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Anisotropic classical chain: Numerical calculations of thermodynamic properties
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Thermodynamic properties are computed for the classical linear chain with orthorhombic an-

isotropy in an external magnetic field. Special attention has been given to crossover effects
between different model systems as a function of temperature and field. The ordering ternpera-

ture of quasi-one-dimensional systems is computed as a function of the interchain interactions

and the anisotropy. Results are compared with othe theories.

I. INTRODUCTION

The problem of an accurate theoretical description
of the behavior and the properties of an infinite array
of interacting particles (or spins) has attracted consid-
erable attention during the last decade. Many simpli-
fied models have been introduced, among them the
classical model' in which the interacting spins are
treated as classical vectors. It appeared that, within
this approximation, analytic expressions for the ther-
modynamical variables of an infinite chain can be ob-
tained, provided the interaction is isotropic (Heisen-
berg exchange). Moreover, it has been shown by
various experiments2 that for several thermodynamic
properties classical behavior, which in fact corre-
sponds to the limit of infinite spin quantum number

S, can be found already in real systems with S ~ —,

(or sometimes even lower).
In view of this, the model has been extensively

used in the interpretation of experimental results
specifically for Mn++ (S = —, ) compounds. Exten-

sions to the isotropic theory were given by Blume
et al. and Lovesey et al. , who reported numerical
solutions for the classical chain in an applied field
and by Loveluck et al. ,

5 who introduced uniaxial an-

isotropy in the system. All these approximations
have in common that the system still contains rota-
tional symmetry around some axis. Experimental
evidence, however, indicated that even a small
orthorhombic anisotropy can have a rather drastic ef-
fect on some thermodynamic variables. ' This effect
originates from the fact that at lower temperatures ul-

timately this anisotropy invokes an Ising-like
behavior, which means an exponential increase of the
correlation length when T approaches zero. As the
other thermodynamic variables are all somehow relat-
ed to the correlation function, it stands to reason that
introduction of a general anisotropy can strongly
modify their behavior. Therefore it seemed
worthwhile to perform calculations on the classical
chain with orthorhombic anisotropy. Preliminary
results have been reported, mainly in relation to the

explanation of the anomalous field dependence of T&

in quasi-one-dimensional (1D) Heisenberg systems. '
The organization of this paper is as follows. %e

will continue with a section containing the relevant
theoretical background, followed by Sec. III which
describes the numerical details of the calculations.
The final section contains selected results and some
general conclusions.

II. THEORY

Before we go into the details of the theoretical
treatment of the problem, we would first like to dis-
cuss some more general aspects related to the starting
point; that is the Hamiltonian. Since a large number
of papers appeared on magnetic model systems, also
a large number of different Hamiltonians have been
introduced. Judging from the inconsistent use of
various names for these model systems, apparently
some confusion does exist about the nomenclature of
the limiting cases." Since we will refer to several
of these model Hamiltonians, we would like to start
with a review of the classification of relevant Hamil-
tonians, which we will be using in this paper.

Let us consider a Hamiltonian of the following
general form

3C = —2 X (J~S"S"+ J~~S&S~+J"S'S')

Let us first discuss the case D =0. In that case,
whatever the fprther restrictions on J, we are deal-
ing with a three component (n =3) spin system and
hence

(S")'+(S,')'+(S*)'=S(S+l)

In Table I we have tabulated the model systems and
their nomenclature, resulting from restrictions and
simplifications of the interaction J . In order to
reduce the degrees of freedom of the interacting
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TABLE I. Nomenclature of the different model systems, characterized by the Hamiltonian

Ã =—2 X (J S,"SJ"+ J~~SfSJ+J'*S,*SJ') D—x (S,*)
i&j I

References are confined to one-dimensional systems.

Interaction Nomenclature

References
1S=—
2

1S &—
2

D 0

spin dimensionality

/1 ~3

isotropic

JXX' JPP JZZ

in a plane

JXr Jyy Jzz 0

along one axis

JAx JPP 0 Jzz

Heisenberg

XY

Z

1,10

14

13

12

15

D ~—oo

spin dimensionality

tl ~2

isotro pic

JXX' JPP

along one axis

Jxx JPP 0

planar

planar Ising

10,16,17

D ~+oo
spin dimensionality

n=1
J22 Ising 10 18

spins, one might state that n = 2 or 1 and equivalent-

ly insert

(S") + (Sf) =S(S+1)
or

(S,')'=$(S+1)
In physical reality, ho~ever, these models may be
thought to originate as limiting cases from the Hamil-
tonian Eq. (1) including D. This limit may be ob-
tained either theoretically by D approaching + or-
infinity or physically (as we will discuss later on) by T
approaching zero for finite values of D.

For negative values of D, there is, so to speak, a
penalty for the spins to be directed along the z direc-
tion. In the limit of D —~ a z component of the
spins is ultimately forbidden. Hence the spin has
been transformed into a two-dimensional vector. "
An illustration of this behavior, is shown in Fig. 1. In
this figure the probability density to find a spin at an
angle 8 from the z direction is shown for different
values of D. In this example the results were com-
puted with the 1D classical model. For D —~ the

curve narrows down to a 5 peak at 8 = —,m, illustrat-

ing the reduction of the degrees of freedom of the
spin to the XY plane (n =2). For positive values of
D we get an analogous picture. The probability den-
sity is now peaking at 8 = 0 and n, which means that
in the limit of D ~ the system has only spin com-
ponents along the z direction (n =1). This last
model is commonly referred to as the Ising model
and should be distinguished in principle from the
(n =3) Z model. The same distinction should be
made between the (n = 3) XY model and the (n = 2)
planar model also tabulated in Table I. Inspection of
this table reveals further that such a distinction leads
to the so-called planar Ising model which, to our
knowledge-, so far escaped the attention of theoreti-
cians, since no results have been reported. %e will

return to the behavior of these model systems in the
discussion in the last section.

Now, we consider the solution of the classical
model for a one-dimensional system containing
orthorhombic anisotropy. Unless stated otherwise,
the spins will be considered as three-dimensiona1 unit
vectors (n =3) and anisotropic terms in the Hamil-
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0.3

P4 O

T"=0.1
In the presentation of our calculations and the discus-
sion of the results, the effect of anisotropy in , „will
be emphasized. We like to note, however, that an-
isotropy in „gives rise to essentially similar effects.
The Hamiltonian 3C,„can be written in a more con-
venient form by defining the anisotropy parameters
e, and e~ as

e, =

0.2 where the interaction J is given by

J = —(J + Jy~ +J„) (8)

A positive value of J indicates a ferromagnetic cou-
pling. Substitution of Eqs. (7) and (8) into Eq. (3)
yields

3C,„=—2JS [s; s;+i
zz 1 xx 1

+ea(si~si+i
2

si"si~+i
2 sfsl+i )

+
z e~ (sixsix+ i sfsl + i ) ] (9)

FIG. 1. Probability density as function of the azimuthal
angle 8 for different values of the anisotropy parameter
D[T =kT/2iJiS(S+1) =0.1].

tonian will be relatively small ~
- If only nearest-

neighbor interactions are present, the Hamiltonian
describing the properties of a chain can be written as

To handle this classical Hamiltonian we will use the
transfer-matrix formalism, ' which will be shortly re-
viewed below. The classical spin vector components
are denoted in spherical representation

s; = (s,",sl', s;*)

= (cos$; sinH;, sing, sinH;, cosH; )

~chain g K(S/i Si+i) (2)
Assuming periodic boundary conditions, s N+1 = s]„
the partition function of the chain can be written as

We will consider three contributions to 3C, a term due
to the exchange interaction X,„, a term due to an
external magnetic field 3C~, and a term due to a so-
called single-ion anisotropy X„. The orthorhombic
exchange part of the Hamiltonian, X,„, is written as

N

dsids2 dsii gK( s;, s i+i)
N i 1

where the kernel K is given by

X,„=—2S gJ s; s;+i, n=x, y, z

K(s;, s;+i) =exp[ —PX(S;, S;+i)]

P=]lkT
(12)

The other terms are given by
and d s; is a solid angle segment. As the expectation
value of an arbitrary thermodynamic variable 3 can
be expressed as

and

3CF = g p'p z
HS (si + si + i ) (4)

Tr(AK)
Tr(K)

(13)

K„=——,S X [D [(sk)' ——,
'

]
k ii+1

+E [(sk)' —(sf )']]

it is convenient to evaluate the traces appearing in

Eq. $13) in terms of the eigenvalues and eigenfunc-
tions of the kernel given in Eq. (12), wh]ch are de-
fined by the homogeneous integral equation

In these expressions s; is a classical unit vector locat-
ed at site i. The actual spins are normalized by tak-
ing'

dQ ~i JtdHi+i sinH

&«( s;, s;+i)i]i( s;+, ) = Xi[i( s;) (14)

Because of the linearity of this equation, there exists
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a complete orthonormal set of solutions. Further-
more, all eigenvalues will be real, due to the sym-
metry of the kernel.

Since by means of the transfer-matrix formalism all

thermodynamic variables can be expressed in the
eigenvalues and eigenfunctions of an integral equa-
tion, the remaining task is to solve the eigenvalue
problem given in Eq. (14). In previous papers on the
subject, '

problems were considered which contained
rotational symmetry around the z direction, and
hence it was possible to separate the Q dependence.
In this way the integrals over $, + l could be per-
formed explicitly. In the problem discussed in this
paper, however, this uniaxial symmetry is not
present. As it is very inconvenient to handle a prob-
lem with two integration variables numerically, we
will eliminate the Itl integration. To this end we in-

troduce the following Fourier expansions

y„(e,, y, ) = X y, (e, )e ' (15)
(2m sine )'i'

and

+Oo +Oo

K(s;, s;+I) = X X K I(e,, e;+I)
m -ool I

x exp[i(mltl; —Ip;+I) ]

(16)

The indices i, i +1 will be replaced by 1, 2, which is
allowed by the translational invariance of the prob-
lem. Substitution of Eqs. (15) and (16) into Eq. (14)
leads, because of the orthogonality of the functions
exp( —imp), to the set of coupled integral equations

+ Oo

d82 (sinel sin82)'i'K I(el, 8, ) p I(I)82
I ~—ao

=)„e „(e,), (17)

m=0, +1, +2, . . .

in which the K i are given by the inverse Fourier
transform of Eq. (16), i.e.,

iae

K I(el, 82) =
J dItl2„dItllK(sl, s2)

x exp( —imItII +ii ItI2)

The indices n will be omitted for convenience.
It is obvious that Eq. (17), the central problem in

this section, cannot be solved without further simpli-
fications. Before tackling the problem with numerical
methods, we will show that this set of equations can
be separated into four smaller subsets, using the C2„

point symmetry of the Hamiltonian Eq. (2). From
the fact that the kernel K must be invariant under
the symmetry operations belonging to the point group
C2„, it follows that

K I(el, 82) =0 for ~m —i~ = odd (19)

and

K I(el, 82) =K I(el, Hg) (20)

These equations can also be derived algebraically
from the properties of the modified Bessel functions,
as shown in Appendix A.

If we define the symmetric and antisymmetric parts
of the eigenfunctions 4 as

q+(8)=e„(e)+c „(e) (21)

and

e;(8)= c, ( 8) q-, ( 8), (22)

and apply Eqs. (19) and (20), Eq. (17) splits up into
the following equations

m, l=0, 1, 2, . . .

X J d82 (sinel sin82)' (K, „—K2„2,)4&2I(82)
I~O

=)te2 (e, ) (24)

m, l=0, 1, 2, . . .

For the odd terms, two analogous equations can be
derived. The resulting four subsets form the basis of
our computations, which will be discussed in the next
section.

III. NUMERICAL APPROACH

As it is not possible to solve the four equations
derived in the previous section analytically, the eigen-
functions and eigenvalues will be approximated by
numerical methods. First we discretize the integral
equations into matrix equations, following a method
described by Blume et al. ' To this end the integrals
over 82, occurring in each subset, are approximated
by a summation, using a Gauss integration formula.
Proceeding by example, Eq. (23) is replaced by

ao /V

X X w;(sinelsine)")'i
I~Oi ~ 1

[K2m2I (el i 82 ) + K2m —2I(el~ 82

x @+,(HI'&) = )tip+ (8, ) (25)

X J d82(sinel sin82)' '(K2m2I+K2m 2I)@2I(8—2)
I 0

= ~a+ (e, ) (23)
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in which N is the number of integration points, and
w;, HP are the weights and abscissas of the integra-
tion method, respectively. Next we define

(26)

and

H)~pi(e"', e' ') =Ja; w)(sin8"''sin8'~')' '

x [~, „(8&' g'J')

If we choose a set of values for H~ identical to the
abcissas used for Hq, the following set of matrix
eigenvalue equations is obtained

((I(J) (i(i))y+(9(i)) ) y+ (P(J)), (2g)
l ~oi

ij=1, 2, . . . ,N, ml=Q, 1, 2, . . .

r

Hoo H~o p+ y+
—+ = A, —+

02 22, liip ilies

(29)

It is obvious that, for a given value of k, the original
problem of solving the eigenfunctions and eigen-
values for four infinite sets of coupled integral equa-

where H~ qI is a real symmetric N & N matrix. The
subscripts 1 and 2 have been omitted for conveni-
ence. To handle these equations numerically, further
approximations are necessary, due to the infinite
summation over I, and the infinite number of equa-
tions m. Fortunately, it can be shown that, if the de-
viations from uniaxial symmetry are small, K I is a
sharp-peaked function around

~
m —/

~

= 0. In the
ideal case of uniaxial symmetry, K I is a 8 function,
as.shown in Appendix A. Therefore, for a given
value of m, only a few terms in the summation over t

have to be retained, which implies that it is sufficient
to consider only a few matrices H»&. On the other
hand, only a restricted number of equations m have
to be taken into account. In the uniaxial case only
m = 0 or 1 terms contribute to the physically interest-
ing variables like susceptibility, correlation length,
etc. It can be shown that, as long as the deviations
from uniaxial symmetry are small, the major contri-
bution is still given by the matrix elements with low

values of m.
We will exploit these features in the following way,

Because of the rapid decrease of importance of the
matrix elements belonging to increasing values of
m —l, we will neglect all submatrices with

m —l ) 2k, k denoting the order of the approxima-
tion involved. Fu'rthermore, only k equations will be
retained, because of the second argument given
above. In this way Eq. (28) reduces, e.g. , for k = 2,
to

tions has been reduced to the solution of four N & k
matrix eigenvalue equations. These equations can be
handled with standard computer routines. In some
cases the actual calculation of physic@1 variables may
be simplified by general symmetry arguments which
lead to a further reduction of the number of equa-
tions to be calculated. For details on this subject we
refer to Appendix B.

It will be clear from the arguments given above
that there are two inherent limitations to the present
computational method. First, higher-order approxi-
mations, involving the solution of larger matrices,
will be needed if the deviations from uniaxial sym-
metry increase. It appears that the effective magni-
tude of these deviations can, be characterized by the
value of e~/T', where

T' = k T/2 I J I S (& + I )

Secondly, at low temperatures, the number of in-
tegration points N needs to be increased due to a less
smooth behavior of the kernel. Both these effects
imply that the temperature ultimately sets a limit to
the applicability of the computational method.

In general, the accuracy of the computations was
checked by using increasing values of N and k until a
good convergence was obtained. On the other hand,
the results were compared with all known limiting
cases, and were found to be identical. A good con-
vergence was generally obtained for N && k =96, at
least for T' ) 0.03. To retain sufficient accuracy at
lower temperatures it appeared to be necessary to in-
crease N x k roughly proportional to T '. Therefore,
only a slight decrease of the lower temperature bound
already involves an enormous increase in computer
time. In the next section we will confine ourselves to
the results obtained for T' ~ 0.03.

IV. RESULTS AND DISCUSSION

With the theory outline above, it is possible to cal-
culate a number of thermodynamic properties of clas-
sical chains with orthorhornbic anisotropy with or
without a field. These properties include the zero-
field susceptibility (z) in several directions, the stag-
gered susceptibility (X„),and the correlation length
(g). Some of the results have been reported in ear-
lier publications. "" In this section we would partic-
ularly like to emphasize and illustrate the influence of
anisotropy in terms of crossover from one model sys-
tem to another as a function of temperature or field,
as well as the behavior of the ordering temperature
of quasi-one-dimensional systems as a function of
various parameters, such as the anisotropy, or the in-
terchain interaction J'/k.

To start with, we return to the model systems in-
troduced in Table I which, in a sense, can be seen as
limiting cases in terms of anisotropy. To illustrate
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the largely different behavior of these "model sys-
tems" and thus the importance of a consistent
nomenclature we calculated the inverse correlation
length K as a function of temperature, within the
classical spin formalism. The expression relating ~ to
the computed eigenvalues and eigenvectors is given
in Appendix B. The results are shown in Fig. 2. For
the cases with a spin dimensionality n =3, i,e.,
Heisenberg, XY, and Z, the results were obtained
from computations with the model described iri the
previous sections. For n =2 we proceeded in a simi-
lar way. The curve shown for n =1 is the exact ex-
pression for the inverse correlation length in an
S = —quantum mechanical Ising system. " This

2

latter system is, in fact, identical to the (n = 1) clas-
sical case (two discrete orientations or states per site).

As argued above a clear distinction must be made
between, for instance, the (n =3) XY model and the
(n = 2) planar model, and between the (n =3) Z
model and the (n = I ) Ising model. Let us first con-
sider the difference between the XY model and the
planar model. In the former model, which is
represented by the Hamiltonian Eq. (9) with e, = —1,
e =0 the interaction between the spins has only
components in the XY plane, but the spins them-
selves are free to have a component in the z direc-
tion. In the planar model, however, the spins are

0.1—

confined to the XY plane. It is obvious from Fig. 2
that the XY model will approach the planar model at
low values of the reduced temperature

T"= kTI21iJIiS(S + I ) « 1

For high temperatures (T" & 1) the system behaves
like an isotropic Heisenberg model. This can be ex-
plained by the thermal motion of the spins, which in-
troduces a nonzero expectation value of the spin
components in the z direction at higher reduced tem-
peratures, even though J„=O. In a similar way the
Z model can be distinguished from the Ising model.
The Z model, in which the interaction parameter J
has only a component in the z direction, is represent-
ed by the Hamiltonian Eq. (9) with e, =2, e~ =0.
Again the spins can rotate freely, giving rise to an
isotropic behavior at high temperatures. This is in
marked contrast to the (n = 1) Ising system.

The observed crossover from one model system to
another is also illustrated by the behavior of (s') as
a function of T' for the three components o. =x,y, z,
plotted in Fig. 3. Results are presented for two dif-
ferent values of the anisotropy parameter e~. The
value of e, is chosen negative, in which case the
spins favor an orientation within the XY plane. The
values of e are chosen as small positive numbers,ZP

which implies that the spins tend to be directed to-
ward the x axis. Inspection of the figure shows that
in the high-temperature region the system behaves
like an isotropic Heisenberg system (n =3), for
which all expectation values equal

~
. This fact is in

agreement with the behavior of the correlation length
discussed above. At lower temperatures the effect of
e, becomes noticeable and the system behaves as a
(n =2) planar system, i.e., (s„)= ~sy

2

,s ~ =O. For still lower temperatures, also the influ-g

ence of e~ becomes important and a crossover to an

001—
A

Vl
V

08- ',

0.4—

I

Ising
I

exy-O' I e;g)--—
&xy =g)01,

~ ~ ~ ~~

0.01 0.1
T kT/2I J I S (S+1)

~ ~

I

0.1
I I

0.2 0.3
T kT /2l J IS ~S+1i

0.4

FIG. 2. Inverse correlation length of the spin components
along the preferred direction for different 1D model systems
vs reduced temperature T .

2FIG. 3. Expectation value of the spin components s
a=x,y, z, as a function of reduced temperature. The
dashed-dotted lines represent the limiting cases. Note that
both curves for (s,~) coincide.
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Ising-like behavior occurs ((s„2) = I). From these
observations it can be concluded that in real systems
a crossover to Ising behavior can be expected at low

temperatures, provided that orthorhombic terms are
not forbidden by symmetry. On the other hand, it
can be shown that in antiferromagnetic systems with

only uniaxial anisotropy a crossover to Ising-like
behavior can be induced by an external magnetic
field. To illustrate this effect, the inverse correlation
length is plotted in Fig. 4 as a function of T' for two
values of H' =g p&H/2 ~ J ~S. The system shown in

the figure has a small negative value of e„which will

cause planarlike behavior at low temperatures. %'hen

an external magnetic field is applied parallel to the
XY plane, the system shows a crossover to an Ising-
like system, similar to the crossover that would have
been induced by anisotropy in the same plane. The
reduction of the effective spin dimensionality by an
external magnetic field has been predicted by Villain
and Loveluck, "who argued that this reduction may
be the reason for the observed anomalous increase of
the Neel temperature in quasi-one-dimensional sys-
tems, when a field is applied. This point has been

discussed in earlier publications. In principle, in an
isotropic ferromagnetic system, a crossover to Ising
could also be induced by an external magnetic field.
Since, however, the field induced crossover in sys-
terns with antiferromagnetic coupling is'far more in-

teresting, both experimentally and theoretically, the
remainder of this paper will be devoted to the latter
case.

Let us now consider the behavior of the inverse
correlation length as a function of the external mag-
netic field somewhat more in detail, especially for low
values of 0. In one of the many papers devoted to
the behavior of (CD3)4NMnCI3 (TMMC) in a mag-
netic field, Borsa argued that the correlation length
in an isotropic Heisenberg system would increase
quadratically with H/T. His arguments were based
on perturbation theory. A similar behavior was
predicted for the pure planar case. In order to con-
front these predictions with our computations, the re-
duced inverse correlation length K/Ko is plotted in

Fig. 5 as a function of H'/T". The drawn curves
represent the results obtained from numerical calcu-
lations on the isotropic model. The upper curve was
computed for T'=0.1, while the lower was obtained
for T'=0.05. The dashed curves represent the
results of the perturbation theory. Due to the fact
that this theory is based on a decimation procedure,
which is essentially a low-temperature approximation,
it predicts a slightly incorrect value of Ko. Therefore
the correlation length is presented in reduced form.
For low values of the magnetic field the perturbation

1.0-

0.9-

0.01—

0.00
0.8-

planar y . T =00+ T - 0,1 yisotr.

0.01 0.1
T= kT/2LIIS(S+I)

I l I

07-

2

H /T

FIG. 4. Inverse correlation length vs reduced temperature
for a chain with a small easy-plane anisotropy, e, = —0.01,
displaying a crossover from Heisenberg to XY. The other
drawn curves show the effect of either a magnetic field ap-

plied parallel to the easy plane (H lly), or a small anisotro-

py in that plane (e~ =0.003). Both curves demonstrate
XY-Z crossover. Dashed lines denote the zero-field limiting

cases.

FIG. 5, Reduced inverse correlation length of a classical
chain vs H /T . Dashed curves are obtained from pertur-
bation theory (Ref. 9) for the isotropic and planar case.
Drawn curves represent computations on an isotropic model
at two different values of the reduced temperature
(T =0.05, 0.1). Dashed-dotted curves denote an anisotrop-
ic case, with e, = —0.01, at the same reduced temperatures.
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theory yields correct results. Moreover, in this re-
gion, the correlation length depends only on the scal-
ing variable H'/T'. For higher values of the mag-
netic field, however, this variable is no longer a
correct scaling variable, which is illustrated by the
splitting of the two drawn curves. Furthermore,
0"/T" cannot be used as a scaling variable anymore
when an anisotropy is introduced. This is demon-
strated by the two dashed-dotted curves, representing
an arbitrarily chosen anisotropic case for two tem-
peratures. If the decrease of the correlation length is
written- as9

g 1 H'2—=1——
C T" (30)

the value of- C amounts to 60 for the isotropic
Heisenberg case, and to 16 for the pure planar case.
For the anisotropic cases in between, the coefficient
C gradually decreases as a function of the anisotropy
and increases as a function of temperature, demon-
strating again the competition between e, and T'.

It would be interesting to compare computations on
the correlation length directly with relevant experi-
mental data. Unfortunately, however, measurements
on the correlation length are difficult to perform and
the reported evidence is rather scarce. Only recently
some-results were obtained on TMMC by Boucher
et al. ' Given the very low reduced ordering tem-
perature of TMMC, the correlation length of a highly
isolated chain could be studied down to rather low
values of T'. The results could be fairly well
described by the planar model, as demonstrated by
Loveluck. ' In terms of the results discussed above,
the fact that this model correctly explains the ob-
served behavior of TMMC originates from the pro-
nounced easy-plane anisotropy in this compound,
giving rise to a crossover from Heisenberg to planar
already at values of T' higher than the experimental
region. In systems, however, where both anisotropy
and magnetic field have a comparable effect, or at
higher values of the reduced temperature, the
behavior of physical variables would be better
predicted by the (n = 3) model, described in this pa-
per. Unfortunately, no experimental data on ( are
available for other compounds.

%e will now direct our attention to the three-
dimensional ordering temperature of quasi-one-
dimensional systems, i.e., systems in which the iso-
lated chains are coupled by small interchain interac-
tions J'/k « J/k. It has been argued'z that three-
dimensional ordering in such systems is largely in-
duced by the correlation length within the individual
chains. This mechanism may be represented by the
expression

(31)

where J' is the interaction between the chains, and
C„ is a constant depending on the spin dimensionality

n. Instead of this rather intuitive relation, a some-
what more consistent formula can be derived by
treating the interchain interactions J'/k in a mean-
field approach. This leads to the expression'4

2zJ'X„( Tn) = I (32)
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FIG. 6. Predicted behavior of the reduced ordering tem-
. perature of quasi-one-dimensional systems as a function of

the interchain interaction zJ'/J for various model systems
within several approximations.

where X„ is the staggered susceptibility of an
individual —antiferromagnetic —chain, and z is the
number of nearest-neighbor chains.

In principle, Eq. (32) offers the opportunity to
study the effect of several variables on the ordering
temperature of quasi-one-dimensional systems, which
is straightforward in the case of J'/k. However,
several other variables have an effect on the ordering
temperature, through their effect on X„. These vari-
ables include the anisotropy, an external magnetic
field, and, for instance, the concentration of diamag-
netic impurities. The effect of the latter two vari-
ables has already received extensive attention in the
literature, '" and will therefore only be reviewed very
shortly at the end of this section. Now, we will first
consider the effect of J'/k, since this allows us to in-
vestigate the validity of the mean-field approximation
of the interchain interactions and hence Eq. (32), by
comparing the predicted behavior with exactly solv-
able models.

In Fig. 6 the reduced ordering temperature TN for
different model systems is plotted. The limiting cases
Heisenberg and Z are computed from the classical
model. Furthermore an arbitrary anisotropic system
is shown. For comparison, the prediction for an Ising
system' and a prediction following from Green's-
function theory for a Heisenberg system" are includ-
ed in the figure. Also a calculation is presented in



194 F. BOERSMA, W. J. M. DE JONGE, AND K. KOPINGA 23

which both J and J' are treated within the mean-field
approximation. Assuming the Green's-function
theory to give the most reliable value of the ordering
temperature, it is clear that if all interactions are
treated within the mean-field approximation, the
predicted value of T& for quasi-one-dimensional sys-
tems is much too high. Moreover, the predicted
value is almost independent of the value of J'

~ This
is not surprising, given the fact that the mean-field
theory yields a finite ordering temperature, even in

the purely one-dimensional case. The classical
Heisenberg case, according to Eq. (32), in which only
J' is treated within the mean-field approximation,
sho~s a behavior very much alike the Oguchi case.
The only difference is a small shift towards higher or-
dering temperatures, which most probably reflects
mean-field effects in Eq. (32). The qualitative
dependence of Tg on the parameter zJ'/J is predicted
correctly. Hence, if we apply the results from the
classical model to determine only relative changes of
the ordering temperature, errors induced by the ob-
served shift are eliminated. Moreover, the results
strongly suggest that Eq. (32) is a very good approxi-
mation of the actual relation between X„and T& for
quasi-one-dimensional systems.

Further inspection of Fig. 6 shows that the effect
of anisotropy is most pronounced for low values of
zJ'/J. At higher values of zJ'/J, the ordering tem-
peratures for different values of the anisotropy, at
least for systems with the same spin dimensionality n,
all converge to the same value. Unfortunately, there
is no direct experimental evidence on the magnitude
of J', except for some quasi-one-dimensional Ising
systems, where the interchain coupling can be deter-
mined by spin cluster resonance techniques. "

In view of the drastic effect of even a small
amount of anisotropy, we will next consider the or-
dering temperature as a function of the anisotropy.
We characterize the anisotropy by the parameters o.

and P. a denotes the reduced energy difference
between two antiferromagnetically ordered states of
the system, aligned along the easy axis and the inter-
mediate axis, respectively. The reduced energy gap
between the easy and hard axis will be denoted by P

LEE;, A Eh,

2IJ I&(&+» ' 2IJ IS(S+1)

For x ( 1, the intermediate and hard axes inter-
change.

The behavior of the ordering temperature as a
function of the parameter o. is plotted in Fig. 7 for
different values of x. The curves were obtained by
calculating the reduced ordering temperature, accord-
ing to Eq. (32), for a given value of zJ'. The figure
shows the cases x = O„corresponding to an easy-plane
type of anisotropy, and x = 1, in which case the inter-

Planar
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FIG. 7. Reduced ordering temperature of a system of
loosely coupled antiferromagnetic chains as a function of the
anisotropy for a constant value of zJ'/J( =7 x 10 ). The
meanings of n and x are explained in the text.

mediate and hard axes are identical. Furthermore,
two curves are shown for higher values of x. For
comparison, results obtained from the planar model,
using Eq. (32) and the same value of zJ' are plotted
also. For small values of the anisotropy gaps, T~ ap-
pears to be a linear function of a/Tg, suggesting

&jy'=C)+C2 /Tg (34)

This formula is quite analogous to a relation between
the ordering temperature and the single-ion anisotro-

py D, derived for instance by Shapira. ' In these
derivations all interactions were treated in the mean-
field approximation. The linear behavior of T~ with

a/T~ disappears for higher values of the energy gaps,
which is most clearly demonstrated by the curve for
x =8. The constants C~ and C2 depend on the value
of zJ'.

Finally, we would like to make some concluding re-
marks. The anomalous field dependence of the or-
dering temperature, observed in many quasi-one-
dimensional systems built up from antiferromagnetic
chains, could be explained fairly well by the present
model, at least for systems with S = —,. For details

we refer to earlier publications on this subject. ' On
the other hand, it is possible to include the effect of
diamagnetic impurities with only slight modifications
of the theory presented above. " The resulting model
was found to give a good description of the experi-
mentally observed decrease of T~ with impurity con-
centration in a number of quasi-one-dimensional
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manganese compounds. Also the field dependence
of T~ in the presence of diamagnetic impurities could
be described satisfactorily.

In summary, we would like to state that all experi-
mental evidence available at this moment indicates
that, for 5 ~ —,, the present theory satisfactorily
describes the behavior of an isolated chain as well as
the three-dimensional ordering temperature of quasi-
one-dimensional systems, provided that the anisotro-

py is properly taken into account.
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APPENDIX A

In this appendix we will consider, without loss of
generality, the case in which the anisotropy entirely
originates from anisotropic terms in the exchange in-
teraction, i.e., H„=O. In that case, substitution of
Eq. (12) into Eq. (18), making use of Eqs. (4), (9),
and (10), yields the following expression for the ker-
nel

fax +e
1 [ —imp& iI@2K )(8), 82) =O(81, 82) J d@) dp2exp(A (81, 82) [(1——,e, ) cos(@)—1t2) +

2 eicos(1t)) +d)2)]}e 'e

(A I)
where

e(8), 8,) =exp[p2JS (1+e, ) cosH)cos82+ , pg p, rHS)(—c Hos+)c sHo)]2 (A2)

is the purely 8-dependent part of the integral, and

A (8, , 8, ) =p2JS sinH)sinH,

By substituting

m =n+k, I =n —k

(A3)

(A4)

and introducing the new variables,

X = @)+ 1[ 2, y = 4'1 —
@2

K I can be written as

(A5)

K~)(8), 82) =O(81, 82) J dx exp[ —e~A (81, 82) cosx]e '
J dy exp[(l ——,e, )A (81, 82) cosy]e '", (A6)

d1t) exp(p cosp) sin(m p) =0 (A7)

where the 2' periodicity of the functions involved
has been used. With the aid of the well-known in-

tegral formulas

I

reduces to

K /(8), 82) = 21rl (A (81, 82) (1 ——,
'

e, ))

x 8(8), 8, ) (A10)

and
Only the terms with m =. / are nonzero, because of
the property of the modified Bessel function

d$ exp(p cos$) cos(m$) = 2rrl (p), (A8) lk(0) = Sk (Al I)

where I (p) is the modified Bessel function of order
m, Eq. (A6) can be written as

where 8 is the Kronecker 8. The special case, given
by Eq. (A10) is in agreement with results reported in

the literature. '

K )(8), 82) =O(81, Hp) 22rl( ))/2(, e~A (81, 82))

&& l1 ~))l2(A (81, 82)(1 ——,'e, )) . (A9)

If uniaxial symmetry is present, i.e. , e~ =0, Eq. (A9)

APPENDIX B

In this appendix the formulas which we used to
describe the thermodynamic properties of the classi-
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cal chain will be presented. These properties will be expressed in the eigenfunctions and eigenvalues of the four
Eqs. (23), (24), etc. It can be easily deduced that the two-spin correlation function (sj sj+~), where np =xy, z,
can be expressed as

q4

(sj sj+q) = X X J d sj lf/r ( s j)s/ Pr ( sj) g
d sj+& lflr~ o( j+&)sj+oQr ( sj+&)

i 1n 0 10,

where X;„ is the eigenvalue belonging to the eigenfunction Pr, which transforms according to the ith irreducible
i,n'

representation I'; of the group Cz„. It can be shown, that only a restricted number of integrals in Eq. (Bl) will

contribute to the correlation functions, due to the symmetry of the group. The remaining terms can be written as

(s, sj~~q) =g a X
'"

J d s yr (s)s yr, (s)
n 0

where i =1 for o. =z, i =3 for n =x, and i =4 for o. =y, " and 5 is the Kronecker 5.
The wave-vector-dependent susceptibility is deduced from these correlation functions with the fluctuation-

dissipation relation

Xr(k) =P (so so ) —(so )'+2 X cos(qk)((sos~ ) —(so )') (B3)

For k =0 and n the normal and the staggered sus-
ceptibility are obtained, respectively, The inverse
correlation length can be calculated from the correla-
tion functions, using the definition'

where

c„'= JI d s pr ( s )s prl o( s ) (B6)

gc'(k) =—Xr(k) X q'cos(qk)((sos, ) —(so )')1

q 0

(B4)
with k =0 for ferromagnetic, and k = vr for antifer-
romagnetic interaction. K can now be calculated with

the aid of Eq. (B2). Proceeding by example, the in-

verse correlation length for an antiferromagnetic ar-

ray is given by

X.(m) X c„ 1—, ~inP, -i )tlo,

3
~n 1+ ~n

~10, ~10,i

(B7)

Interchanging the summations over n and q, and

summing the simple geometric series over q, leads to

'q "—
1

a' =—)r (m) X ( —1)'q' g c„'
P q n

(B5)
In an analogous way other physical properties can be
expressed in eigenvalues and eigenfunctions of Eqs.
(23), (24), etc.
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