattice. Therefore, the
simple band calculation applies to many-valley
semiconductors such as Si or Ge and we will ig-
nore the correction from exchange repulsion.

0.0

V)
CQ
IX
UJ
o3 -O.oaCi

K
LIJ

—0.06
l2

I I I I I I

l6
R (BOHR RADII)

20

FIG. 2. The maximum and minimum of the D band for
a simple cubic (sc) 1attice g.attice parameter 8)of donors
in a many-valley, semiconductor at low densities showing
the merging of the D band with the continum. The arrow
illustrates the binding energy of an isolated bound state
using a tease function svtuch is not symmetrised (see
text).

values are determined variationally using a wave
function of a constant added to the functional form
of Eq. (3.15). The results for large values of R
are shown in Fig. 2. 'The band broadens as R in-
creases and the top of the band merges with the
continuum at a value of R = 15. This value corres-
ponds to a density approximately P of the Mott
density. At this density there will remain a gap
at the Brillouin zone due the donor potential but it
is unlikely that there is a true energy gap at posi-
tive energies in the density of states for R & lb.

The bottom of the band starts to drop once we
reach values of R & 10. As R decreases further,
the wave function at the bottom of the band be-
comes flatter and we switch for R &10 to the vari-
ational form
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FIG. 4. The spin configurations that occur when an ex-
tra electron propagates in the D band of a single-valley
semiconductor with an antiferromagnetic array of spins.
Note that at each step it is a different electron which
moves.

IO

I I

6
R (BOHR RADII)

FIG. 3. The maximum and minimumenergies of theD'
band and the minimum energy of D band (solid lines) in
single-valley (S-V) and many-valley (M-V) semiconductors
for an sc lattice {lattice parameter R) of donors. At high
densities the results of Wigner-Seitz calculations are
shown for the bottom of band (chain lines) and the Fermi
energy (dashed lines) assuming a metallic state. The
upper scale is the average interdonor separation ~, or
equivalent to the radius of the Wigner-Seitz sphere, R,.

(3.17)

where the prime denotes that the central site is
omitted in the sum over all lattice sites. There
is an additional narrowing factor which arises
from the need to interchange an inner and an outer
electron in the hopping process. This is illustra-
ted in Fig. 4, which shows how an extra electron
propagates along a line of spins with an antiferro-
magnetic spin arrangement. Each time it is the
inner electron which hops. As a result, the hop-
ping matrix element is reduced by a factor S which

In a single-valley semiconductor, however, the
ground state will have an antiferromagnetic spin
arrangement and this will affect the propagation of
an extra electron in two ways. First, there is the
reduction due to spin scattering that we mentioned
earlier. This reduction has been estimated in the
atomic limit of the Hubbard model by Brinkman
and Rice " They showed that the band narrows
for this case by a factor =0.75 for a simple cubic
lattice. We shall include this effect by calculating
the bandwidth for a ferromagnetic spin arrange-
ment by taking the center of the D band as

is the overlap of the inner and outer electrons.
This factor varies from a value of S=0.68 at R
= 10, to a value S= 0.86 at R = 4. When this reduc-
tion of bandwidth of a factor of S is made as well
as the reduction of 0.75 discussed earlier, the re-
sulting band is shown in Fig. 3. In the single-
valley case, the bottom of the band is -0.1 By
above the many-valley case, but it too drops dra-
matically at R -4.

We turn now to the D' band. In this case, an
electron is removed. 'The energy is calculated in
two parts. First the bandwidth is calculated by
solving the Schrodinger equation with appropriate
boundary conditions for the top and bottom of the
band and with an unscreened Coulomb potential on
the central site and a potential U(r) of neutral do-
nors on all other sites. The bandwidth is then re-
duced by the factor of 0.75 due to the spin order-
ing in the case of a single-valley semiconductor.
For the many-valley case, the same reduction
applies. In the case of a hole in an occupied band

the propagation of the hole requires a reordering
of the arrangement of spin and valley indices in
the ground states. As a result, only paths where
the hole retraces itself are allowed in the path-
counting method used by Brinkman and Rice."
There is, of course, no other reduction due to
overlap for the holes. 'The polarization correc-
tion in this case will raise the hole or D' band in
energy since it is the net positive charge of the
hole which polarizes the lattice of neutral donors
and reduces the energy to form a hole. We there-
fore calculate the shift in the center of the hole
band as an upward shift equal in magnitude to Eq.
(3.17) and then place the top and bottom of the D'
band by using the reduced bandwidth. The results
are shown in Fig. 3.
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1.2 &s (3.18)

where x, is the interparticle spacing in units of
ss ('Y~=Rwa) and c„ the exchange and correlation

We see that again the rapid movement of the
band around B=4. The D' and D band cross at
8 = 4.25 fo1 many valleys RDd 8 = 4.05 fox' R slngle-
valley semiconductor. These values are close to
the Mott value (8 = 4) and represent a shift at low-
er density of approximately a factor 0.86. In ex-
periments on Sb-doped Ge, Cuevas and
Fr1tsche"" found a reduct1on factor of =0.5 1n
the Mott density in unstressed Ge (4 valleys)
compared to uniaxially stressed Ge (1 valley).
Our ealeulations predict an effect of the correct
sign but the magnitude is too small. The eompax-
ison of our calculations for donors on a regular
lattice with the experiments on randomly doped
materials is clearly only qualitative at best.
Further, as discussed below, the txansition of an
ordered array of donors will be first order since
the long-range attraction between electron and
holes causes a discontinuous onset in the number
of electxons and holes. " The calculations pres-
ented above cRQ only be x'egRx'ded Rs glvlng RD Rp

proximate value for the mobility edges of elec-
txons and holes propagating in the random array
of doDox's.

Even with the above cautions, it is of interest
to compare the positions of the single-particle
bands calculated above and those given in the
metallic approximation which is applicable at high-
er densities. Although several methods have been
applied to describe metallic hydx ogen with a fixed
lattice of protons, the di.fferences with the origi-
nal calculations of Wigner and Huntington" are
not great. We calculate the position of the
bottom of the band and the Fermi energy using the
Wigner-Seitz method. (Note that we do not in-
clude the effect of the surface dipole layer since
we are interested in comparing to the calculations
1Q the 1nsulatlng stRte desex'1bed Rbove. The po-
tential of the dipole layer varies smoothly with
density and does not affect the energy gap between
the D and D' bands, but rather rigidly shift them
with respect to the energy level in an undoped
crystal. ) The bottom of the band, E», is deter-
mined first by calculating the eigenvalue, Ei„of
the Schxodinger equation with a bare Coulomb po-
tential subject to the Wigner-Seitz boundary condi-
tion at x=8,„s. The cox rection to E~ arises from
the intex'action of the electron with the negative
charge in the Wigner-Seitz sphere and from ex-
change and correlation corrections. These two
corrections largely cancel each other and the net
correction is small. Adding these two terms gives

correction to the ground-state energy per elec-
tron. For a single-VRBey sexniconduetor we use
the Wigner form for e„,:

0.916 0.88

s ys+
(3.19)

The results are shown in Fig. 3 and also the
chemical potential determined by adding the Fer-
mi energy

3.683
&=@aa+ (3.20)

For a many-valley semiconductor the Fermi,
exchange, and correlation energy all change de-
pending on the number of valleys. Fox' Si, Rose
ef; al.26 ca,lculated the exchange and cox x'elation
energy. We have fit their x'esults for the correla-
tion energy to a Wigner form giving

0.48 1.31
x,+ 2.15

' (3.21}

Substituting in Eq. (3.18) gives a value for the bot-
tom of the band E» somewhat below the single-
valley semiconductor value. It is also shown in
Fig. 3 and also the chemical potential for the pa-
rameters appropriate to Si:

p=E»+ 1 115/r.', . (3.22)

There is a substantial difference in the position
of the bottom of the band and also the chemical
potential between the two sets of calculations.
This x'eflects 1D pRrt the dlffex'ent 'tl eRtnlents of

- correlation in the two approxixnations. In one,
the polarization corrections are treated stati. -
cally and no attempt is made to achieve self-con-
sistency by allowing for change of the inner elec-
tron with a decreasing energy gap. In the metallic
approximation the shoxt-range intracell coxx ela-
tions are described inadequately. As a result, it
is hard to assess the reliability of the energy dif-
ferences shown in Fig. 3.

To conclude this section, we conlpRx'e oux' cRl-
culations to those made by others. The closest in
spirit axe those recently reported by Mott and
Davies" who used the Hartree potential U, [see Eg.
(3.7}j in a Wigner-Seitz calculation. The D band
in their cRlculRtloDs broadened considerably less
than in Fig. 3, presumably due to the absence of
polarization corrections on the central site and on
the neighbors. The D' band also broadens upward
less —again there are no polarization corrections.
As R resulty they did Qo't obtR1D R cx'osslng uDt1l

&„s=2 or a=3.2
'The density-functional method has been applied

to this problem by hvo groups. Ghazali and
Leroux-Hugon'8 have reported a narrow enex gy
band (presumably D') and a broad energy band



R. N. BHATT AXD T. M. RICK

(D ) which overlap at ft = 5 and even coexist at
smaller A. 'Their results do not have much in
common with ours. Recently Rose, Shore, and
Sander' have reported calculations fox a ferro-
magnet1c 1Rttlce of donors. ln R 81ngle-VRlley
semiconductor at R = 4.6. They use the density-
functional method also and study the ground-state
energy through the Mott transition. Single-parti-
cle energy bands are also obtained. However, the
mean energy of the occupied (D') band at R = 4.6
lies at = -0.5 By, substantially above the position
of the D' band in Fig. 3. This discrepancy shows
the inadequacy of the single-particle bands ob-
tained by the density-functional method and it will
be discussed in detail elsewhere. "

Rose, Shore, and Sander' obtain a first-order
transition to the metallic state with a discontinu-
ous jump in number of electrons in the D band
and holes in the D' band to a value of (n, „/n~)~'
= 0.45. As we mentioned previously, such a dis-
continuous transition has been predicted by
Brinkman and Rice'4 Rs R consequence of the sta-
bility of a finite density of electrons and holes
which form the electron-hole liquid. We can use
the lattex calculations to estimate the value of
n, „. Fixst we need to know the electron and hole
masses (m„m„). From the D and D' bandwidths
calculated above, we estimate m, = 0.6 Rnd m~
= 1.2. Next, the dieleetrie constant can be esti-
mated by assuming it scales inversely with the
square of the direct band gap. This band gap, un-
like the indirect one, is not varying rapidly near
the Mott density, and therefore we may use the
value at A = 4.5 from Fig. 3 where the gap between
the bottom of eRch bRQd ~0.6 Ry. This gives

c = 1+ 18wn~(l/0. 6)' —2.7 . (3.23)

'The exciton rydberg and Bohr radius are then
=0.055 By and 6.75, respectively. At the transi-
tion, the stable density of electrons and holes is
glveQ by 'Y~= 1.7 1n exclton Bohr radll leRdlng to R

value

(n„„/n, )~'= (3/4~)v3ft/r. a,'"= 0.25. (3.24)

This value is somewhat different from their value,
which is not surprising i.n view of the reasons
discussed below and the differences in approach.
The approximation of R spherically symmetric
D' band used by Rose et al. , leads to a one-
dimensional van Hove singularity at the top
of the D' band rather than the three-dimensional
singularity given by tight-binding theory of the
simple cubic lattice. The use of a one-dimension-
al van Hove singularity leads to a very large ef-
fective-hole mass and a larger first-order transi-
tion. Another point of difference between the two
calculations is the energy dependence on n, „(the

density of electrons in the minority spin band or
holes in the majority spin band). In the density
functional method a term proportional to n+' is
included from exchange and correlation among the
electrons but the corresponding term is not pres-
ent for the holes, whereas in the electron-hole-
liquid theory they are treated symmetrically, as
they should be. Furthermore, both calculations
show that only a few percent of the electrons are
involved in the transition, which is at the limits of
where a local-density-functional (LDF) method
wouM be expected to yieM a reasonable descrip-
tion.

IV. DENSITY FUNCTIONAL CALCULATIONS
OF CLUSTER STATES

The D and D' bands calculated in the previous
section for a lattice arrangement of donors gives
a reasonable description of the average position
of the single-particle energy bands. Howevex, as
emphasized in the introduction, band tailing oc-
curs due to the presence of laxge-density fluctua-
tions, which can lead to localized states. Of par-
ticular importance is the nature. of the overlapping
band states, i.e. , the low-energy tail of the D
band and the high-energy tail of the D' band. As
pointed out earlier, the situation is different for
the case of single-valley and many-valley semi-
conductors. In the former case, the tail states
of the D and D' bands due to dense clusters of a
few donors follow the trends of the electron af-
finities and ionization potentials of the atomic
periodic table. There is not much increase in
electron affinity, so the tailing of the D band to
lower energies is not large. Thexe is a substan-
tial decrease i.n the ionization potential of three
close donors, which behave as a. I.i at:om, and this
causes the D' band to rise upward to meet the D band
as Golka and co-workers" have shown. This is a di-
rect consequence of the Pauli exclusion principle
which limits the number of electrons in any orbi-
tal state of the cluster to two. The electron affi-
nity of the most electronegative case (for a rea-
sonable number of donors, N& 15), the D, corres-
ponding to fluorine, is only 0.25 By. The ion-
ization potential in the most favorable cases,
D~ and D», corresponding to lithium and sodium
are 0.40 and 0.38 Ry, respectively. For other
values of N, Rnd sparser clusters, the affi-
nities would be lower and the ionization potentials
higher. Thus, Rt low enough concentrations there
is a Mott-Hubbard gap due to electron-electron
repulsion in the single-particle density of states
in the single-valley semiconductor system.

In a many-valley semiconductor, the situation
is quite different: Because the exclusion princi-
ple is inoperative till 12 electrons in Si (8 in Ge),
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the electron affinities (and ionization potentials) of
the small clusters [n& 11 (12)]keep on rising as
the cluster volume gets reduced. Thus tailing of
the D and D' states due to these small dense clus-
ters is toward low energy, and the picture is one of
the D band coming down to meet the D' band, the
exact opposite of the single-valley case. (This
result may seem a bit contradictory to Fig. 3 for
the lattice, where ther' is upward motion of the
D' band. This is because of two effects. Firstly,
the clusters for which this downward trend is
sizable have densities beyond n«, but because of
the relatively small numbers N and consequent
large relative fluctuations, they are present in
fair numbers below n«. These are absent in the
lattice calculation and thus the lattice model does
not have such tail states. Secondly, there is a
polarization correction on the bands due to the
charged state present in the calculation of Sec. III
which has not been included in the above argu-
ment; this will tend to lower the ionization po-
tentials and push the D' states up somewhat. )

Since the D band tails down toward the D', the
nature and extent of these D tail states is crucial
to the understanding of the transition from the
insulating to the metallic phase. We have there-
fore carried out calculations of electron affinities,
ionization potentials, and total energies of donor
clusters. Our calculations show that in the limit
of zero separation, as few as four donors are re-
quired to exceed an electron affinity of 1 Ry. This
implies that in many-valley semiconductors there
is, strictly speaking, no Mott-Hubbard gap at any
density. Because dense clusters of more than
four donors can in fact attract electrons off isola-
ted donors, the ground state will in fact involve
charge transfer on a microscopic scale.

We have carried out two sets of calculations us-
ing the LDF formalism developed by Kohn, Sham,
and Hohenberg. "" The LDF method has been ap-
plied successfully to calculate the ground-state
energies of many atoms, molecules, ions, etc."
The method is now well known and we will only
outline the steps here.

In the first set of calculations, we calculate to-
tal energies E(N, Nv;R) of clusters with No donors
in a sphere of radius R with N electrons (we consider
only N =Nv -1,Nv, Nv+ 1). Initially we replace the
donor ion charges with a uniformly distributed
spherical "jellium" charge density (pv = 3Nv/4vR')
over a cluster radius 8 and then correct approxi-
mately for the effects of the point donor ions. Our
calculations are for clusters with donor concentra-
tion exceeding n„z (x,& 2.5), so that the electronic
wave functions within the cluster are pretty well
delocalized and are well classified in terms of the
cluster orbitals.

We work in reduced units, and for the case of
donors in silicon with no central-cell correction
they are m*= 0.32m for mass, a rydberg of
33.V meV, and a Bohr radius of 18.9 A as given
by Rose, Shore, and Zaremba. " (We remind
readers that because of the use of rydberg in-
stead of Hartree as an energy unit, many formu-
las differ from the usual by the presence of the
additional factor 2.) We solve a set of self-con-
sistent eq, uations

[-& + 4(r)+ v„(r)]0;(r) = z; 0;(r) (4.1)

and the electronic density
N

~(r)=g ~P&(r)~' (4.3)

'The exchange and correlation potential

( ) ( ( ))
t' &z„,(n(r)) (4.4)

is obtained by parametrizing the exchange and cor-
relation energy" in a Wigner form:

( ( ))
0.478 1.31

xc + ++2 15 (4.5)

where n '= 4', 'ag/3. The total energy for a
cluster with N~ donor ions in a radius 8 and N
electrons is given by

f f»lr)»l»i d'»d'»'
) r -r'[

+
J n(r)[t„,(n(r))-v„,(n(r))]d'r+Ev.

(4.6)

The last term E~ is a correction to represent the
energy difference between the discrete ion-charge
distribution and the uniformly distributed charge.
The ion-ion electrostatic repulsion should be ad-
ded to Eg. (4.6) to compare our results for energy
per electron donor pair with those of Rose et al. ,
for a uniform lattice of Li donors in Si using a
spherical Wigner-Seitz cell approximation (like
thatusedby us in Sec. III). However, it is not rele-
vant for the energy differences of interest to us
here. As noted by Rose et al. , the last term in
Eq. (4.6) is important in stabilizing donor clusters
in Li-doped Si, and we find it necessary to include
it in order to achieve agreement (for the larger
clusters) with their results. We find, in addition,
that it is a non-negligible correction in the calcu-

with an electrostatic potential assuming the donor
ion charge p~ is uniformly distributed over a ra-
dius R,

y(r)- 2 ~[ P d+
+2J

(r)+ (42)
&„.&& Ir-r'I lr -r'I
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lation of the electron affinity of clusters.
A first estimate of this difference in electron-

ion electrostatic attraction may be obtained by
imagining a roughly uniform electronic charge of
magnitude (N/Np) in a spherical Wigner-Seitz cell
of radius r„s=RND~' around each ion. In such a
case, the net effect of each Wigner-Seitz sphere
on the other is zero, and the net difference of the
electrostatic interaction between the point ion and
the uniformly distributed donor charge turns out to
be

Ep= —3N/5r~s . (4.7)

In calculations of energies per electron-donor
pair, the above approximation is adequate. How-
ever, it does not take into account the effect of
the expansion (contraction) of the electronic charge
when an electron is added to (subtracted from) a
cluster. In order to include this effect, which is
important in calculating electron affinities and
ionization potentials, we replace in Eq. (4.7) the
Wigner-Seitz radius r„s characteristic of the do-
nor density by an electronic Wigner-Seitz radius
r„"s"determined by the radius of the electronic
charge distribution:

e1e. &R).1-
rws =rws (4.8)

where

n r d'r
(4.9)

We have used two- and three-parameter varia-
tional wave functions for the Is cluster levels and
iterated to self-consistency within the parameter
space used. We find the final results are not very
sensitive on the level of accuracy (10-20/p) that
we feel is inherent in the approximations that have
been made, especially of E~. We present results
using a Fermi-function form for the electronic
wave function:

C
4(&)=1 (, „1, (4.10)

with + and ro as variational parameters and C as a
normalization constant.

To obtain the single-particle density of states,
we need to calculate the energy to add and subtract
an electron. The negatives of these are the elec-
tron affinity and ionization potential of the neutral
cluster of ND donors given, respectively, by

E„(R)=E(N, Np; R) -E(N+1,ND; R) (4.11a)

E„(R)=E(N-1,Np; R) -E(N, Np; R) . (4.11b)

The energy per electron-ion pair for the same

E~ = 1+—+ 2- 1+— (4.12)

where &y +2 B„and B, are fitting parameters.
Using the empirical fit above, we construct curves
of constant E~DO on an ND vs 8 plot, and these are
displayed in Figs. 5(a)-(c). The large negative
values of E&, are in agreement with the stability
trends found by Wang and Kittel" and also reflect
the large binding energy of the metallic state in
the calculations of Rose et al. '6 Of particular in-
terest are the large values of electron affinity
(compared to that of the isolated donor value of
0.055 Ry), some of which even exceed the isolated
donor binding energy of 1 Ry.

'The second set of calculations have been done
for the extreme limit of zero donor separation.
We use existing programs developed'4 for calcu-
lating atomic energy levels self-consistently in
I.DF formation, modified to include up to 12 elec-
trons in the 1s shell and using the exchange and
correlation potential of E11s. (4.4) and (4.5). The
calculation is done by numerical integration of the
radial Schr'odinger equation both outward from the
origin and inward from infinity, and using pertur-
bation theory on the mismatch in the logarithmic
derivative at the matching point, to generate a
new guess for the eigenvalue. Self-consistency is
achieved within ten to twelve iterations.

We caution the reader that these calculations
have been done in the context of shallow donors
and the effective-mass theory. 'The zero-separa-
tion results are indicative of results for clusters
which are on the scale of the Bohr radius or
smaller, so long as the energies (electron affini-
ties, ionization potentials) remain on the scale of
the effective-mass rydberg, i.e. , much smaller
than the band gap. Some of the larger clusters in
the limit of zero separation (i.e. , nearest-neigh-
bor donors in the host lattice) may well turn out
to be deep traps not described by the shallow-
donor effective-mass theory. However, our inter-
est is in using these "atomic" calculations for in-
terpolating between them and our earlier results
to determine clusters with affinities =1 Ry,
where effective-mass theory should certainly be
accurate.

We obtain the electron affinities and ionization
potentials using the Slater transition-state calcu-
lations. Since in LDF formalism the eigenvalue is

cluster is given by

E~ p(R)=E(ND, Np;R)/Np, (4.11c)

Calculations of E„,(o=+, 0, -) were performed
for twenty clusters of sizes 2~R ~ 5 and 3&ND
& 11, and the results fitted to the empirical
form (r~ =RND—~'):
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FIG. 5. Lines of constant energy per electron-ion pair fa), electron affinity Q), and ionization potential (c), for ef-
fective-mass donor clusters in many-valley semiconductors. The numbers next to the curves are the value of the con-
stant quantity in rydbergs.

the derivative of the total energy with respect to
the number of electrons:

)
(dE(N', Ng)l)

the electron affinities and ionization potential of
clusters are equal (except for third and higher de-
rivatives) to the LDF energy eigenvalues with one-
half electron added or removed from the neutral
cluster, respectively. Using this scheme, we ob-
tain the electron affinity and ionization potential

curves plotted in Fig. 6, where the result for D
is taken from known results, as the D is not
bound 1n simple LDF schemes. As can be seen,
the electron affinity is close to 1 Ry for N~=3,
and increases rapidly for larger N~. Of course,
so does the ionization potential.

Vo calculate the magnitude of the charge trans-
fer, we note that a donor is essentially isolated if
it has no neighbors within -5'. Since the proba-
bility of no neighbors in a volume v is e "~" and the
metal-insulator transition density n» = ~a~', the
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excited states with different amounts and location
of charge transfer to the ground state arbitrarily
close to the ground state in energy. Such states
will contribute a finite density of states at the
Fermi level. The charge transfer, as indicated by
our estimates, is controlled by the availability of
affinitive clusters and thus can be expected to in-
crease as the Mott transition is approached.
These results imply that the fluctuations in the
one-electron potential are large and as a result
the metal-nonmetal transition will be an Anderson
transition, as Mott' has proposed.

I.O

Np

FIG. 6. Plot of electron affinity and ionization poten-
tial of "point" clusters as a function of number of effec-
tive-mass donors in many-valley semiconductors.

number of isolated donors at density n~= n„q/3
and nD= n„zl2 is approximately 7/o and 2%%ug, re-
spectively. On the other hand, the number of
clusters with affinities greater than 1 Ry is given
by adding clusters with ND varying from 4 to 11
with volumes such that they lie above the 1 Ry af-
finity line in Fig. 5(b) (extrapolated to the 1 Ry
point from Fig. 6 for R = 0). In principle one
should correct for multiple counting, e.g. , the
possibility of a dense 8-atom cluster already hav-
ing once been counted as a 4-atom cluster, and
also allow for higher electron affinity levels, i.e. ,
the possibility of more than one electron being at-
tracted by a really dense cluster. However, clus-
ters with affinities greater than 1 Ry are rare, and

both these corrections (which have opposite
signs) are still smaller effects. We have there-
fore neglected them, and arrive at the result of
0.15/o and 1.2% of donors in the highly affinitive
clusters at nD=n«I3 and n~= n„z/2 Thus our.
calculations predict a non-negligible amount of
charge transfer (a sort of self-compensation) in
the ground state of the insulating phase, which is
a rapid function of the donor density.

Our estimate does not include the Madelung en-
ergy, i.e. , the Coulomb attraction between the
negatively charged cluster and the positively
charged donor; this will be an important effect in
stabilizing charge transfer. The central-cell po-
tential which removes the degeneracy of the
ground state, on the other hand, will tend to re-
duce the charge transfer.

We know of no reason why there should not be

V. DISCUSSION AND CONCLUSIONS

Though the single-particle density of states
which has been the focus of this work is not di-
rectly accessible to experiment, several compar-
isons with experiment can be made using our re-
sults.

In the more dilute regime a clear demonstration
that the interactions between close pairs of donors
are the first change from isolated donors has been
demonstrated by a study of donor optical spec-
tra." In this regime, a measure of the distribu-
tion of D states was obtained by the photoconduc-
tivity studies of Norton, "'"Aleksandrov et al. ,"'"
and Taniguchi et al." These experiments measure
the photoconductivity at long wavelengths in the
presence of a background of room-temperature
radiation which excites some electrons into nega-
tively charged donor states. The long-wavelength
spectrum then measures the distribution of ener-
gies to excite an electron from the band of D
states to the mobility edge. At very low concen-
trations nD 'a~ ~ 0.03 there is a sharp threshold for
photoconductivity at an energy E,. = 1.8 meV in
Si:P and 0.625 meV for Ge:Sb. These energies
agree well with the values expected for the bind-
ing energy of isolated D levels and the overall
shape of the photoconductivity spectrum also
agrees with this interpretation.

At higher densities the threshold is observed to
shift to higher energies by all three groups in
Si:P, Ge:Sb, and other systems; however, their
interpretations are all different. Norton" origin-
ally attributed the shift to the formation of a D
(or upper Hubbard) band at these densities. This
is clearly in disagreement with our calculations
shown in Fig. 3 which puts the onset of a signifi-
cant broadening due to interactions at the average
separation a factor of 30 higher in density at
least. Aleksandrov et +l. , '8 propose the forma-
tion of D -D centers in which the D electron is
more tightly bound by the attraction of a nearby
D' center as the explanation. However, in their
experiments the density of D centers (and conse-
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fluently of D' centers), nD ,-is very low, nn-«nD,
perhaps as low as nD-10" cm ' as Norton" esti-
mates. 'Therefore, for samples which show devi-
ations from the isolated donor result, there is a
much larger probability of finding a neutral donor,
D', around a D center than a charged D' center.
To be specific, to account for the =6-meV thresh-
old seen in a sample of Si:P with concentration
9x10"cm '(n'~'gs =0.1), requires a shift =4meV;
in other words, a D' within a radius of 300 A as-
suming a simple Coulomb attraction. 'This is very
unlikely; if n~= 10"cm ' it has a probability
-10 '. On the other hand, we have shown above
that this shift (=0.13 Ry) can easily be obtained in
a many-valley semiconductor by a reasonably
close D' neighbor, and since there are so many
more of them, it is not unreasonable to ascribe
the shift to the D, complexes. This is the explana-
tion that 'Taniguchi, Narita, Hasegawa, and
Kobayashi" have put forward. They have per-
formed an elegant series of experiments which
strongly support the D, explanation. They took a
sample of Ge:Sb concent;ration 9 x 10" cm '
(n~D~'a~ = 0.04) in which a threshold energy of
=1.5 meV (0.15 Ry) was measured, and applied a
uniaxial stress and observed the threshold energy
drop to a value =0.6 meV (0.06 Ry). Under a [111]
uniaxial compression, the four degenerate valleys
are split and a single valley drops down. This
drop in threshold energy they interpreted as aris-
ing from the large reduction of the binding energy
D, when one passes from a many-valley to a sin-
gle-valley semiconductor. Our calculations, re-
ported above show the stability of a D, in a many-
valley semiconductor when all 3 electrons can be
placed in bonding or s states. Our calculated val-
ue for a D, complex at zero separation (~0.4 Ry)
is larger than the threshold value quoted above.
Though we cannot make a direct comparison of
our results with the experimental line shapes in
the absence of detailed calculations at intermedi-
ate separations, they are qualitatively in agree-
ment with the D, interpretation.

Another point of comparison we can make at the
higher, densities is the energy gap between the mo-
bility edges of the D' and D bands. Various mea-
surements of this energy gap have been made and
are displayed in Fig. 7. The solid curve in Fig. 7
is the energy gap between the D+ and D bands in
the lattice calculations of Sec. III. At low densities
the energy gap shown is the activation energy of
the dc conductivity" and the energy gap measured
in photoconductivity. " At higher densities, it is
c„ i.e., activation energy of dc conductivity '

at intermediate temperatures, which is plotted.
This latter is clearly much smaller than theoreti-
cal values. In making this comparison one must
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FIG. 7. A comparison of the theoretical energy gap in
a lattice of donors be@veen the top of the D'band and the
bottom of the D band in a many-valley semiconductor
(from Fig. 3) to various experimental measures in Si:P.
The activation energies of the dc conductivity at low
densities (~~) from the data of Penin (Ref. 40) (open cir-
cles); at intermediate densities (~2) from the data of
Yamanouchi (Ref. 42) (open squares) and Toyotomi Puef.
43) (triangles). Also shown is the photoconductivity edge
from the data of Guichar et al. (Ref. 41) (solid squares)
and the characteristic energy determined by scaling the
polarimability (Ref. 44) (solid circles) (see text). We are
grateful to G. A. Thomas for the compilation of the ex-
perimental data.

consider the location of the Fermi energy. At
low densities because of large downward broaden-
ing of the D band and small upward broadening of
the D' band, the Fermi energy should lie at the
top of the D' band and the conductivity activation
energy equals the photoconductivity threshold as
in Fig. 7. At larger concentrations, there may be
some upward movement of the D' band edge due to
polarization effects and the Fermi energy may lie
between the D and D' edges in Fig. 3. In this lat-
ter case, it is more appropriate to compare 2c,
with the calculated energy gap in Fig. 7. Clearly
this would improve the agreement between theory
and experiment. 'The best agreement in Fig. 7,
however, is with the characteristic energy which
enters the enhancement of the electric polarizabil-
ity X per donor. This energy E, is obtained" by
scaling X/g, = (E,'/E, )', where g, and E,' are the
polarizability and energy gap in the isolated donor
regime. This energy agrees remarkably well (in
fact, better than expected) with the calculations.
(Note in making this comparison we assume that
the k-selection rule for optical transitions has
broken down due to the random positions of the
donors and that it is the lowest energy gap of the
lattice calculation that is relevant. ) In general,
the theoretical values of the' energy gap of the lat-
tice are in reasonable agreement with 2e, and other
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experimental values.
The major result of this work is the large-scale

fluctuations in the one-electron potential, es-
pecially for many-valley semiconductors. 'The

combination of the complete randomness of donor
positions vrith the large binding energy of small
dense clusters is such that correlation does not
impose an energy gap in the one-electron density
of states at any density. Direct experimental
proof of. this x'esult is difficult because of the
small amount of charge transfer vrhich can easily
be masked by a small number of acceptors. Per-
haps the best way to measure the charge transfex
is to look in the vex'y far infx'ared for evidence of
additional absorption due to hopping as discussed
by Millex and Abrahams" and Blinomski and
Myclelskl. As the density lncx'eases to%'ards the

insulator-metal transition density, the potential
fluctuations become prominent and there is little
doubt the transition is an Anderson transition;
that is to say, it is governed by the large fluctua-
tions in the one-electron potential rathex than by
correlation effects.
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