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The subband structure of n-channel inversion layers on the surface of polar semiconductors has been investigated.
The model used includes the effects of the Coulomb interaction and the polar, LO-phonon-mediated electron-
electron interaction. The Coulomb interaction has been treated in the so-called diagonal random-phase
approximation. This approximation ignores the effects of subband mixing, but is known to be valid for Coulomb
forces. However, the phonon interaction is frequency dependent and may strongly mix states in different subbands,
particularly when subband separation is near u «, the LO-phonon frequency. Therefore, the calculation includes the
effects of subband mixing due to an unscreened electron-LO-phonon interaction. A simple two-subband model has
been used to calculate the quasiparticle energies and subband separation as a function of wave vector and density. In
addition, the effect of the electron-phonon interaction on the depolarization shift has been investigated. It is found
that the frequency dependence of this interaction splits each absorption peak into two branches which can be
interpreted as mixed intersubband —LO-phonon excitations. The magnitude of the splitting and the relative strength
of each absorption peak has been calculated,

INTRODUCTION

In an earlier calculation, ' we discussed the sub-
band structure of n-channel inversion layers on the
surface of polar semiconductors and, in particu-
lar, on the surface of Gahs. That calculation in-
cluded the many-particle effects of the electron-
electron interaction which, on polar semiconduc-
tors, is the sum of a Coulomb repulsion and a
term due to the exchange of virtual longitudinal-
optical (LO) phonons. The latter effect is not
present in the elemental (nonpolar) semiconduc-
tors, silicon and germanium. The calculation was
performed using the diagonal random-phase ap-
proximation (RPA) (Ref. 2) and, therefore, ig-
nored the effects of intersubband mixing.

In this paper, we extend our previous calculation
by partially removing the restrictions of the diag-
onal approximation. The method includes the ef-
fects of intersubband mixing due to an unscreened
phonon-mediated interaction, but continues to treat
the Coulomb interaction using the diagonal RPA.
Using this model, we have calculated the self-
energies and quasiparticle energies of electrons
in the two lowest subbands of n-channel inversion
layers on polar semiconductors. The calculation
has been performed at zero temperature assuming
that only the ground subband is occupied. A simple
two-subband model has been used to truncate the
Green's-function matrix. The re suits presented
are correct for inversion layers on p-type GaAs
(assuming a native oxide insulator) and p-type InP
(assuming a deposited SiO, insulator).

In addition, we have calculated the subband sep-
aration and the depolarization shift' which would
be observed in a far-infrared (FIB) absorption ex-
periment. The depolarization calculation includes

the effects of a frequency-dependent interaction
(the phonon contribution to the total electron-elec-
tron interaction), and indicates that, in polar
semiconductors, each absorption peak normally
associated with an intersubband transition is split
into two branches which are interpreted as mixed
electron-phonon excitations. (This splitting, how-
ever, does not explain the "double" peak observed
in Insb inversion layers. ) The absorption energy
and relative strength of each peak have been cal-
culated as a function of inversion-layer density.

The basis of the calculation is the solution of the
effective-mass Hartree equation discussed briefly
in the next section. In Sec. II the electron-electron
interaction is discussed and an explicit form for
the phonon-mediated contribution is derived from
the Frohlich Hamiltonian. In Sec. III we discuss
the methods used in the many-particle calculation
of the self-energy and present the results of the
present calculation. Finally the depolarization
effect and results are described in Sec. IV.

I. HARTREE SOLUTION

Within the effective-mass approximation, ' the
Hartree wave function, (I),. ~(x), satisfies a Schro-
dinger-type equation of the form

i ~

N2 „v'+)'( z)) (', ,(x) = a,. (k)(), ;(x) .

The eigenvalue, c,(k), is the particle energy and
has been calculated here within the Hartree ap-
proximation. The conduction band of GaAs and
InP (as well as many other III-V semiconductors)
contains a single (nondegenerate), isotropic valley
at the Brillouin-zone center. Therefore the band
effective mass, m*, appearing in E(I. (I) is a
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scalar quantity that is independent of the interface
plane,

The confining potential, V(z), is the sum of the
depletion layer potential and the self-consistent
Hartree potential which has been calculated assum-
ing that only the ground subband is occupied at
T= 0 K. Since the potential is independent of the
coordinates x and y (which define the interface
plane), the Schrodinger equation is separable.
That is, g, -„canbe written as the product of a
plane-wave part (e'" ~) and a bound part [t', (z)]:

where $, (z) satisfies the one-dimensional equa-
tion

(,(z)= Q g„z'"e~&', i=0, 1, ,2. . . .
)so

The g, &
are determined (as functions of p, ) by re

quiring that the $, are normalized and orthogonal
to each other. The P, can then be adjusted until

S& is a minimum.

(4)

II. THE ELECTRON-ELECTRON INTERACTION

The total electron-electron interaction, V' ', may
be written as the sum of a Coulomb term, V

and a contribution arising from the exchange of a
virtual LO phonon, V'~". Since the total interac-
tion and its individual components are usually as-
sumed to be translationally invariant in the plane
of the interface (but not necessarily perpendicular
to the interface) and in time, they may be de-
scribed by their transforms with respect to the
Hartree wave functions, g, -„.Thus,

V,', ,'„(q,~) = V„,"„(q)+V,',~„(q,~) .

This quantity has physical interpretation as the
strength of the interaction which takes the state
P, ~ to Pz ~&, transfers momentum Kq and energy
S~ and takes the state P, ~ to g„~&.

The Coulomb portion of the interaction is well
known from studies on silicon inversion layers. '

—, ,„.+ V(.),l&, (.) =E,&,(.).
The energy eigenvalues, E„andthe Hartree

wave functions, $„have, in the past, been found

using a number of different approximate methods
including the direct numerical solution of Eq. (3).
We have adopted a variational approach' which has
been used successfully in the many-particle de-
scription of inversion layers on the surface of
silicon. Here, the wave function is approximated
by

It is usually expressed as the sum of a direct con-
tribution and an image contribution

V;;,„(q)= V„,„(q)+V„,.(q), (6)

where

V~ (Z-('-"))""')
E&) E&„o)

dz dz', z ~~ z
0 0

and

x e ' "'5', (z') („(z'), (7)

~,;„.~ =(„-',&~I'; I(',-;,"j
X dz dz z z

0 0

« "*"'&,*(")&„(")
Here z„is the high-frequency dielectric constant
of the semiconductor and g, is the insulator dielec-
tric constant. The direct term, V,z, , represents
the interaction strength of the Coulomb repulsion
between two electrons imbedded in a medium with
dielectric constant z„.The image term, V,»,
describes an additional Coulomb interaction be-
tween an inversion-layer electron and the image
of another electron in the insulating layer.

Within the framework of a many-particle calcu-
lation, the electron-phonon interaction manifests
itself as an effective interaction betsueen electrons.
As mentioned, the interaction may be interpreted
as arising from the exchange of a virtual phonon.
More physically, it can be understood by noting
that an electron (or other charged particle) moving
through a polarizable crystal (i.e., a crystal com-
posed of ions with different charge) will polarize
the lattice. Other electrons can then interact with
the first indirectly via the polarized lattice. The
polar interaction is not present in the elemental
semiconductors (silicon and germanium) because
the lattice is not polarizable.

In diamond structure (silicon or germanium) or
zinc-blende structure (GaAs; InSb, InP, etc.)
semiconductors, symmetry requires the existence
of six different phonon modes (though there are
additional degeneracies in the diamond structure).
In particular, there are three acoustic modes and
three optical modes each with two transverse
branches (TA and TO) and one longitudinal (LA
and LO) branch. While electrons are coupled to
all six modes, it can be rigorously demonstrated'
that the coupling to transverse modes is negligible
compared to the coupling with longitudinal modes.

The present calculation includes coupling only
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with LO-phonon modes. The neglect of the LA
modes can be partially justified by noting that the
ionic displacement of oppositely charged ions due
to acoustic vibrations tends, particularly at the
long wavelengths of interest, to be in the same
direction. The lattice polarization results only
because the oppositely charged ions have different
masses and are not displaced by the same, amount.
Therefore the resulting polarization can be rather
small, particularly in semiconductors like GaAs
or InSb where the ionic masses differ by less than
10%%uo. In contrast, oppositely charged ions are
displaced in opposite directions by long-wavelength
LO excitations. The polarization field and its
coupling to electrons might, therefore, be ex-
pected to be stronger for LO modes than for LA
modes ~

In the following, the coupling between inversion-
layer electrons and bulk LO phonons is described,
and an explicit form for the effective, phonon-me-
diated, electron-electron interaction is derived.
The treatment loosely follows those of Befs. 8 and

9, but the derivation here is in the context of the
inversion-layer problem. The interaction is ob-
tained in two steps. First, a Frohlich Hamilton-
ian valid for a quasi-two-dimensional (2D} system
(but with coupling to bulk phonons) is derived. The
result is then used in a second-order Born approx-
imation to obtain the actual interaction strength.

It is convenient to begin with a form of the Froh-
lich Hamiltonian which is properly second quan-
tized in the phonons but not the electrons' as fol-
lows:

H( ")- g M(&&" )[a(q, (I )+a&(-q, -(I )]e'&' e' g

4 ()g

(9)

whereat and a are, respectively, the phonon cre-
ation and destruction operators, and

Notice that the LO phonons have been assumed
dispersionless (their frequency is independent of

The Hamiltonian, fully second quantized in
both the phonons and electrons, may be found im-
mediately from Eq. (9) as

ph ~8 pQ

(11)

where c« „-& and c« „-& are creation and destruction
operators for the electronic state g, f. Conserva-
tion of momentum in the plane parallel to the in-
terface requires that k'=k+q. Thus

where

& P(j, k+q) c(i, k),

~,',". (q, (I,) =M'" (q, (I,) t dh P;(z) $,. (z)e"".
0

The result, Eq. (12}, is similar to the three-
dimensional form fo,r the Frohlich Hamiltonian.
The principal difference is an additional sum over
q, which arises because momentum is not con-
served perpendicular to the interface. In effect q,
need not be specified in a collision and, therefore,
the Hamiltonian is, properly, an average over all
possible values of this quantity.

The effective interaction resulting from the ex-
change of a virtual LO phonon may be found by
applying the second Born approximation' to Eq.
(12):

H""= Z Q M,'," (q, (I,)[~(q, (I,)+u'(-(I, -(I,)]

e+b g ((j,k —q)(m, k'+q) IH'~" II)(II H'~"I (i, k)(l, k'))

[e (k) + e (k')] —~

Here
~

I ) is an intermediate state whose total energy, az, may include the energy of a virtual LO phonon.
The resonance denominator is the difference between the energy of the initial or final states and the en-
ergy of the intermediate state.

The form of the Frohlich Hamiltonian guarantees that the matrix elements vanish unless the intermedi-
ate state contains exactly one phonon more or one phonon. less than, the initial and final states. Then, for
dispersionless phonons, a straightforward calculation yields

e.-ph ( 2Sr. o))) (q, ~)=
) ~ ~,., (a q )~,„(-q,-q )

( (& ), ()), )),

where

5()) = f)(k) —E)(k —q) = t (k +q) —f)(k )

is the energy transferred in the collision. The sum over q, may be evaluated using a contour integration
with the result
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('"' (t( ~) =—(———
II . ,

(

d~ f a~ r;'(g&r, (~"(~ " "''r (*, )r'(* )'
) k(v —~ho j

~((
a 'lpga (q( &ra

)

(17)

The last form shows that the phonon-mediated
interaction is proportional to a term (1 —aJeJ
that is related to the polar nature of the semicon-
ductor. Since the lattice is polarizable, g, & z„
and the coupling is nonzero. Conversely, in non-
polar materials, q, = z„and the phonon-mediated
inter action vanishes.

Notice also that V,'~~„(q,&) is frequency depen-
dent. This dependence arises because, unlike the
Coulomb force which acts (for practical purposes)
instantaneously, phonon effects propagate at the
speed of sound. As might be expected, the phonon
term is infinite at ~=+&~, the natural oscillation
frequency of the lattice.

The interacting and noninteracting Green's func-
tions are related by Dyson's equation (a matrix
equation in the inversion-layer problem) as

G(k, (rr) = G (k, (u) + G'(k, (rr) M (k, ((r) G(k, ((r) (22)

=([G'(k, ~)] ' —M(k, (d)j '. (22)

M(k, ~) is the self-energy matrix which contains
all the details of the interparticle interaction. It
has been calculated here within the framework of
the random phase approximation (RPA). That is,
the elements of the self-energy matrix are calcu-
lated using the integral

Gr'~(k, (u) = &,.~ G,',.(k, u&), (20)

—(1/rri) [,(k) — ] —'r7

+ - '
—. , (21)

1 —6 (e~ —e,. (k))
(o —(1/t) [sr (k) —e~]+i'

where &,.(k) is the (unperturbed) Hartree energy,
&~ is the Fermi energy, and 'g is a positive infini-
tesimal. Notice that 0'(k, ~) is diagonal in its
subband indices indicating that the subband index
is a "good" quantum number. That is, in the ab-
sence of an electron-electron interaction, there
is no intersubband mixing.

IH. THE SELF-EAJERGY

A. Theory

The quantity of principal interest in a many-par-
ticle calculation is the particle propagator or
Green's function. In the inversion-layer problem,
the transform of this function zenith xesPect to the
Hartree rvave functions (rt(r i) is a matrix whose
elements are labeled by the subband indices i.
The quasiparticle excitation energies occur at the
poles of the Green's function, or in the case of a
matrix G, at the values ~(k) such that

det[G '(» "(k))]= IG '{k "(k))
I

= o.
A related quantity is the noninteracting Green's-

function matrix, G'(k, (rr). This is the Green's
function for a system in which there is no elec-
tron-electron interaction. Its elements have the
particularly simple form

xg fdr'daf ((„„(r,td9

(24)

where Ur'&, '„(k,(d) is the RPA approximation to the
"dressed" electron-electron interaction.

Our earlier calculation' of subband structure in
polar semiconductors utilized the so-called "diag-
onal" approximation in which the bare interaction
assumed the particularly simple form

~ryi' (q) =
ry r ~r'rr'r(q)

A similar dependence on the subband indices was
also found for the dressed interaction. But inter-
actions of this form cannot mix states in different
subbands. The subband index, therefore, remains
a good quantum number and both the Green's-func-
tion matrix and the self-energy matrix are diago-
nal (hence the "diagonal" approximation).

It has been demonstrated by direct numerical
calculation' that the Coulomb interaction is in fact
small unless i =j and 1=m. Thus the diagonal ap-
proximation is reasonably valid for Coulomb
forces. Since the phonon-mediated interaction is
proportional to the direct Coulomb term, it is
reasonable to expect that V,'&,

" can also be approx-
imated by a diagonal form. However, the phonon
interaction is frequency dependent and resonant at

Thus, while the diagonal approximation
is generally valid for V',.J~,", subband mixing effects
may become important when the subband separa-
tion is nearly equal to the LO-phonon energy.

In the present calculation, we continue using the
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diagonal approximation to treat the Coulomb
force. However, the intersubband mixing due to
an unscreened phonon-mediated interaction is in-
vestigated by using a total dressed (Coulomb plus
phonon) interaction of the form

U,.',—,'„(q,~) = ~,P,„U~,",(q, ~)+ q-;,"„(g,~}. (26)

As in earlier calculations on silicon inversion
layers, ' the screened Coulomb part of the interac-
tion is found using the Dyson's equation

U Coul @Coul + @Coul& {0)@Coul (27)
4 4 l l fk l l i f00 00 00l l '

This special form for Uco~ is valid if V,&',
"' is diag-

onal and if only the ground subband is occupied.
The latter assumption guarantees that m„'„"is zero
unless either n or n' is zero.

'F i ls the lowest-ox'dex' bubble approxtLmatlon

to the polarizability; In the current calculation, it
(or really the total screening term e«=1
—V~;~~vo't') is calculated using the plasmon pole ap-
proximation. This technique was first introduced
as a simplified means of treating electron corre-
lations in metals, '0 but has, more recently, been
applied' to inversion, layers on the surface of
silicon. In principle, the plasmon pole treatment
is an approximation to the BPA. In practice, it
greatly simplifies the self-energy calculation by
replacing an integral expression for v,'oO(which
must, in general, be evaluated numerically} with
an analytic form.

Combining Eq. (24) for the self-energy with a
dressed interaction of the form (26) yields

It has been assumed that only the two lowest sub-
bands (n =0 and n =1) are important and that the
infinite self-energy matrix may be adequately ap-
proximated using a (2 x 2) form. As will be shown,
this assumption, while apparently rather drastic,
is justified by the results obtained.

Figures 1(a), 1(b), and l(c) are diagrammatic
representations of the matrix elements M00

and M„,respectively. Notice that, in addition to
the appearance of the nonzero off-diagonal ele-
ments (M„and Mo,), the present approach results
in the appearance of additional terms Mp„",which

1010

contribute to the diagonal self-energy but have no

analog in the diagonal approximation,
The approximate form for the self-energy, Eqs.

(28)-(31), can be combined with Egs. (19}and (23)
and solved self-consistently to obtain the quasi-
particle excitation energies [self-consistently be-
cause M(k, E, (k)) is, itself a function of the guasi-
particle energy]. Here, however, this method has
not been used. Bather, the self-energy matrix is
calculated using the Hartree energy a, (k), and the
guasiparticle energies E,(k), determined as the

solution of the simpler equation

~[G'(u, Z,.(a))]-'-M(k, &, (k))
~

=0. (34)

In addition to being a simplification of considerable

Moo(k. ) = lVloo (k*)'Moo(k )
0000 IOIO

KM«(k, cu) = KM~»~{k, &v) + KMO~O (k, &o) + KM~", (k, u&),
0000 1010

(23)

0 rr-& .& 0 +

0 .*" 0 0,." I "; 0

KM,O(k, ur) = KM„(k,(u)

=KM0~0 (k, (u)+KM& (k, (o),
0001 0111

(3O)

(»)

KM»(k, ~) = KMc;" (k, &o) +KM~, (k, &o) + KM',
"

(k, &o),
1111 1010

(29) (b) MII(k, ~) = M, I'"' (k, ~)+ M'„(k,cu)+ IVI oo(k ~)
IIII IOIO

I ~ii ~ +

--:" 0-"'-M+ ~
KM~~ (k, ~) = (f) { (c) M„(k, ) = lVI„(k, )

ph
IVloo(k, cv) + MII(k, cu)

OOOI Ol II

0 ."'
i 0 "". I

KM~" = (f)nn {2&)3

d2q dc@'V&&~l" q, m~

x G' (k g, &u ~')e'"'". (33)

FIG. 1. (a) Feynman diagrams included in the calcula-
tion of the ground subband self-energy. (b) Feynman
diagrams included in the calculation of the self-energy
of the first excited subband. (c) Feynman diagrams in-
cluded in the calculation of the nondiagonal elements of
the self-energy matrix.
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practical importance, the approximation is also
believedii to be more consistent with our use of
low-order corrections to the effective interaction

8. Results and condusions

SELF ENERGY Ninv =7+10
0 I I

j
I I I

[
I I l l

[
I I I I

[
I I l

-15—
gaAS Subst

Nd pi
= 1.44

—25
0

l i I g g l ~' I c g I ~ s

0.5 O.V5 1
%AVE VECTOR (k/kt)

I

1.25 1,5

FIG. 2. Self-energy as a function of subband index and
wave vector for an inversion-layer density of 7 && 10
cm . The Coulomb and phonon (phonon plus Coulomb)
approximations have been compared.

Figure 2 is a plot of the self-energy as a func-
tion of subband index (n =0 and n = 1) and wave vec-
tor (k/kz where kz is the Fermi wave vector) at an
inversion-layer density of Nj„,=7 x10" cm 3, The
input data' shown in Table I~ correspond to R GRAs

substrate with a relatively low acceptor doping

(N„Nv)= 1 x10 ' cm, or ¹~& = 1.44 x10» cm-'.
The insulator dielectric constant g, corresponds
to that of a native oxide" grown on GaAs. .The
actual value of this quantity varies somewhat with

composition and fabrication technique, but the
value used is typical of insulators currently pro-
duced.

In Fig. 2, the Coulomb self-energy (dashed line
designated Coulomb) calculated in the diagonal
RPA is compared to the self-energy obtained when

diagonal and nondiagonal phonon effects are in-
cluded (solid line designated phonon). It should be
remembered that the phonon self-energy plotted is
not, as in our earlier calculation, the value of a
(single) self-energy integral. Rather, it is the
difference between the Hartree energy and the
total quasiparticle energy obtained by solving Eq.
(34):

N„(k,&, {k})=E,(k}-~, (k). (35)

(The "bar" indicates that the quantity has been ob-
tained by diagonalizing the Green's-function ma-
trix. ) This quantity differs, in principle, from the
quantities M«obtained in Eqs. (28) and (29); the
latter represent the self-energy in the absence of

intersubb and mixing.
However, in all cases checked, including values

of N@„suchthat the subband separation is nearly
equal to the LO-phonon energy, it is found that

~„(k,e, (k})=iaaf„(k,e, (k)) (35)

within the estimated numerical accuracy of the
calculation (typically better than 19'). That is, the
intersubband mixing of states due to the phonon-
mediated interaction is completely negligible. The
result confirms the validity of our earlier diago-
nal calculation and also justifies use of the two-
subband model.

The current results agree qualitatively with
those obtained using the diagonal approximation
(see discussion in Ref. 1). Here, however, posi-
tive phonon contributions to the self-energy appear
more dominant than they were in the earlier cal-
culation where such terms were negative except
at the highest density (Nm~ = 1 && 10" cm ') and at
small wave vector. Here, the phonon self-ener-
gies are positive at densities as low as 4 x]0
cm 2 and at relatively larger wave vector.

Notice that a very sharp dip occurs in the self-
energy of the first excited subband at k/kz = 1.2.
A similar structure is found at other inversion-
layer densities, and always occurs at a value of
~k[ such that

That is, it occurs when e,(k) is just large enough
to allow the state to decay by emission of an LO
phonon. The peak may be attributed to intmsub-
band mixing of states and is extremely narrow be-
cause no phonon damping or dispersion has been
included in the theory. A reexamination of the re-
sults of our earlier diagonal calculation' indicates
that the structure is also present in that theory,
but was not evident because of its sharpness.

Also notice that broad, deep dips appear in the
self-energy of the ground {k/hz=1.45) and first
excited (k/kz = 1.35) subbands. Since the structure
appear in both the diagonal Coulomb and phonon
approximations, they can, again, be attributed to
the intmsubband mixing of states. The dip in the
ground subband has been identified .with states
whose (Hartree) energy is just far enough above
the Fermi energy to allow decay by emission of
an effective 2D plasmon, ~~(q). However, ~~ is
not a real plasmon, but rather an artifact of the
plasmon pole approximation. " Since in this ap-
proximation all the absorption strength of the sys-
tem is assumed to be concentrated in a single
*'plasmon pole" at &&, its appearance inside the
single-particle continuum indicates that the theory
may not be valid when c,(k) ~ S&o~(k} (the theory,
however, remains valid for lower energies and
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TABLE I. Parameters valid for R GRAs substrate.

Static dielectric constant

Insulator dielectric constant

Phono@, frequency

Band effective mass

Acceptor excess

Depletion layer density

r„=10.48

= 12.35

e)= 3.75

huLo=36. 8 meV

m += 0.0658nt~

N&-N&=1.0&1015 cm 3

Nd g=l.44x10 cm 2

also for higher subbands because of the weak in-
tersubband coupling). The dip in the first excited
subband has not been identified.

Flgux'6 3 ls R plot vRlld fox' GRAS lnvex'sion lRy-
ers, of the subband separation S» as a function of
density. The difference in quasiparticle energies
1S calculRted 1Q the limit thRt k Oe That 1S

Z„=lim [Z, (i) -S,(i )]. (»)

The results have been calculated in the two-sub-
band phonon approximation, the diagonal Coulomb

approximation, and the Hartree approximation.
As in oux earlier diagonal calculation, the two

many-particle theox'ies yield similar results.
However, the current unscreened phonon approxi-
mation does predict slightly smaller subband sep-
arations than the diagonal screened phonon approx-
imation. As before, the Hartree approximation
yields R cons1derably d1ffereQt result Rnd thus
reemphasizes the impoxtance of many-particle
effects in low-band-mass semiconductox s.

In Fig. 4 the subband separation has been calcu-

lated as a function of density fox inversion layers
on the surface of InP. The relevant input data are
shown in Table II, and correspond to a substrate
doping (N„-N~= l x 10"cm '), or to a depletion
layer concentration of ¹&» =4.32 ~10" cm 2. The
insulator is assumed to be deposited SiO, fcur-
rently the most promising insulator for the con-
struction of metal-insulator-semiconductor (MIS)
structures on this semiconductor]. As for GaAs
the results of the two-subband phonon, the diago-
nal Coulomb, and the Hartree approximations
have been compared.

The results obtained for the subband separation
(and also the self-energy) of inversion layers on
IQP are similar to those obtained on the surface
of GaAs. However, the subband sepax ation in this
case tends to be somewhat greater due, princi-
pally, to the larger depletion-layer density and
the resulting stronger surface electric field. .In
addition, the phonon contribution is somewhat
more significant thRQ lt 18 OQ GRAS The 1'esult
is reasonable since InP is a more polar material

SUBBAND SEPARATION SUBBAND SEPARATION
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FIG. 3. Subband separation (E~o) of GaAs inversion
lRyers Rs a function of density ~ The results of a Coul
omb and phonon calculation are compared to the 'results
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yers as a Sanction of density. The results of a Coulomb
and phonon calculation are compared to the results of
the Hartree approximation.
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TABLE II. Parameters valid for an InP substrate.

High-frequency dielec tric constant

Static dielectric constant

Insulator dielectric constant

Phonon frequency

Band effective mass

Acceptor excess

Depletion layer density

e„=9.6

ep= 12.6

e]= 3.9
@fA)Lo= 42.8 mev

m*= 0.0803m,

N~-MD=1. 0 x10~6 cm 3

Nd, »=4.32 X10~~ cm 2

than GaAs (i.e., z, and z„differ by a larger
amount) ~

IV. DEPOLARIZATION

A. Theory

The depolarization or resonant screening effect
is an experimental artifact which is observed when

subband structure is examined using far-infrared
(FIR) absorption techni[lues. In silicon inversion
layers, depolarization merely shifts the observed
absorption peak to energies lax ger than the sub-
ba d separation Ezo In polar semiconductors,
however, the presence of a frequency-resonant
interaction splits the observed absorption peak
into two branches which have interpretation as
mixed ele ctron-phonon excitations.

The effect was first discussed in connection with

a similar problem in the thin films. " Calculations
dealing specifically with inversion layers on sili-
con (l00) surfaces have been carried out by Allen
et a/. , Nakayama, '4 and Vinter. These authors
point out that the absorption occurs at the poles of
the conductivity tensor

0'kk(k 0, (d) (39)

where, in general, we may restrict our attention
to the z component of the applied electric field and

to vertical (k- 0) optical transitions.
The present calculation utilizes a many-particle

approach" to find the linear response of the inver-
sion lq, yer to an applied electric field." The power
absorbed is obtained as a function of the conduc-
tivity, and the position. of the absorption peaks is
determined by finding the poles of a„(k-0, u&).

The calculation loosely follows the treatment out-
lined by Vinterl for silicon inversion layers. Our
derivation, however, includes the frequency-de-
pendent electron-phonon interaction and also pro-
vides a means for calculating the relative absorp-
tion strength as a function of density.

It is convenient to use Fourier transforms in the
z-y plane and in time (but not, as in earlier sec-
tions, in the z direction). Then, a straightforward

x y(k, (o;z"),

and integrating with respect to z,
g 00

j,(k, ~;z) = (i~)e' dz' dz "z"(k, (u; z', z')
0 0

x (t) (k, (d; z ").
Now assume that

P(k, ~;z")=z "E,(k, ~).

(4I)

(42)

This is the usual "dipole" approximation and is
valid if the wavelength of the exciting radiation is
much larger than the average width of the inver-
sion layer. The approximation is well justified
for the inversion-layer system and the linear cur-
rent response becomes

J,(k, (k);z)=~ (a(())e dz dz z &"(k, (k);z, z )~

x E,(k, (o) . (44)

Finally, the total power absorbed per unit area
(due to currents in the z direction) is

P(k, tz) =—Rz f dz ),(k, tz;z)k, (k, tz) (45)

=-,'Re v„(k,(u) iZ, (k, &o) i', (46)

linear-response calculation' can be used to de-
rive the density fluctuation, f) {n(k, &u;z)), due to
an applied external potential [(I)) (k, [0;z)] as

S(s((z, s;z))=-z f Sz s( k"zz,z,z) (kk, ;tzz),

(40)

where v"(k, (d;z, z") is the transform of the re-
tarded density-density correlation function (and

will be discussed in more detail later). Using the
continuity equation

—[j,(k, tz;z)) = ((tz)z* f Sz "sz(k, tz;z, z")
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z„(k,tz)=(itz)z f dz f dz f'dz z""
0 0 0

xm"(k, p) z', z') (47)

The quantity o„(k,&o) is the (z, z) component of an

effective conductivity tensor. It is, however, not
a true conductivity in the normal sense because it
is not directly related to a current response.
Rather o„is an average of the current response
over all z and is related to the total power ab-
sorbed per unit area (per unit frequency) in the
same way that a true conductivity tensor would be

related to the power absorbed per unit volume.
However, it is the poles of Re(o„)in the limit
k- 0, which define the positions of the absorption
peaks in an optical absorption experiment. In
addition the strength of these poles is proportional
to the strength of the absorption, a result which
provides a convenient means of calculating the
relative absorption strength as a function of inver-
sion-layer density.

The (retarded) quantity, v "(k, (o;z', z"), appear-
ing in the definition of o„[Eq.(47)) may be ex-
panded in terms of $,. Restricting attention to the
limit k - 0, and assuming that the Green's function
is diagonal,

(48)z"(k-0, &o;z', z")= [$,( z)&z( z)][(&( z)h, ( z)] z~(k-0, (d+iq).

Here, the retarded polarizability has been found from its time-ordered form by r'eplacing ~- lim„
(&@+i)I). The form is correct for the real $, introduced in Sec. II. In the special case that only the ground

subband is occupied, Vinter' finds

f0

.„(k-o, )=(.,)(k-O, )=, ",'", =o, g 0
j @y

(49)

0 otherwise.
E.

Combining Eqs. (47), (48), and (49) and ignoring all but the first two subbands yields

o„(k- 0, (u) = (i(u)e'
~
z„~'X fPp) (k - 0, (o+ iq),

where z,~ is a dipole matrix element defined (for real $,) by

z,~= Jt dz g, (z)z&~(z)
0

(50)

(5l)

(52)

The quantity X&~&+ is shown schematically in Fig. 5(a); it represents the lowest-order approximation to'

X,~ and yields the particularly simple (though incorrect) result that absorption occurs at the subband sep-
aration, E„.

In a simple extension of this theory which includes depolarization, X((z~(k, p)) is replaced by )(,P(k, (d) de-
fined, as shown in Fig. 5(b), by Dyson's equation

(&) Xi~o (k 0 (d)+i)7)
(k Oi (d+(i'g) I ~~ ( 0 ) (P) (k 0 )

(58)

Replacing X~+) by X,",' in Eq. (50) and using the identity

lim . =&~ —+iz5((u)
t'1

p (d + i')i ((o

yields

(54)

R o„(k 0, ~)=-I(~p l(X, S,p) ()Z,p) ) Qp Qp
4z

x
(
—[5((o—Q,) —5(p)+Q,)] ——[6(p) -Q ) - 5((@+0 )]),~(d (0

(55)
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where

A, =2(&u~o++Lo+A )+~((&u,a+to~+A ) 4[&g, +(1 a)A jcu~g ~,

g2 2%+7Ego~) 4%8
@8 / ~ 11 y

Ql

8, = dz dz' z' , z'
o & o

(56)

(57)

(56)

(59)

1-~jo= Biok (60)

0 ~+ (dLo ~ (61)

These results indicate that the depolarization
splitting cannot be responsible for the observed

X(p (q 0, (v) =
(0)

(0)
600

-&&p)
II

006

(b) X~p(q 0, ~) = X,p(q 0,~)
(I) (0)

(0) e-e
+ Xp{q0(u)V~p~p(q0cv)X)p(q0Ql)

Equation (55) shows immediately that the poles
of o„(k-0,&u) occur at two distinct frequencies,
~, and ~; the single electronic excitation is ob-
served as theo peaks in the absorption spectrum.
An examination of Eq. (56) shows that

(ve' , (~ —~Lp)
-~ ~2 K.,&»)(tz,ol') („.„.)+ - Cd=A+

(62)

This quantity is proportional to the size of (i.e, ,
area under) the absorption peak. Notice that the
strength is calculated in terms of the dipole ma-
trix element ~z»~ and the form factor S». Since
these quantities [defined in Eqs. (51) and (59),
respectively] depend on the envelope functions $„
a measurement of absorption amplitude can be
used to obtain information concerning the wave
functions themselves.

8. Results and conclusions

I

"double" peak in InSb inversion layers. In such
experiments all absorption peaks were observed
at energies greater than S~«. The depolarization
phenomenon discussed here has not yet been ob-
served in inversion layers.

As already mentioned , and ~ are the excita-
tion energies of mixed electron-phonon states. An
examination of ~, indicates that, at large subband
separation (&»&8'~„oor N+„large; valid for most
obtainable densities), the upper branch (A.) is
"electronlike" and the lower branch (A ) is "pho-
nonlike. " That is, the electronlike ~, branch be-
haves as a simple (as in silicon inversion layers)
depolarization-shifted electronic excitation, and
the lower phononlike branch behaves as a nearly
dispersionless phonon excitation. At the very low
(and less important) densities, however, the roles
are reversed.

The strength of the poles of o„canalso be ob-
tained directly from Eq. (55). That strength is

~ ~~ ~ ~ ~ ~r~ //J

FIG. 5. Feynman diagrams representing the intersub-
band polarizability in (a) the lowest-order approxtma-
tion, and (b) the first-order approximation which includ-
es depolarization effects.

Figure 6 is a plot of the two absorption frequen-
cies, , and , as a function of N&„for a GaAs
substrate. Other parameters are listed in Table I.
For comparison, the dashed line shows the sub-
band separation calculated using the two-subband
approximation, and the dotted line is the LO-pho-
non energy.

It is evident that the upper electronlike branch
is shifted to higher energies relative to the sub-
band separation. While the shift is quite large
(20-30fp), actual observation of the upper absorp-
tion branch may, in fact, occur at somewhat lower
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energy is shown as a dotted (~ ~ ~ ) line.

energy due to the excitonic shift. '" The latter ef-
fect has not been included in the present calcula-
tion, but accounts for the interaction between the
excited electron and its remaining hole. Calcula-
tions valid for silicon inversion layers and includ-
ing this effect show that the excitonic shift tends
to cancel depolarization effects and results in an
observed absorption peak which is somewhat
closer to the calculated subband separation. While
such calculatlonsq valgi fox' GRA8 Inversion lay-
ers, have not yet been performed, it is probable
that a similar cancellation between depolarization
and excitonic effects will be found.

The lower branch is phononlike over most of the
density range and appears about 1 meV below the
bulk phonon energy. While this absorption peak

FIG, 8. Upper and lower depolarization-shifted
branches for InP inversion layers.

corresponds to the creation of a (mostly) lattice
vibration, it is not associated with the direct ex-
citation of a bulk LO phonon. Instead, the excita-
tion is created through an indirect, inversion-lay-
ex-mediated coupling between the lattice and the
external radiation fieM.

The relative strength of the absorption as a func-
tion of density (Nz„)is shown in Fig. V. The upper
(solid) curve is valid for the upper, electronlike
branch and the lower (dashed) curve is valid for
the lower, phononlike branch. Other parameters
axe shown in Table I. Notice that the curves cross
at a very low inversion-layer density. The cross-
ing suggests a change in the electron- and/or
phonon-like character of the branches.

Figures 8 and 9 are plots of the depolarization
shift and absorption amplitude as a function of in-
vex sion-layer density for an InP substrate. The
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FIG. 7. Relative absorption amplitudes of the upper
and lower depolarization-shifted branches as a function
of inversion-layer density. The substrate is GaAs.

FIG, 9. Relative absorption amplitudes of the upper
and lower depolarization-shiRed branches as a function
of inversion-layer density. The substrate is InP.
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other parameters are shown in Table II. Again,
the results are very similar to those obtained for
GaAs inversion layers. Here, however, the sub-
band separation is larger and results in an upper
branch which is distinctly electronlike and a lower
branch which is distinctly phononlike for all den-
sities examined.

V. SUMMARY

In this paper, we have calculated the self-energy
and quasiparticle energy of inversion-layer elec-
trons on the surface of polar semiconductors. As
in our earlier diagonal calculation, the Coulomb
and LO-phonon-mediated interactions between
electrons have been included in a many-particle
calculation for the self-energy. However, the
model used here treated an unscreened electron-
phonon interaction, but did include the effects of
subband mixing due to this term. A simple two-
subband model was used to calculate the quasi-
particle energy. This particularly simple model
indicated that the subband mixing is quite negligi-
ble even when the subband separation is very close

to the LO-phonon frequency.
The quasiparticle energies obtained were also

used as the basis for a depolarization calculation
including the frequency —resonant- LO-phonon in-
teraction. It was found that FIR absorption experi-
ments should detect two absorption peaks asso-
ciated with each intersubband transition. The low-
er branch is phononlike and very weak for most
inversion-layer densities. However, in very pure
samples of GaAs or InP and at relatively small
electron density (t.e., when E„sI~„o)the tower
branch becomes stronger and more electronlike.
Under these conditions, it may be more readily
observable and could prove to be an interesting
means of probing the inversion-layer system it-
self.
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