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Theory of bipolarons and bipolaronic bands
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It is shown that in narrow-band crystals with sufficiently strong electron-lattice interaction a new energy band
occurs. The tunneling motion of localized electron pairs (bipolarons), which is responsible for this band, is caused by
virtual transitions of bipolarons to the polaron state. The electronic excitation spectrum of a bipolaronic crystal is
examined. It is shown that in the low bipolaron-density limit the excitation spectrum is superfluidlike, so that
bipolarons might be superconducting. In case of high density of bipolarons and their strong repulsion, a charge-

density wave is predicted.

I. INTRODUCTION

It is well known that the strong electron-phonon
interaction renormalizes the carrier mass and
shifts the atomic level. In narrow-band crystals
it leads to the well-defined polaron band (“small”
polaron). As has been both postulated' and demon-~
strated,®? if the lattice is soft enough to allow suf-
ficient local deformation to overcome the near-
neighbor Coulomb repulsion, the pairing of pola-
rons on near-neighbor sites occurs. These
Heitler-London bipolarons will generally lie ener-
getically well below the on-site pairs or Anderson
bipolarons.? In the case of a small dissociating bi-
polaron energy A <W (W is the polaron band half-
width) the ground state is the BCS superconductor
in which intersite pairing® plays the main role and
the “large” bipolarons are the usual Cooper pairs.

In this paper, the theory of “small” bipolarons
(A>W) is developed. We first generaliEe the two-
electron two-site model® for the crystal lattices to
obtain the energy level of the localized bipolaron.
In Sec. III, we derive the reduced Hamiltonian that
describes the formation of the bipolaronic band and
the interaction of bipolarons. We show that the
tunneling motion of bipolarons, which is responsi-
ble for the bipolaronic band, is caused by virtual
transitions to the polaron state, so that the bipol-
aronic bandwidth is proportional to W2/A. In Sec.
1V, the ground state of the interacting bipolarons is
studied by using the well-known Anderson pseudo-
spin analogy.® We show that the bipolaronic Ham-
iltonian is equivalent to the S=4% anisotropic Heis~
enberg Hamiltonian, which can be solved by the
“semiclassical” (self-consistent~field) method of
the theory of magnetism. For the sufficiently large
density of bipolarons, the ground state may be
spatially inhomogeneous (charge-density wave).
The excitation spectrum is derived in Sec. V. We
show that a range of bipolaron density exists where
the excitation spectrum is similar to the one of
superfluid Bose system, so that the “small” bi-

polarons may be superconducting. This is a new
type of superconductivity, which is similar to the
superfluidity of charged Bose particles and quite
different from the BCS superconductivity where the
Cooper pairs are spatially overlapping.

II. LOCALIZED BIPOLARON

Our starting point is a collection of crystalline
electrons moving in a single narrow band and in-
teracting with the lattice having two atoms in the
cell:

[
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Here m=(m, a) are the quantum numbers in the
site representation, m labels the cell, a=(p,0)
labels the atom in the cell (p=1,2) and the spin
(©=4,%), Tpm is the hopping integral, V™" are
the Coulomb correlations,

Hep= 2 [Upme @c ol +Hoc.] @)
mm’q
is the electron-lattice interaction Hamiltonian,
T
H,=Zw;d;d; ®
q

denotes the phonon Hamiltonian, and wy is the
phonon frequency.

In case of weak overlap of the electron functions
at different sites (narrow bands) the interaction
terms with m=m',n=n’ are the largest and all the
other interaction terms in (1) which involve the
overlap factor may be neglected.””® Moreover, if
the temperature is low enough, so that the phonon
occupation numbers do not change as the electron
moves,® we can decouple the electrons and lattice
by the familiar (displaced-oscillator) canonical
transformation®®
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with the result for the electron part of the Hamil-
tonian

H ="§ (e’ € 1 C ot + 0 gt Rt 5 (5)
where n,=Cc, and

tmm=€0=Trm = Ep» E,=§ W Upm@1? (6)
is the polaron atomic level shift;
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Ry, denotes the radius vector characterizing the
equilibrium position of the atom p in the cell m
m+m’);
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q
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is the effective electron-electron interaction,
which may be attractive. In what follows, we show
that if the electron-lattice interaction is strong
enough so that the condition

A>> Zt';np'alpl (I’I’)# I-ﬁl) (9)

is satisfied, the bipolaronic band is the ground
state of the Hamiltonian (5). Here

A= =0z e =2t Tall =3[ (#2+16)Y2 —x]} (10)

is the energy required to dissociate the ground-
state localized singlet bipolaron into two localized
polarons,® X = (Vpy = V1, m2)/t Tar, mes 2 1S the num-
ber of nearest-neighbor cells.

Let us separate the Hamiltonian (5) into the in-
tracell H, and the intercell H, contributions

H=H,+H,, (11)

where
H =2 Hs,
m
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We use the orthonormalized system of the eigen-
function of Hz as the basic functions. In the case
of two electrons in the cell these functions were
found earlier.® The corresponding energy levels

are shown in Fig. 1, where the dashed line refers
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FIG. 1. Two-electron energy levels of intracell Hamil-
tonian. Ground state is the Heilter-London bipolaronic
singlet HLBS (the bonding singlet orbital) followed by the
triplet state HLBT and the Anderson bipolaronic singlet
ABS (the singlet ionic state), the highest being the anti-
bonding singlet orbital ASO. The dashed line refers to
the energy of two polarons in different cells.

to the energy of two widely separated Heitler-
London single polarons which is the low-energy
state in the case of one electron in the cell.

It becomes clear that if A >0, the separated po-
larons are unstable versus the formation of the bi-
polarons. Moreover, if the polaronic band is nar-
row or the electron-lattice interaction is strong, a
well-defined bipolaronic band is generated by the
interaction H ,.

III. THE SECOND CANONICAL TRANSFORMATION,
BIPOLARON OPERATORS, AND REDUCED
HAMILTONIAN

The effect of the intercell interaction H, tends to
destroy the bipolarons in the first order and deloc-
alizes them in the second order. It is clear that if
A>W~ zt, (m+#m’), the ground state of the sys-
tem does not involve the real polarons. In the sec-
ond order, H, describes the processes in which the
bipolaron dissociates virtually into two polarons
and then recombines to a new bipolaron in the same
or in a neighboring cell. Hence the second order of
H , gives rise to the tunneling motion of bipolarons
“dressed” in the virtual polaron “cloud.” This mo-
tion may be described by a new canonical trans-
formation S,, which is similar to the electron-
polaron transformation S,

H=e¢%2He 52, (13)

where
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|4),] &) and E;, E, are the eigenfunctions and the
energy levels of the Hamiltonian H .
The transformed Hamiltonian is given by
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In the derivation of (15), we consider the ground
J

A={1+ Ex +(x2+16)l/2] 2}—1/2
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state of H, | Heilter-London bipolaronic singlet
(HLBS)] as the zeroth-order perturbation and neg-
lect all the terms of higher order than (W/A)?<« 1.
In this case, the only nonzero matrix element of
S, is the matrix element between the states HLBS
and 2HLP (Heilter-London polarons) (Fig. 1), so
that |E,- E,|=A

It is clear that the lowest eigenstates of the Ham-
iltonian (15) are in the subspace, which involves
only the HLBS | 1)3, or empty | 0)7 states of the
cell:

1 Tt
| 7= Yl Z AaaChalmarl 0), [0)7, (16)
oo

where the unitary matrix A is given by®

0 L[x +(x%+16)*7 0 1

x | =[x +(x%+16)*7] 0 1 0
0 -1 0 Lx +(x%+16)¥? )
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r
Let us introduce the bipolaron creation b:—;, and _ v T t
annihilation b3 operators H =% Zb b +mmz;m wis b b bm'b bai b bi)»
t__1 L och (22)
0% os .,,Zar Aaar ChiaChar s (18) where

1
br=- m";al Aga'ChaChar s
which satisfy the mixed Bose-Fermi commutation
rules
U
[67,05].=1
In what follows, we show that while the bipolarons
do not have the Bose properties, the excitations of

the Hamiltonian (15) are Bose quasiparticles.
In the subspace (16) we have

01\ +_[oo
by = , bh= )
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and
T
C;’r;cm' =% 6»mz'b'r.nb?m

[bm, +]_=0 (m=#m’). (19)
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Using (21) we can rewrite the Hamiltonian (15) in
terms of the bipolaron operators (18):

<

T DY (v,;a,;m 2y Miegel® 2) (23)
a’ A

is the effective bipolaron interaction,

m ml It fﬂ
E AaBAaB < & (24)
aa’, BB’
is the effective bipolaron hopping,
Ty Tyt 2
€0=2€0+Ur;1,r;2_2']" Z . .[_tmg_.m_@i_ (25)
aa’ m’#m A

is the renormalized HLBS energy, and

27 = Liadiz [ (x2+16)2 ~x] (26)

is the singlet-triplet exchange energy.?

As one can see from the Hamiltonian (22) the bi-
polaron interaction vz % is the sum of the direct
Coulomb repulsion, the phonon-exchange attrac-
tion, and the polaron-exchange repulsion. It may
be repulsive or attractive. It is seen that in case
of attraction, the spatially homogeneous state is
unstable in relation to the formation of the bipol-
aron clusters ( bipolaron drops). For this, among
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other conditions, a strong dispersion of the phonon
frequencies is needed, because in fact for an Ein-

stein model the phonon intercell attraction (8) van-
ishes. In the following we restrict ourselves to the
case of a repulsive interaction v73,, >0, assuming

that the intercell phonon attractmn is dominated by
the intercell Coulomb and polaron exchange repul-

sion.

IV. GROUND STATE

To find the ground state of the Hamiltonian (22)
it is convenient to use the well-known Anderson
pseudospin analogy,® as the bipolaron operators
(18) are fully equivalent to the set of Pauli spin
matrices

=G> ;9%
bﬁ'sﬁm _’Sm7

where

1(0 1 1/0 i 1f1 o
=10 1) -1 , 5= . (28)
2<1 o) 2<—i o> ?<0 —1>

These S operators act in an imaginary space where
the Z component of spin-up means an “empty”
cell, spin-down means a “full”’one.

In terms of the pseudospins (27) the Hamiltonian
has the Heisenberg form

Bh bz =4 5%, @7)

H H:ZS"“' z UEI;'S"IS’— _.2 t"’:‘é‘;‘nlgt
mm m mm #m
(29)

The “field” H “seen” by §’ is from (29):

Hy ——(u+2 Z vam Sa )z+2 Z tmm:Sm',

m'=m m'=m
(30)

where §* is that portion of S perpendicular to 2, u
is the chemical potential of bipolarons, which plays
the role of the external field. It is determined by
the condition

(-2

where N and » are the numbers of cells and elec-
trons, respectively. We assume thatn<N. If N
<n < 2N holes may be used instead of electrons.* In
the “mean field” approximation the spin vector Sz
is parallel to the field acting upon them. Restrict-
ing ourselves to the nearest neighbors, we find for
the angle 6 =0 between the new direction of the
spin m and the Z axis

(31)

t sinf’
[(4+v cosd’)2+¢%sin®0’] /2 °
—(n+vcosg’)
[ (1 +v cosh’)? +12sin?0'] 172 ?

sinf =

cosf = (32)

n
cosf +cosf’ = 2(1 - F) s

where 6’ is the angle of the nearest neighbors of
m, v=2Vzz, t=2tzz,, and we assume v,¢ >0.
Two solutions to Eq. (32) are possible. The first
one is the “ferromagnetic” solution (Fig. 2):
cosf=cosh’=1-n/N. (33)

In this case, the bipolarons are distributed homo-
geneously over the crystal lattice. The probability
of finding one bipolaron in the cell is #/2N. The
energy (29) of the “ferromagnetic” state is

E = ——t‘fl [1 + (1+ ;’—)( _-1'\;—)2]. (34)

The second solution to Eq. (32) is the “antiferro-
magnetic” one, where two sublattices (6 and 6’)
occur:

2
cosf = I—TV—+[1+(1—%)
n 2 -1/2)1/2
‘z(l‘ﬁ)(l'zr) ] ’
2
cose'-l—l—v——[1+<1 %)
2 =-1/211/2
‘Z(I‘FX *77) ] :

It is possible if v >t and n>n, = N{l [w=-2t)/
(v +#)]*%. This solution is a low-energy state in
the range of its existence with energy

(35)

—<E; (36)

ifn>n,.
So we come to the conclusion that in the case of
the sufficiently high density of bipolarons (n>#,)
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FIG. 2. Bipolaron distribution 7, =<b%bﬁ1’> =3 (1 — cos®)
as a function of the electron concentration ». The solid
line refers to the “ferromagnetic” solution, the dashed
line to the “antiferromagnetic” one. In the range n>n,
and v>¢ the “antiferromagnetic” solution with two sub-
lattice (7} n,) is the ground state.
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and their strong repulsion (v >#) two sublattices
occur which have different densities of bipolarons
(Fig. 2). This is the charge-density wave (CDW).

V. EXCITATIONS

We can expect that the excitation spectrum is
similar to the one of ferromagnetic (# <#n,) or anti-
ferromagnetic (2 >#n,) magnons, but the nature of
excitations is different. In order to study the ex-
citations we write down the equations of motion
which are the usual spin ones®:

dSz = =

-d-;rﬂ =HznxSg . (37)
We allow each “spin” §,; besides its static compon-
ent s;‘j to have a small increment

§exp(z‘§- m—iwT) . (38)
Then from (23) we obtain
—iwS, =~ sinb’ cotd S, +1£ cosb S},
~iwS, =1 sinb’ cotb S, — t§ cosb S;
—tsing’ S, —vésinbd S},
o a g esopr o (39)
—iwS, =t sind’ S, —~t£ sinb Sy,

where &= (1/2_)213,=,, e'z'" is the sum over near-
est-neighbor cells; a is the lattice constant. In the
case of the “ferromagnetic” ground state (z<n,) we
find from Eq. (39)

W @) =12 g% [v -@+t) <1 B %)2]

‘it [(v —t) = +) (1 - -ﬁ-)z] (40)

with k varying in the first Brillouin zone
—r<keB<m (-l1sEs<1), i=x,y,2. (41)

In the long-wavelength limit (2~ 0) we have from
Eq. (40)

w(io)=sk, (42)
where

s= [t(v+t) 7’;-(1 _é‘ﬁ-) 2 -1%: (51;—@)2]1/2 (43)

is the sound velocity.

The dispersion curve (40) is shown in Fig. 3,
part “f”. It is similar to the excitation spectrum
of the Bose liquid,'® so we are tempted to believe
that in the low-density limit (n <#n,) the bipolarons
have the superfluid (superconducting) properties
of the Bose liquid.

When n=n,

w(k) = (1 - £2)/2 (44)

and the critical velocity v, = [w(k)/k] ;, reaches

a
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FIG. 3. The dispersion curves for excitations of the
“ferromagnetic” (‘/”’) ground state (dashed lines refers
to =0, solid line to 0<n<n,, dotted line to #=n,) and
“antiferromagnetic” (‘a¢”’) ground state (n>n).

zero. In tpegange n>n, the ground state is the
CDW and S#S'. In this case we obtain from (39)
two branches of excitations!:

- — £2)\1/2
@) =2 - (e BN )
where

- V2 —p? iz n _f_-l/z
v=2 "0 [1+<1_ N) -2(1_ N)(l- 1)2> ,

(46)

and k varies now in the region —7 <k-al<m, & are
the radius vectors of the cells of the second coor-
dinating sphere (superlattice with double period).

In the long-wavelength limit (§ -~ 1) we have from
Eq. (45)

0 =t VE, w,= E%Z @ B)P~ 22, (47)
n

So in the case of high bipolaron density and their
strong repulsion there is no critical velocity (V,
=0). On the edge of a new Brillouin zone (£ =0) the
gap exists (Fig. 3, part “a”):

wy = w, = [2(1+9%) + 2y (% +2)V/7 /2

- [tz(l +’}’2) _ tzy('yz +2)1/2]1/2 . (48)



VI. DISCUSSION

In this paper, we considered a system of narrow-
band electrons in a crystalline lattice which ex~
hibits the formation of bipolarons. We have as-
sumed that the dissociation energy of the bipolar-
ons is large compared to the bandwidth of the po-
laronic motion, which tends to destroy the bipo-
larons. Under those assumptions, we were able to
discuss certain stable ground-state configurations.
They correspond, in particular, to (i) a long-range
ordered state of bipolarons when the number of
electrons is above a certain critical value n, and
to (ii) a state of homogeneously distributed bipo-
larons if the number of electrons is below .

Examining the low-lying excitations of these
ground states, we noticed that the low-density sys-
tem exhibits features which are similar to the
superfluid character of liquid helium. The excita-
tions have a linear dispersion law and are of Bose
character. We are currently’? examining the su-
perconducting properties of such a system of
charged bosons'? by examining its thermodynamics
and the Meissner effect. It is shown that the sys-
tem is indeed superconducting, representing an
example of the Molecular Superconductivity pro-
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posed by Schafroth, Butler, and Blatt.!®* The cor-
responding critical temperature is found to fall
off like the inverse electron-phonon coupling con-
stant, and the penetration depth is essentially dif-
ferent from the London one. This new type of su-
perconductivity is thus quite different from the
usual BCS one.

On the other hand, the high-density system—
ordered bipolarons—exhibits excitations analogous
to magnons in a Heisenberg antiferromagnet,
which correspond to a dynamical disorder of the
ordered ground state.

The type of excitations studied here depends to a
large extent on the assumption of the high degree
of stability of the bipolarons. If this assumption is
relaxed, then excitations of the bipolarons to real
polarons become important. In a separate publica-
tion (Feinberg and Ranninger) this case has been
investigated.
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