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Exact solution of the Kahana equation for a positron in an electron gas
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It is pointed out that the spherical approximation used by Kahana when solving the Bethe-Goldstone equation for

a positron, in an electron gas is not satisfactory. In this paper the Kahana equation is treated as a two-dimensional

integral equation and solved by expressing the electron-positron wave function as a series of Legendre polynomials.

From the solution obtained in this way, the new values of the enhancement factors and total annihilation rates are

computed. It is shown that the shape of the enhancement curve for large momenta differs from that obtained by

Kahana. Moreover, the total screeriing charge and its distribution are found. These are analyzed and compared with

equivalent distributions for r, = 2, 3, and 4 obtained by Sjolander and Stott and also Arponen and Pajanne. The

essential contribution of higher partial waves to the screening cloud neglected by previous authors is emphasized.

I. INTRODUCTION

It is well known that the angular-correlation
measurements of positron annihilation quanta
(ACPAQ) yield information about the momentum
distribution of conduction electrons, and for this
reason they are of direct interest for the study
of the Fermi surface of metals and also of the
electronic wave functions. However, in order
to obtain the proper information about these quan-
tities from experimental data, an appropriate
theory of electron-positron interaction, at least
for the jellium model, is necessary. Such a
theory based on a Bethe-Goldstone-type equation
for the two-particle electron-positron system
was proposed by Kahana' in 1963. This equation
was obtained by summing the infinite set of ladder
diagrams for a static screened interaction. It is
worthwhile to point out that this equation leads
directly to the electron momentum dependence of
the annihilation probability, which is very impor-
tant for the interpretation of experimental data.
Moreover, the values of the total annihilation
probability obtained in the Kahana approach turn
out to be in rather good agreement with experi-
ment for x, ~ 4 (r, is the radius of a unit electron
sphere). Unfortunately, as was shown by Crowell,
Anderson, and Ritchie the ladder approximation
used by Kahana breaks down for r, ~ 5, leading
to divergent total annihilation rates in this region.
Besides, as was pointed out by Bergersen, 3 the
charge sum rule is violated in the Kahana treat-
ment. It should be mentioned here that Carbotte, 4

adding some sets of diagrams to the ones included
by Kahana, tried to remedy the overaccumulation
of electronic charge around the positron to which
the Bethe-Goldstone equation leads if the static
random-phase approximation (HPA) is applied for
the potential between an electron and a positron.

An alternative approach to this problem was

proposed by Sjolander and Stott' based on a theory
elaborated earlier by Singwi et al. ' for the jellium
model. It consists in computing in a self-consis-
tent manner the electronic charge-density distri-
bution around the positron. The values of the
total annihilation rates calculated by Sjolander and
Stott are in striking agreement with those of Ka-
hana' and particularly Carbotte, including the di-
vergence at low densities (Fig. 1).

Bhattacharyya and Singwi~ made an attempt to
eliminate this incorrect behavior of the total
annihilation probability for large r, . They intro-
duced into the formalism of Sjolander and Stott
the effect of three-particle correlations (Bhat-
tacharyya and Singwi call "three-particle correla-
tions" the contributions from exchange and Cou-
lomb correlations between the screening elec-
trons). However, their theory turned out to be
strongly dependent on a parameter which follows
from the theory; however, a different value of
it is chosen in order to get reasonable results in
the low-density region. Moreover, their calcula™
tions and also those of Sjolander and Stott do not
provide the momentum dependence of the anni-
hilation probability that is so important for the
interpretation of the experimental curves.

Recently Arponen and Pajanne' proposed a new

approach to the problem of electron-positron in-
teraction in jellium. Their approach is based on
a self-consistent formalism in which the electron
gas is described by a set of interacting bosons,
representing collective excitations of the RPA
state treated as the unperturbed state. From the
exact Hamiltonian of the interacting electron gas
Arponen and Pajanne kept, inadditionto the posi-
tron kinetic energy and the electronic RPA energy,
the most important electron-electron interaction
terms beyond RPA i.e., terms of second order in
the boson operators, including also contraction
of higher-order terms responsible for the Fock
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FIG. 1. Comparison of different theoretical annihila-
tion rates with experimental results. Curve 1 is the
Kahana result. Curves 2 and 3 represent the results of
Sjolander and Stott, and Bhattacharyya and Singwi, re-
spectively. Curve 4 is due to the calculations of Lowy
and Jackson, and curve 5 is the result of Arponen and

Pajanne. The circles show different experimental re-
sults.

and Hubbard self-energies), and for the electron-
positron interaction they included terms up to the
second order in boson operators. It should be
pointed out that the enhancement factors obtained
in this approach increase when the electron-posi-
tron pair momentum approaches the Fermi sur-
face. Generally, they behave according to the
Kahana formula

t(P) =9 + bP +cP

but the ratios b/a and c/a decrease with increasing
~„unlike the ones proposed by Kahana. One
should remark that until now through experiment
it has not been decided which of these two ap-
proaches gives the proper result. ' "

Kith regard to total annihilation rates, no di-
vergence in the low-density region was found by
Arponen and Pajanne. It is important to add here
that just the inclusion of the electronic non-RPA
correlation effects in the Hamiltonian was of
paramount importance for obtianing nondivergent
results for the total annihilation rates at large
+s'

It seems, then, that the behavior of a positron
at rest in jellium is relatively well understood,
though the problem of the optimal choice of a two-
body electron-positron phenomenological equation
is still open. The remark of Arponen and Pajanne
that ".. . the problem of a light impurity in an
electron gas cannot ultimately be reduced to a
two-body problem, whatever effective interaction
is used. . ." is not an answer, since belief in

momentum conservation in the two-body electron-
positron system is the basic assumption while
applying angular correlation in studies of the
electronic structure of metallic materials. So,
we are of the opinion that the Kahana approach
has a definite value, and it is worthwhile to elab-
orate on it in more detail than previous authors
did. This approach, however, was criticized by
Lowy and Jackson, '~ but these authors themselves
hardly proposed a better solution, at least not for
metallic densities. Their main objection against
the Kahana theory concerned the way of including
the Pauli exclusion principle. Since the Kahana
equation is obtained by introducing the Pauli ex-
clusion principle into the Schrodinger equation,
they ask whether Kahana introduces superfluous
restrictions concerning the wave function. Name-
ly, he neglects the possibility of electrons scatter-
ing under the influence of the potential into empty
places within the Fermi sea already left by other
electrons scattered by the positron. The impor-
tance of this contribution is shown in the heavy-
particle case by forming a new orthogonal set of
eigenfunctions obtained from the Schrodinger equa-
tion without introducing Kahana's restrictions. For
this reason, in order to obtain the wave function
for an electron-positron pair, Lowy and Jackson
used the half-shell Lippman-Schwinger equation
with the electron-positron effective interaction.
They solved this equation for several densities
and obtained annihilation rates which were slightly
higher than those obtained from experiment. How-
ever, they did not publish the momentum-depen-
dent annihilation probabilities very often referred
to in terms of enhancement factors. Nevertheless,
it follows from the calculations we have performed
according to their suggestions that the enhance-
ment factor decreases with increasing electron
momentum, ' and this contradicts experimental
results obtained for low"" as we]l as for high
electron densities, e.g. , in aluminum. ' Sp
although Kahana's formalism has some drawbacks,
so far it is the simplest one leading to increasing
momentum-dependent enhancement factors. Of
course the important objection against it is the
lack of self-consistency. In order to achieve it,
however, it is necessary to solve the Kahana
equation more exactly than it has been up to now,
and this is exactly the purpose of this paper. To
be sure, as was mentioned before, Carbotte~ tried
to satisfy the displaced-charge sum rule, but
our objection to his approach is that he should
have used the exact solution of the Kahana equa-
tion instead of the spherically symmetrical ap-
proximation.

Moreover, the Kahana equation neglects ex-
change and Coulomb correlations between screen-
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ing electrons. It was pointed out by Bhattacharyya
and Singwi7 that these effects effects play an im-
portant role in removing the divergence of the
total annihilation rates in the low-density region.
So it may be expected that after including in a
self-consistent way electron-el. ectron correlations
into the Kahana formalism, the low-density di-
vergence will disappear. Because of the above
considerations and hoping that the Kahana ap-
proach could be a starting point in building the
theory of positron annihilation in real metals, we
share the opinion that the first necessary step of
this program is done in this paper.

In Sec. II we present a set of integral equations
for all partial waves, .which should be solved in
order to obtain the exact solution of the Kahana
equation and describe the way of solving it. Sec-
tion III is concerned with enhancement factors and
total annihilation rates calculated using the exact
solution of the Kahana equation. The results ob-
tained in the spherically symmetrical approxima-
tion and those of Arponen and Pajanne are also
presented for comparison. Then t arbotte's
formula for the enhancement factor obtained after
introducing Bergersen's so-called v3 correction
is briefly discussed, and its dependence on the
higher-than-zero partial waves is demonstrated.
Section IV is devoted to the computation of the
total electron screening charge distribution around
the positron. The results obtained using the exact
solution of the Kahana equation are compared to
those of Sjolander and Stott and also Arponen and
Pajanne. The contribution of higher partial waves
to the total electron density distribution around the
positron is shown to be essential. Finally, in
Sec. V we draw conclusions and give a short dis-
cussion of our results. Some preliminary results
of this work have been published elsewhere" '
(cf. also Szotek' and Boronski ').

electron-positron pair corresponding to the initial
electron momentum p. Here x, and x~ are elec-
tron and positron coordinates respectively. U(k)
is the Fourier transform of the effective potential
of the electron-positron interaction. Generally,
the solution of Eq. (2.1) can be expressed as a
partial wave expansion

X(p k) =
k
Z a.X.(p, k) P.(«»6),
n=o

(2.3)

+ „U„(P,k)+ —
dq qU„(k, q)x„(P,q)

(2.4)

(for n=0, 1,2, . . .), where

where P„are Legendre polynomials, 8 is the angle
between p and k, and a„=(2n+1)/2. However,
until now the Kahana equation has been solved only
under very drastic assumptions which reduce this
two-dimensional integral equation to a one-di-
mensional integral equation. [Kahana carried out
an angular averaging of Eq. (2.1) over all direc-
tions of p and obtained a one-dimensional integral
equation for y(P, k). This way of calculating
y(P, k) will be further referred to as "spherical
approximation. "] Of course, the spherical ap-
proximation made in order to obtain in a simple
way the solution of Eq. (2.1}is not valid for p
close to p„and must lead to an incorrect descrip-
tion of this region. So one should treat the pro-
blem more carefully, especially in the immediate
neighborhood of the Fermi surface, and solve
Kahana equation more exactly then was done by
previous authors.

Introducing (2.3) into Eq. (2.1) we obtain the in-
finite system of integral equations

n p + "'l p
X.(P, k) =2n+ I k X.-~(P, k)+ 2„+I k X..~(f', k)

H. SOLUTION OF THE KAHANA EQUATION

The Kahana equation in k space has the form
U„(P,k) = U(P, k, x)P„(x}dx .

"1
(2.6)

U(k —p)
X(p, k) =a-,

k +(k-p) -P

+-
2

- -
2 2 dq U(k —q)X(p, q),k+k —p -P

(2.1)

where momenta, are expressed in units of P~ (P~
is the Fermi momentum). Here a = r/8v =0.33
xx, /Sv'. y(p, k) is the Fourier transform of the
amplitude y;(x„xe) defined by the formula

However, because of the weak convergence of
the expansion (2.3) caused by the singularity
of y(p, k} when p tends to k, solving Eqs. (2.4)
is not the best way of obtaining the partial waves
g„(P,k). A more appropriate way is solving the
following equation:

a(p, k) =aU(p —k)

+a dq U(k-q)
lil&i q +(q p P

(2.6)
1

'ke(xe&xp) 8 e + ge(xe exp) (2.2} where

and 4;(x„xe) determines the wave function of the g(p, k) =[k'+(k - p)' -P']X(p, k) . (2.7}
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The above function is slowly varying when p tends
to p~ and exhibits only a weak anisotropy. It has
the advantage to have no singularity at p=k, so
the expansion of g(p, k} into partial waves consists

of a few terms only. Thus expanding it and also
the other functions in (2.6) according to Legendre
polynomials, we obtain the infinite system of in-
tegral equations

(2.8)

00

g.(P k)=«(P k}+ — A eU.(k 0) Z~ g (P,4)&,„~ — Q,„~—

where Q„(x) are Legendre functions of the second kind, and m, n (m, n ) means the smaller (bigger) index
from the two. The relation between the functions y„(P,k) and g„(P,k) is given as

X.(p, k) =-g ~.g.(p, k)& .
j

—
~
Q~. ~—

P ~ Lpj )P

Equation (2.8} is solved by iteration. U are taken as zero approximations for g, i.e.,

g„"'(P,k}=U (P, k) for m =0, 1,2, . . . , n~ .

(2.9)

The quantity n, limiting the number of equations in (2.8) depends on the initial electron momentum P. We
found that it suffices to take n~=3 for ~p( & 0.8p~, and n, = 6 for ~p~ close to p~. Then using the above
approximation we solve Eq. (2.8) for g, (p, k) and obtain gp)(p, k). Generally, the consecutive approxima-
tions g„"' of g„are obtained as a result of computing the right-hand side of the equation

00

)!")),)) ~U)), ) )+. =&q eU(~, s) ~))P'V, e)&,
&

Q)
& )

+~g)")),s)J',
)

—e
(& )

+.

(q
"~,p

(2.10)
where i=1,2, 3, . . . ; n=0, 1,2, . . . , n, . The system of equations (2.10) is solved until the condition

g(&)(p

is satisfied, and then it is assumed that

g.(p, k) =g."'(p, k)

It is necessary to add that, when solving Eqs. (2.10) in order to account properly for the behavior of g„
when k is close to the Fermi momentum, the k points between P~ and 1.2P~ were chosen according to the
logarithmic scale and their number increased when p approached the Fermi surface.

Our calculations were performed on the computer ODRA 1305 for the static RPA and the exponential
screening (ES) potentials (the latter was proposed by Stachowiak2' and it is in better agreement with the
RPA potential than the Yukawa potential} for r, =2, 3, and 4, and several momenta p chosen in the range
0-0.9999P~. These potentials expressed in units of P~ are, respectively,

k f 1 + (T/k')[k + (1 —0.25k') ln I (k + 2)/(k —2) I])
' (2.11)

87+k .
U)„.,(k) = 4v

—,(4w+k j
(2.12)

The wave functions X„(p,k) obtained in this way
were used for calculating the enhancement fac-
tors, the total annihilation probabilities, and the
screening charge distribution around the positron.

The results presented in this paper correspond to
the case when the static RPA potential is used in
the Kahana equation.
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HI. ENHANCEMENT FACTORS

The enhancement factor is defined by the formula l.83

@)
l@gx., x,)l
I+,"-(%,,x~) I'

l.63

where 4/x„x~) is the wave function of a noninter-
acting electron-positron pair, and 4';(x„x~) is the
solution of the Kahana equation. This quantity
characterizes the distortion of the electron wave
function by the positron. It gives information
about the relation between the electron momentum
distribution obtained from the positron annihilation
studies and the real one. Therefore knowledge of
the enhancement factor is necessary for a proper
interpretation of the experimental data in terms
of Fermi surface, wave functions, occupation
numbers, and electron density.

The most striking conclusion is that Kahana
and also other authors have never tried to solve
the Bethe-Goldstone equation for larger electron
momenta P, namely, for p greater than 0.9p~,
even in the spherical approxi mation. They assumed
that the formula(1. 1)describing the electron momen-
tum dependence of the enhancement factor, proposed
by Kahana on the basis of the spherical solution of
the Bethe-Goldstone equation for three electron
momenta only (p =0, 0.5, and 0.75 in units of Pz},
is valid in the whole region between 0 and P&.
However, our computations that were performed
using both the exact and spherical solutions of the .

Kahana equation [for potentials (2.11) and (2.12)]
led us to the conclusion that it is impossible to
describe properly the behavior of the enhancement
factor by so simple a formula, and without solving
the set (2.10). This can be easily seen from Figs.
2 and3

In Fig. 2 we present the relative enhancement
factor as a function of the initial electron momen-
tumP, calculated on the basis of the exact solution
(curve 1) in comparisonwith the curve following from
both the exact solution and the formula (1.1)
(curve 2). Here the results obtained according
to the formula (1.1) using the parameters a, b,
and c calculated on the basis of the spherical
solution (curve 3), and those of Arponen and
Pajanne' (curve 4) are also given. As can
be seen, the slopes of these curves are quite
different, and the values of the enhancement
factor calculated using the exact solution of Eq.
(2.1), presented in Table I, differ appreciably
for large momenta P from those obtained accord-
ing to the formula (1.1}with parameters a, 5,
and c calculated from the solution of the set (2.10)
(curve 2), and moreso from those rep'resented by
curve 3. It seems to us, however, when com-

l.23

~ ~ a 4

0.5 0,6 0.7 0.8 0.9
1.03

l9.0

17.0

l5.0

13.0

O.6 O7 O,e O.9
P

FIG. 3. Momentum-dependent enhancement factors.
Curves 1 and 2 were obtained according to the formula
(3.1) using the exact solution of the Kahana equation and
the spherical one, respectively. Curves 3 and 4 were
calculated according to the Carbotte formula {3.4) based
on the same solutions as previously.

FIG. 2. Relative momentum-dependent enhancement
factors. Curve 1 refers to the results obtained using the
exact solution of the Kah@na equation. Curve 2 was ob-
tained according to the formula {1.1) using the parame-
ters a, b, and c calculated on the basis of the exact
solution. Curve 3 refers to the enhancement factors ob-
tained using both the spherical solution and the formula
(1.1) and curve 4 represents the results of Arponen and
Paj anne.
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Enhancement factor & Q)
X$ s r=4

0.05
0.1,

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.945
0.99
0.994 5
0.999
0.99945
0.999 9

3.425
3.430
3.451
3.487
3.540
3.613
3.712
3.846
4.034
4.322
4.520
4.843
4.895
4.962
4.971
4.982

6.067
6.079
6.125
6.206
6.326
6.495
6.725
7.038
7.488
8.196
8.691
9.509
9.642
9.813
9.835
9.862

10.954
10.974
11.084
11.274
11.564
11.964
12.524
13.304
14.454
16.334
17.694
20.004
20.394
20.884
20.944
21.024

TABLE I. Values of the enhancement factors calcu-
lated according to the formula (3.1) from the exact solu-
tion of Eq. (2.1) using the static BPA potential.

of the enhancement factor following from the
Kahana equation in the immediate neighborhood
of the Fermi surface. Moreover, it is necessary
to add that the differences between the values of
the enhancement factor calculated using the exact
solution and the spherical one increase with in-
creasing ~,.

Of course, we share. the opinion that the problem
of the real behavior of the enhancement factor with
respect to the initial electron momentum P is still
open. It can be said, however, that the Kahana
equation leads to the enhancement factors pre-
sented in Table I instead of those computed by
Kabana.

With regard to the Carbotte correction to the
Kahana approach we have found that the formula
for the total enhancement factor, derived by
him after including the infinite set of diagrams

paring curves 1 and 2, that thb deviation of the
enhancement factor calculated using the exact so-
lution from the behavior described by the formula
(1.1), is mainly due to the lack of self-consistency
in the Kahana approach. Our preliminary consid-
erations show that the overaccumulation of elec-
tronic charge around a positron particularly in-
fluences the enhancement factors for momenta
close to the Fermi momentum. Removing this
excess of charge decreases the values of the
enhancement factor mainly in this region, making
the momentum dependence weaker. Therefore one
can expect that if self-consistency in the Kahana
approach is achieved, curve 1 (see Fig. 2) will
probably approach curve 2. However, the dif-
ference between curves 2 and 3 is still consider-
able, meaning that the exact solution of Eq. (2.1)
is significant for describing properly the behavior

l

(3.2}

U(m -p)
q(p) =1+ 2 dm

8w m +(m-p -p

+2 dmL m-p y' ' p, m (3.3)

+ dm dm'X p, m L m-m'y p, m'

where

in order to ensure that the displaced-charge sum
rule was satisfied, depends on the value of all
partial waves. Indeed, inserting (2.3) into Car-
botte's formula

Tv Ubm —g)
X (p~m) =X(p~m)+(2)s 2+( i p(@ p)z ps

one gets

q(P) =1+ m dm — —

2 z ~ [I -L(p)]
i 27TP mp m +p -P

40

+477 g g„L„(m,p)X„(p,m)+vX„(p, m) dm m L„(m, m )X„(p,m )
~

n=0 i ]~
(3.4}

Here

and

i
L„(m,m') = dxL(m, m, x}P„(x),

-1
(3.5) x In].(p+2)/(p 2)] ]) .

So, it is obvious now that Carbotte should have
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TABLE D. Annihilation rates obtained from the mo-
mentom-dependent enhancement factor.

Annihilation rate (10,9 s ~)

Spherical solution Exact solution
Formula Formula Formula Formula

Q.1) (3.4) E3.1) Q.&)

5.774
3.172
2.617

5.585
3.007
2.453

5.870
3.240
2.697

5.640
3.069
2.551

IV. DENSITY DISTRIBUTION OF SCREENING
ELECTRONS AROUND A POSITRON

In Sec. II the method of calculating electron-
positron wave functions has been presented. The

used the exact solution of the Kahana equation
while taking into account Bergersen's objection.
Indeed, i.f the total screening charge is not com-
puted properly, how can we know to what extent
Kahana approach is not self-consistent, ? I et us
remark at this point that Kahana's enhancement
factor depends only on the zero-partial wave.
Besides, it is worthwhile to note that the method
of solving the Kahana equation presented in this
paper allows us to determine the zero-partial
wave better, than is possible in the spherical
appl oxlmatlon,

The difference between the enhancement factors
calculated according to the Carbotte formula using
either several partial waves, or only the spherical
solution of Eq. (2.1), are presented in Fig. 3
(curve 3 and 4). Here the enhancement factors
obtained according to formula (3.1) based on both
the exact solution (curve 1) and the spherical one

(curve 2) are also presented for comparison. Of
course, the contxibution of higher partial waves
to the enhancement factor is particularly impor-
tant for momenta close to the Fermi momentum
and also for lower densities.

In contrast to the enhancement factors, the total
annihilation rates do not change as much when

taking into account higher partial maves. This
is shown in Table II. For comparison we pre-
sent the values obtained using the enhancement
factors computed according to the Carbotte for-
mula and also according to (3.1) either for several.
partial waves or for the spherical solution.

The main conclusion of these calculations, with
respect to enhancement factors, is that formula
(1.1) proposed by Kahana on the basis of the spher-
ical appx'oximation for p ~ 0.75pz does not describe
properly the behavior of the enhancement factor
in the immediate neighborhood of the Fermi sur-
face,

functions obtained in this may mill be used nom

for computing the screening charge distribution
around the positron. It is mell known that the
Kahana approach leads to an overaccumulation
of screening charge around the positron. This
overaccumulation, of course, affects the annihil-
ation rates and the enhancement factors, as has
been mentioned in Sec. III. Knowledge of the
screening cloud distribution, however, may be
of great impoxtance for improving the Kahana
method. Such a distribution may be used subse-
quently for investigating the behavior of a posi-
tron in real metals.

Applying formula (2.2), the contribution to the
screening cloud around a positron of the electron
state determined by the momentum p may be ex-
pressed as

2
~

@;(x„x,)
~

t =2 —e @"e + X;(x„x,) 2

=~
I
1+2 + X(p, k) cos[(p-k)rj

~)yr

+ + ~'"' "x(P,Bx(i,k )),I, R"ay~

)(„(),r) =J d), )),.(),a)j„(a~),
Pg

and j„(x)are spherical Bessel functions of order
rl,. This result is based on the formula (see Bo-
ronski")

(4.3)

sin[(p' -k' -2pkx)'~'r] ~
(p -k~ -2pkx)'i

=2rj „(PrL(kr) . (4.4)

The expression (4.2}was used for calculating
values of the electron density at distances from the
positron between 0 and 12p&~. Since the functions
X„, for n greater than the order of the set of equa-
tions, are not known exactly, me have bmited the

where r =x, -x~ and the factor of 2 is due to spin.
The screening charge distribution b p(r} around

a positron can be obtained after integrating (4.1)
over the positron coordinates x~ and summing
over the initial momenta p &P~. Since the distri-
bution is isotropic, it is possible to average (4.1}
over aQ directions of r. Expanding all functions
in (4.1) into Legendre polynomials, depending
on the angle between k, k', and p, and switching
from summation to integration, one obtains

&p(r) =— dP O' Q &.[j.V r) + &&.V, r)]I~.V»r)
0 n

(4.2)
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FIG. 7. Dependence of the total electron screening

charge on the distance from the positron for y, = 2, 3,
and 4.
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FIG. 8. Contributions of different partial waves to the

screening cloud around a positive heavy particle (p&
= 0.75).

4, and obtained when six partial waves were
taken into account, are presented in Fig. V.

The Kahana equation can be self-consistent only
if the total screening charge is equal to one elec-
tronic charge. However, it is easy to see that we
have a considerable excess of screening charge for
all values of x„and if we were to take into account
all partial waves, this charge would be still bigger.
The radii of spheres containing an electron charge
equal to one for x, =2, 3, and 4 are, respectively,
5.7, 3.4, and 2.0 (in units of p& ').

Now let us compare the electron density distri-
bution around the positron with that around a heavy
particle given by three (s, p, and d) partialwaves
and computed by Stachowiak" in the RPA approxi-
mation. One can clearly see (Fig.8) that the con-
tribution of higher-than-s partial waves to the
screening of a heavy particle is considerably
smaller than in the case of a positron. This fol-
lows from the fact that the positron recoils during
the interaction with the electron. This effect
causes the mixing of all partial waves as shown by
expression (2.8). For a heavy particle the states

0 1 2 0 ] 2 0 1 2

r(k )

FIG. 9. The correlation functions for r, =2, 3, 4.
Curves 1, 2, and 3 indicate the results obtained in this
work, by Sjolander and Stott, and by Arponen and Pa-
janne, respectively.

corresponding to different values of the angular
momentum participate in the scattering indepen-
dently.

It may be very interesting to compare the results
for the correlation 'function

g(r) = l + 3v'ap(r) (4.6)

with those obtained for small distances by Sjo-
lander and Stott' (SS) and also recently by Ar-
ponen and Pajanne8 (AP) (see Fig.9). One can
see that in the region where the attractive inter-
action is strong, namely for x-0, our curves
run between the curves of SS and AP. In this
region the curves of SS show, however, a round-
ing off in shape while from quantum-mechanical
considerations it follows that the correlation func-
tion should have a cusp as in our results and
those of AP (cf. Lebeda and Schrader"). For
greater distances the agreement between the
results of this work and the AP curves is good
for high electron densities, but for high x, the
curves of AP tend to run above our curves and
those of SS.

It should be added that for larger distances our
distributions are affected by some numerical er-
rors caused mainly by too small a number of par-
tial waves included in the consideration. On the
other hand, it is possible that the convergence of
the partial-wave series would be better with ap-
propriately changing the effective potential in the
Bethe-Goldstone equation and taking into account
correlations between screening electrons in a
self-consistent way.

V. CONCLUSIONS

The Kahana approach to the problem of elec-
tron-positron interaction in an electron gas is the
simplest one relatively well confirmed, for x, «4,
by most of the experimental work done until
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recently. It is necessary to point out that the
enhancement factor arising from the Kahana
equation increases when approaching the Fermi
momentum, and this is the main argument for
the validity of this approach. This increase of the
enhancement factor in the Kahana formalism
arises from the energy denominator in Eq. (2.1)
vanishing when P tends to k, this is possible only
when P approaches the Fermi momentum.

The results of Arponen and Pajanne also show
an increase of the enhancement factor; however,
the ratios b/a and c/a of the respective parameters
in the formula (1.1) decrease when x, increases,
and this is quite opposite to the results of Kahana.
Kith regard to experimental work done until re-
cently, it does not answer exactly which theory
gives proper results. Because of that and the
very complicated formalism of Arponen and Pa-
janne, we are of the opinion that the Kahana equa-
tion still has an important significance for under-
standing the behavior of a positron in metals.
Therefore, it is most striking that although
starting from 1963 this equation was solved in
many papers, its exact solution has not been
obtained. However, as was mentioned before, this
exact solution leads to a considerably stronger
increase of the enhancement factor when approach-
ing the Fermi momentum. Besides, the values of
the enhancement factor turn out to be somewhat
larger than it follows from Kahana's solution.
As concerns experimental confirmation of this
high increase we share the opinion that it would
require more experimental investigations in this
direction, the more so since the- results of A rponen
and Pajanne (see Fig. 2) show a remarkable dif-
ference as compared to Kahana-type calculations.
Of course, the problem of the validity of the Ka-
hana equation itself is still open (Arponen and
Pajanne ). So, the results available up to now

within the Kahana formalism are not definitive.
However, we do not consider as very serious
the objection that it is not self-consistent, nor
does it include electron-electron correlations,
since an appropriate improvement can be intro-
duced into it.

The exact solution of the Kahana equation has
also allowed us to compute the screening charge
distribution around the positron. This distribution,
as was pointed out long ago, 3 is not self-consis-
tent. However, the very possibility of calculating
it shows the proper way to reach self-consistency
by choosing a suitable potential.

It is worthwhile to add that we have also ob-
tained the enhancement factors and the charge
distributions corresponding to the Kahana equa-
tion for ES potential (2.12). These results seem
to be better and more consistent than those ob-
tained for the static RPA potential, but in order
to compare them with those of previous authors,
only results obtained using the static RPA potential
are presented here. Moreover, we also performed
calculations according to the suggestions of Lowy
and Jackson' (i.e., neglecting the Pauli projector
operator in the Bethe-Goldstone equation), bu't the
distribution of the screening charge turned out to
be much worse than that obtained on the basis
of the Kahana equation. Therefore we are of the
opinion that it is encouraging that the exact solu-
tion of the Kahana equation allows one to continue
studies toward achieving self-consistency and
including correlations between the screening elec-
trons in the sense of Bhattacharyya and Singwi. '
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