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Self-consistent non-muffin-tin augmented-plane-wave calculation of the band structure of silicon

Prank Szmulovriez

University ofDayton Research Institute, Dayton, Ohio 45469
{Received 27 August 1980)

The augmented-plane-. wave formalism of Rudge has been applied to the calculation of the band structure of silicon.
Non-muon-tin terms in the potential both inside and outside the muffin-tin radius have been included. The
calculation has been carried out to self-consistency yielding a valence band in very good agreement with
experiments. As in other first-principles calculations, the conducti'on band is only in qualitative agreement with
experiment, although a better agreement is found for the non-self-consistent bands.

I. INTRODUCTION

The band structure of silicon has been calculated
several times, although first-principles ap-
proaches have often been at variance with avail-
able experimental data." The wide range of
disagreement cRn be trRced d1.rectly to the lnsuf-
firient knowledge of the exchange-correlation. po-
tentials to be used in the one-electx on band cal-
culations. ' ' The best calculations for silicon, in
terms of agreement with the data, have been per-
formed using empirical pseudopotentials. ' These,
of course, incorporate experimentally obtained
infoxmation and utilize potentials in parametric. c
form designed to reproduce observed interband
tra, nsitions. Also, the pxice to be paid in these
calculations is the loss of knowledge about the
charge density giving rise to the potential.

The augmented-plane-wave (APW) method, in
its standard muffin-tin (MT) form, is inappro-
priate in dealing with directionally bonded ma-
terials like silicon. Yet, the APW method pos-
sesses great attractiveness because its basic
set of APT's in the MT region is energy depen-
dent and thus has a large degree of variational
freedom. Also, as in other first-principles ap-
proaches, it is always clear which charge den-
sity gives rise to the crystal potential.

In order to apply the APT method to semicon-
ductors, non-MT corrections to the potential
need to be included. Decicco' suggested that the
non-MT terms be decomposed into two parts:
deviation from constant potential in the intersti-
tial region, the so-called warped MT potential
(WINT),

' and nonspherical terms in the MT region.
A few calculations with warped MT potentiRls
using the APW method have been pexformed' ' as
well as a few full non-MT potential APW calcula-
tions. '4 'o

The first APW calculation for a semiconductor
by Keown for diamond used the standard MT
formalism. " In order to obtain agreement with
experiment for the band gap, Keown had to adjust
the position of the MT zex'0 of enex'gy. This px'0-

eedure must have been partly necessitated by the
MT approximation. Recently Papaeonstantopoulos
and IQein used the MT formalism for silicon. 2'

Their conclusion was that this approach does not
yield any band gap for Si even if the calculation
is carried to self-consistency. Only when the
calculation was semiempirically adjusted, by
shifting the E = 0 logarithmic derivative of the
radial wave function at the MT sphere radius, did
the band gap appear.

A full non-MT calculation for silicon was per-
formed with the self-consistent LAPW (linear
APW} method by Hamann. ' This method differs
from the standard AP%' method in that it uses
energy-independent APUS's, thus eliminating the
implicit energy dependence jn APW secular deter-
minants. " In a full non-MT APW calculation for
Si, Kane"'5 adopted an approach very close to
that developed by Rudge for treating the non-MT
corrections. '4 Kane's approach differs from that
of Rudge in that it divides the potential into point
charge, valence, and ionic (or core} contributions.
The Hamiltonian for the valence electrons in-
cludes a term for the interaction with Si4' ion
cores and another for interaction with other
valence electrons. The core potential is deter-
mined empirically by a fit to two lowest atomic
energy levels of Si". Also the core potential is
assumed to be Coulombic outside atomic spheres.
The valence-valence interaction is assumed to be
given by a xapidly converging Fourier series with
adjustable Fourier coefficients. The ionic charge
is also taken as adjustable. Bands were calculated
at a few high-symmetry points in the Brillouin
zone (BZ) and the calculation was non-self-con-
sistent.

In this paper, I apply Rudge's APW formalism, "
with slight modifications to improve accuracy,
to the calculation of the band structure of silicon.
The calculation is fully non-MT, first-principles,
and self-consistent. The potential is obtained
from superposed atomic Si charge densities. The
Coulomb part of the potential is obta. ined fxom the
solution of the Poisson equation with the contribu-
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tion of all multipole moments with I + 7 included.
The exchange-correlation potential is of the Xo.
form with n = 0.79. The spherical harmonic ex-
pansion of the wave function in the MT region is
carried out up to E =10. The plane-wave-region
(PW) BxpRllsloll of tile WRVB fllllc'tlon 111 I'Bclpl ocRl-
lattice wave vectors K,. is taken up to 1k+ K
~ (2II/a)4. 5, where a is the lattice constant. Po-
tential in the PW region is Fourier expanded using
first 112 K-vector shells.

The present work aims to establish Budge's
non-MT APW formalism as a viable computational
technique for semiconductors on the example of
the band structure of Si. Its initial step involves
calculatiogs of certain Ewald sums which are no
more complicated than the KKR (Korringa-Kohn-
Rostoker) structure constants. ""In fact, just
like the KKR structure constants, these Ewald
sums are common to all materials with the same
lattice structux'e.

In Sec. II computational methods used in this
self-consistent non-MT calculation are presented.
Section DI contains results and discussion of the
band structure of Si. A summary is given in Sec.
IV.

where on the left-hand side (LHS) we have the
o.th irreducible representation of G(k) and on the
right-hand side (RHS) that of the point group
G,(k)." The main application of the full irreduci-
ble representations in this work is to provide
projection operators for APW basis functions. '6'2'"
These functions satisfy the Bloch theorem, which
simplifies the application of the projection opera-
tors. Vfhen operating on such functions the pro-
jection operatox assumes the form

a p g~-cz-ug g
@,aQ

where the sum proceeds over g elements of the
reduced set (G (k)f "'"

For purposes of studying AP%' function's trans-
formational properties they can be treated like
plane waves as follows".

y(k„r) = exp[f(k+ K,) .r-]. (4)

The effect of the projection operator on these func-
tions was considered by Slater." In diamond, for
points not on the UlVX face of the BZ, he has
shown that

P p(k r) = 0;I(k, r)

H. COMPUTATIONAL METHODS

A. Group-theoretical techniques

In constructing AP%' secular determinants, group
theory can be used to considerably shorten the
computational effort and increase its accuracy. '""
This section is devoted to presenting relevant
notation used in subsequent developments.

The space gxoup 6 for the diamond lattice is
the nonsymmorphic space group 0„'. The space
gl'ollp collslsts of opel R'tloIls of 'tile fol'Ill ~ft Ltn+ U

where R is a proper or improper rotation, t„ is-a
lattice translation, and Il„ is a (minimal) nonprimi-
tive fractional translation associated with B."
The group G(k) of wave vector k consists of opera-
tions (B ~t„+Ilj such that, in Slater's convention, "

(ft) WBIIt I~5sBIIIip f
ig

So&~A

A computer program was set up to perform the
operations in Ell. (5) using the tables of irreduci-
ble representations given by Slater. " The output
consists of lineax ly independent symmetrized
basis functions for all symmetry points other
than those on the VWX face of the BZ. As shown
by Mattheiss eg al. , this requires the application
of only the p~, projection operator. 2' ~ith this
list of symmetrized AP%'s the secular determin-
ant could be simplified with the use of the follow-
ing orthogonality re &ation"".

(y;,(k„r) ~(a-Z) ~y;, (k„,r)}

r ({z[t„+Up) = e"" ~I"(z) (2)

gk= k+ K (I)
whex'e R ls the tx'anspose of Rq and E~ ls a x'ecl-
procal-lattice vector. Also, Go(k} will be used to
denote the point group of the wave vector consist-
ing of rotational parts of G(k), and (Go(k)) denotes
the reduced set of G(k) consisting of (A IIIII+ tj
with t„=0.'0

Koster has shown that the irreducible represent-
ation of the space group of the wave vector G(k)
for points interior to the BZ boundaries can be ob-
tained from those of the G,(k} by the association

where n is the dimensionality of the irreducible
representation Ih™of Go(k), and E the energy.

In dealing with points on the US'X face of the
BZ the present program uses points of lower sym-
metry located very close to those on the UR'X
face. For point X the program calculates bands
and wave functions on the rh, axis at (2w/a)(0. 999,
0, 0), for W, on the Q axis at (2II/a)(0. 999,0.5,
0.001), and for the midpoint of the Z axis it uses
the point on the I'KWX plane at (2v/a)(0. 999,0.25,
0.0). Often, but not always. , compatibility rela-
tions can be used to determine the irreducible
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representation of the corresponding band on the
Z axis. All eigenvalues at X, Z, and W are doubly
degenerate so it usually takes two bands off the
axis to "make up" one band on the axis. The two

bands are of different symmetries and are cal-
culated independently. Invariably, they were
within 0.001 Ry of one another, which serves as
an indication of the calculation's convergence.

8. ThC HGA-HlUfflB-till APVf IACthOd

In the APW method, originally proposed by Slater" in 1937, the wave function in the P%' region is ex-
panded in plane waves as follows:

Q(ki, r) = exp(ik{ ' r) ~ l
1' —r{, l &R~ (7)

where k,.=k+ K~, k is a wave vector in the BZ, A~ the MT sphere radius, and K~ a reciprocal-lattice wave
vector. In the MT region the Bloch wave function is expanded in terms of solutions to the radial Schrodin-
ger e{luation u, ( lr —r„ l), where r„-+Bc(1,1, 1) labels the position of a [/th atom in the unit cell, as

Here j, is a spherical Bessel function and Y, a
spherical harmonic. '~ The total Bloch wave func-
tion is given by the expansion of these augmented-
plane waves~

q(k, r) =l{t-'/2 g~P(k, , r} „

where p& are variational coefficients and N is a
normalization constant. 2'

The present calculation patterns itself after the
formalism developed by Budge for the non-muffin-
tin APE/ method. '4 The potential is expanded in
cubic harmonics in the MT region as

where TV~„ is the Lth cubic harmonic transform-

ing like the T', representation of the T~ group for
the vth atom in the diamond unit cell. In the in-

terstitiall

region

V(r) =g V(K)e*"'=g V(K)e"'

where the first reciprocal-lattice series is not
uni{llle. Tile V (K) sel'ies is unl{lue siilce lt ls
chosen so that it is identically zero inside each
MT sphere. In the present calculation the first
series, which is rapidly converging, was summed
over 112 K-vector shells. The second, slowly
converging series, was summed over the first
55 shells of K vectors. The muffin-tin radius was
chosen to be half the nearest-neighbor distance.
Standard midpoint origin is used in order to ob-
tain real secular determinants.

C. Secular determinant

Specializing Budge's expressions to the case of the diamond lattice the secular equation can be written
as follows

n '(a —E) = -&A .+a"..
gg ff sj

+ {:[„[el{{{„)fu,{{{„)[+ Q B;,, ;,, ::[u,.{~[/u,.{R )[{',{r[[M,{r)/u, {{{„)[r*d~).

In E{I.(12) Q is the unit-cell volume,

I';,{8)"a'"-'"5{k;;/ik;) —{4''„/Q„)t.oii[{zk,-k,.) —,'K[ -'
~

-„-' -'~~
" j,+0. (R)Ug)

a =—g I (Z)*e'"'."s[{k l~k)f }+I/(k -Ak)]
f N, l up )'

where the curly bracket is the same as in Eq. (13), 0,= 20, d= —,'a(1, 1, 1), and

C, , , = (g/n. )(4''„/n, ){21+1)q,(aP„)q,(aP„)

x g I";,(Z)*e'K~ "~ cos[A(k, k, ) —.d]~,(Ak-, .k. ,.),
(R t6&]

(12)

(15)
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with P, being the Legendre polynomial. Exclusion of the last term in Eq. (12) results in the warped muf-
fin-tin fol mallsmo

The last term is the most complicated. It is given by

~(I g g 1 a (g)484)f P))~
ne QO [Rtvz

sin[(Ak, -k, ) r], I, odd,
(16)

1» L even
F„,,=4~i~-~' g r, , (k,}l",.(~k,} dn 1",.„.(r)W, {r)r,„(r)x

»»ty»»t -i, L odd.

involves angular functions only. This term arises
from the first-order perturbative treatment of the
nonspherieal contribution to the potential in the
MT legion.

In evaluating the energy-independent eoeffieients,
symmetry considerations mere employed to obtain
a number of useful relations. The Fourier coeffi-
cients of the potential are related by

V(RK) = (cosRK u„)V(K} (16)

for (8 ~us] in the reduced set of the space group.
Fox' 8 ln point group T~ lt can be shown that

V(aR) = [cos(R -~R) —,'d] V(K), (19)

and for A in IT~, where I is the inversion operator,

V(ftR) = [cos(R+~K) —,d]V(R) . (»)
The txiple sum over /', l', and L mas evaluated

for I = 0» 3» 4» 6» I and E» (t ~ 4» resulting ln 15
integrals All a.ngular integrals in E()ig(k), Bk.)
have been morked out mith the aid of Clebsch-Gor-
dan coefficients. Results mere cast into forms
containing cubic harmonics as these, being in
Cartesian form, are easily generated. The rele-
vant results are suIIlmarlzed ln Table I,

The energy-independent coefficients &,~, B,&,

C,», and D, &»,~ mere stored on. tape fox' quick
retxieval, thereby obviating the need for generat-
ing them each time the secular determinant is
evaluated. 2' The energy-dependent quantities
uI(R„, E}/u, (B„,E) =I,(E), other—wise known as
the logarithmic derivatives of the xadial mave
functions, up to l ~= 10 mexe fitted to a 10th-de-
gree polynomial in E.'4 Similarly, the required
15 integrals multiplying D,.&»,~ mere fitted to the
same-order polynomial.

D. Construction of the starting potential

The starting potential mas constructed by the
method originally suggested by Matthew. ss for MT
potentials. " The atomic charge density fox Si
in the 3s'3PS configuration mas evaluated on a 250-
point logarithmic mesh using the Hartree-Fock-

p,..., (r)=Q p(K)exp((K ~ r), (22)

p(R) = [4v cos-,'(R 1}/Q,] )l dr r'j, (Kr)p„(r) .
(23)

Since the plane-mave expansion in the P% re-
gion is not unique it mas convenient to evaluate
the radial integral with p„(r) fitted to a form Arm

+Br' for x~A„ to speed the convergence of the
series. '9 For r ~ 8„ the actual form of p„(r) was
used, which is joined continuously by the Ar'
+Br' form inside 8„.. In actual construction. of
the potential, 210 shells of K vectors mere used
to construct 112 V(K) coefficients and 55 V, (K)
Fourier components.

In the MT region the crystal charge density was
expanded i.n eubie harmonics of Von der Lage and
Bethe ass'

p „.„,(r) =Q p (~ r r„~)& „(r—r„)—. (24)

The pz(r) coefficients were evaluated using the
Lomdin alpha expansion3'

I
Slater seU-consistent field program of Desclaux. 36

This mesh expands the scale near the nucleus,
mhere most rapid variations of the radial wave
functions occux'. The sphex'leal charge density
from the program, p„(r), was then placed at each
atomic 'site and superposed to yield the crystal
charge density

p „„,(r)=Q[p„(r-R-r, )+p„(r-R-r,)],
(21)

where R are direct fee lattice vectors and r~ 2

=a(sa)(1, 1,1) are positions of Si atoms in the unit
cell. The latti. ce constant mas taken to be
a=5.431 A» A@=2.222 a.u.

In the P% region the crystal charge density mas
Foul lex' decomposed:
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TABLE I, Reduction of Eq, 0.7) Co SQIxls over Qllblc bar IQonlcs of Von d8r LQg8 Qnd Bethe
Qef. 37). Einstein sum over index m =x,y, z „or m =1,2 for the y harmonics, is implicitly
8,88Gmed.

E))~1 {k;,Rk;)

Pl fq)a ()(R f))
-~~/7 ~2m~, )~~.«~y)

2/)WVt l (f;}51 {Rf1)

2/3()l ~ (f()l l~ (Rk~)

2v 21/ling(f;)Pl(Rfp)

+v 3/llel~(f )51~(Rfl) —~35/115'l~{f )e' ~l(Rf )J

+4{k])e0(IBkj)

-2/351~(fl}51 (Rkg)

2/~2I&, y,-)~, «~,) +&s/7 ~2~ g,.)y~(Aw, )

IO/gy&7)[, 6,), (aW,) -2y, 6,-)y, (Zk, ))

~7/g&&3)[-gpss;)p ~hk&) + 3n

—e'l (k;)dl (RQ))

27~7/0. &~3)[2/Zs~, y,.)~,{kk,) —~/7~, g,.)~, «k,.)
+ ~/u~, .g,-)~;.«k, ) + 2/9~F4 5«)V4 (&k,)j

-5&6/@2~i3)[4...Ck,.)...&~k,) +3&4 5,)V& (~~&)l

10/(11~26)[4Pl(f )Pl(Rkl) + 5/351~(fl)51~(Rkl)

-3e, g,.)d, (Ak,.)]

~2/O. y~i3)[20~, y,.)e, (AW,) —~6y, g,.)y, (ak, )

+ 5q4 @])q~ (g™,kj) —64 @;)F4 (A'k~) j

y/O. y~39)[-3&ZO5u, q,)~', (Ak, ) -3W, (k,)~, (Rk, )
—15)) 7

ulcc;)P

l (Rk~))

] )it+&)~ . . . (i 8+di'+ r' -r"pI()p{r)pJ +/+)pJ(R+tT)p( l j(J

primp�'(r)P('(()

&0, g-"0 2I 8+dI x I tg+ai „i '
( 2IR+dI r

The first sum proceeds over atoms lattice transla-
tion away from the central atom at r =0. The
second sum proceeds over the other atoms in the
basis. Altogether, the sum was performed over
71 shells of atoms. All radial integrals in (23)
and (25) were computed with a 96-point Gaussian
quadrature. As a check, the trvo series mere re-
summed at the midpoint origin. The continuity
of charge across the MT boundary was satisfied
to wlthlll 0.1%.

With the charge density obtained above, the
Coulomb part of the potential eras obtained using
Budge's formulas from See. V of his paper. '
The potential consists of three parts, each of
which was calculated and checked separately for
continuity. The last part of this potential is due
to an ordered array of point multipoles. The co-

l

efficients for the resulting generalized Ewald po-
tential problems mere calculated in the preceding
paper. "

The exchange-correlation potential was taken
to be of the X+ form

V (r)=-3n(3/w)' '[p(r)]' '

where from previous work on silicon by M. L.
Cohen and co-workers~0 o was chosen to be 0.79.
This value for o' brings the V„, into agreement
with Wigner's interpolation formula at the aver-
age valence charge density of silicon. 4'

Slllce p( (r) ls tile dominant radial colllpollell't of
'tile MT cllRI'ge densltp V (r) cRll he expanded to
good accuracy in binomial series yielding cubic
harmonic decomposition of ~„,for x ~A„.'~ No
such expansion is possible for x&B„. Here I use
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a three-dimensional finite Fourier transfoxm4~

i'„(e=(mii+1( * $ i'„(r., (exp(-iK r„,„), (27)

r.,„=(nR, +fR, +mR, )/(m+l)
Rnd R s Rx'8 primitive fcc translat1on vectox's,
%8 now have

K= i K~+jK +kK,

-N~e, l, m, i,j,k ~~, (so)

and N=11. The sum was carxied out over ~th
of the unit ceH, taking advantage of the T» point-
group symmetry about any atom in the cell, using
about 720 r„,„. The V„(r) was calculated using
p(r) in the Fourier-series form, Eq. (22), which
was then continued into the MT spheres when
necessary. This procedure is legitimate since
the Fourier coefficients V(K} in Eq. (ll) are not
un1que e

E. Approaching Bern'consistency

After the f1x'st 1tex'Rt1on w1th the potent1Rl. con-
structed from the superposed charge dens1ty the
new charge densities were obtained from the band-
wave functions. The valence bands and wave func-
tions were calculated at six equally spaced points
in the BZ—X',X,I, 8', halfway along the ~ axis,
and along the Z axis at (2v/a)(2, 2, 0).a~ Wave
functions were expanded in APW's with

~
k+ K~

~~ (2v/a)4. 5 to obtain good convergence for the
conductions bands. This corresponds to 113 plane

dc„, z, , (z) i,dE (sl)

where RH the quantities have been previously
stored. From now on 6, mill be taken as noxm-
Rhzed.

From each valence-band wave function, the
part transforming like the ~, representation of
the space group at the center of the BZ was pro-
jected out. arith the aid of the projection opera-
tor p ', . the X; part of the charge density is given
by

p"'(("(it,r((,*=-Q g((((8'"" (s2)

in the interstitial x'egion. For k not on the UNX
face of the BZ

waves at F. Inside the MT spheres the spherical
harmonic expansion of the wave function was cax-
ried out to E =10. Matgix elements of the non-
muffin-tin corrections to the potential were per-
formed using V,(K) from the first 55 K shells and
for V~(r) withe =0, S, 4, 5, 7 and /, f'~4. While
constructing these~tentials, K sums were done
with the first 112 K-vector shells. It was found
that these many terms were sufficient for con-
vergence of V(K), p(K), Q, (multipole moments of
the charge distribution}, and for other quantities
derivable from K sums.

Secular determinants wexe solved Qy Gaussian
elimination with complete pivoting. ~3 The varia-
tional coefficients v, were obtained then by back
substitution. The wave functions were properly
normalized using the identity2' ~

p'(K(= ~ su . i (1')~e'~&'" Q 8'~r'~'"*n(TK -i SK()
f, Iv~k

where(&(~~}c fG, (k)} and G =45 operations(S(ug
are in (G,(k=0)}.

In the MT region the charge distribution
~(l("(k, r}~' was decomposed into its l", cubic har-
monic contributions. This is accomplished by the
angular integration

where again C and & have been pxeviously stored.
The total p(r} was obtained from the six k-point

(sv)

p~(k, r)=(4v) '
l W~(r)ig (k, r}i (fQ.

p ( ) =2 ggn p™(k, )W~, -B„
e

(s&)

(s5)

where 8'~ are weight factors accounting for the
irreducible wedge volume nearest to the given k.
The six points used here were also employed by
Euwema ef aE., who found them to be representa-
tive of the whole zone.

The potential was then constructed from p(r}
above just as that described in 8ection IID for
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in comparison with the overlapped values. The
rapid increase of the p~ for L 0 near B„suggests
that extension of the cubic harmonic expansion
outside the MT spheres would be inappropriate.
This series mould require a large number of high
L components and thus be difficult to converge.

Figure 4 presents the total crystal charge den-
sity along the [111]bond direction and its decom-
position into the valence and core contributions.
The valence charge density near midbond in this
plot is in good qualitative agreement with soft-
core pseudopotential valence charge density cal-
culated by Hamann. ' The soft-core charge den-
sity is also in good accord with that calculated
from local empirical pseudopotential by %alter
and Cohen. Conversely, the present results
in Fig. 4 do not exhibit a large flat region near
the midbond position Rs do the LAP% Rnd hRx'd-

core valence charge densities calculated by Ha-
mann. Near the core in Fig. 4 the valence charge
density drops faster than the soft-core density.
This is in greater accord with Hamann's hard-
core valence charge density. The most signifi-
cant difference in our two calculations is the use
by Hamann of the signer interpolation fox mula
for the exchange and correlation potential. ~' lt
will be seen later that thi, s results in conduction
bands quite different from those calculated here.

The Fourier components of the charge density
in the P% region will not be given here as they
do not provide much information. As is well
known, the plane-wave basis set is overcomplete
outside the MT spheres so that the Fourier co-
efficients are not uniquely defined in the absence
of an extra constraint.

Figures 5 and 6 give the plots of both the spheri-
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FIG. 5. Spherical component of the superposed model
(dashed lines) and the SCAPW (soBd line) Si crystal po-
tential.

cal and nonspherical terms in the potential. The
dominRnt term ls the L = 0 component until the
MT radius is reached, where nonspherical com-
ponents, especially I =3 and 4, become signifi-
cant. The largest effect of the self-consistency
requirement is to enhance V3 and shorten its
range. Additionally, V0(r) undergoes a rather
uniform downward shift, making the potential
more attractive. Table II presents the first
twenty-four Fourier components of the potential
in the P% region to demonstrate their manifest
nonconvergence. These coefficients are unique
since a constraint has been imposed on the series
by requiring it to vanish in each MT region. The
nonconvergence does not present any problems
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FIG. 4. Valence, core, and total crystal charge den-
sities along the [111]bonding direction from the SCAPW
calclll ation,
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FIG. 6. Nonspherical components of the superposed
charge model (dashed lines) and the SCAPW (full cute)
Si crystal potential.
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TABLE II. First twenty-five Fourier coefficients of
the step potential in the interstitial region for the over-
lapped charge model and the self-consistent potential.

V~g) in Ry
Overlapped SCAPQl

0
1
2
2
3
2

3

5
3

5

6
6
5
6
4
5
7

6

0
1
0
2

2
1

3

0

2

5
1

0
1
0

1
2

1
0
2
1

0
1
2

0

2

1
1

2

0.0
0.04311
0.0

-0.03122
-0.008 94

0.012 78
0.00625

-0.002 11
0.0

-0.01086
-0.007 90
-D.DD848
-0.003 36
-0.00058

0.000 31
0,0
0.002 50

-0.00182
D.00132

-0.00511
-0.003 53

0.004 58
0.0

-0.004 47

0.0
0.052 33
0.0

-0.038 73
—0;01023

0.01571
0.008 11

-0.00306
0.0

-0.01303
-0.00923
—0.010 16
-0.003 72
-0.000 54

0.000 35
0.0
0.00316

-0.002 32
0.00151

-0.006 29
-0.004 08

0.00537
0.0

-0.005 22

in the calculation, since only low K eomyonents
of V, (K) are ever needed. This is due to the fact
that the APW's p(k„r) for high K, do not make
significant contributions for states in the valence
band and low excited states in the conduction band.

Figures 7 and 8 display the non-self-consistent
and self-consistent energy bands of silicon, res-
pectively, calculated by the AP% method. The
qualitative aspects of the two band structures are
quite similar. Even the transposition of the ~,'
and j."» bands between the plots does not alter the
band shapes along the symmetry axes.

The most striking difference between the two
plots is the twofold increase in the band gap as
the result of the self-consistent treatment. The
effect can. be attributed to changes of the exchange-
correlation potential used here, which is propor-
tional to (-up'/'). From Figs. 1, 2, and 3 it can
be seen that the charge density starts accumula-
ting in the outer regions of the MT spheres and,
from continuity, also in the P% region. There-
fore, the exchange-correlation potential becomes
more attractive for delocalized states like the
bonding valence states Conversely for antlbond-
ing localized states in the conduction band the po-
tential becomes less attractive or more repulsive.
This accounts for the overall downward shift of
the valence bands and upward shi. ft of the conduc-
tion bands. The total effect pulls the valence and
conduction bands apart, resulting in an abnorm-
ally large band gap.

Another argument can be made by examining
Fig. 6 for V,. As a result of self-consistency,
V, grows larger and becomes shorter range. In
the [111]bond direction, V, (r) becomes more
attractive for bonding states in the valence band.
In nonbonding dire ctions [111],[111),[111],[111]
the contribution of V, (r) W~(r) is positive because of
of the sign of W, (r). Therefore, as a result of
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FIG. 7. Non-self-consistent energy-band structure of sQicon using the superposed charge potential and the non-muf-
fin-tin APW method.
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self-consistency, the total potential in nonbonding
directions grows more repulsive. But these are
also the regions where some of the conduction-
band states have large amplitudes. One can con-
clude that the gap should increase as valence
charge accumulatea along the bonds. Finally, like
Stukel et a/. 4~4' I find that the self-consistency
does have the effect of compressing the valence
band.

A possible fix for the current problem could be
a decrease in the exchange-correlation coeffi-
cient 0,'to around 0.66."4' This moat certainly
would improve the ba, nd gap and the positions of
the 1"~ and 1'» levels. Given the present lack of
knowledge of reliable excitation potentials this
approach might be a partial solution to the
problem

It is interesting to note that the NSCAP% results
are in good agreement with experiment, and also
with the empirical pseudopotential, ' for the
valence band. To a lesser degree the same can
be said of the conduction bands except for I"»
and I",. The NSCAP% bands give the correct band

gap, which is a minimum requirement for any
calculation. Another point of interest is a very
close agreement between the NSCAP% bands and
the SCOPW (self -consistent orthogonaHzed -plane-
wave) bands of Stukel et al.~' " The latter were
obtained using = 1.0 although Stukel et al. have
also performed calculations with c'= 0.66 (Kohn-
Sham" exchange value). Their experience was
that non-self-consistent Kahn-Sham exchange cal-
culations did indeed agree with experiments bet-
ter than did the self-consistent ones. The oppo-
site waa true of the banda using the Slater & =1.0

exchange. 4' They attribute this to the fact that the
Slater exchange may have the effect of including
some correlation as well.

A quantitative comparison of the present bands,
a selected set of other calculations, and experi-
ment is given in Table III. The SCAP% valence
band is about 1 eV too narrow but the rest of the
valence bands at symmetry points are within ex-
perimental error bars. In contrast, the SCAP%
band gap is 1 eV too high and the I2, I'» level
ordering is interchanged. The usual trend is to
underestimate the band gap. ' ' The reason must
be intricately involved in the treatment of the
exchange-correlation potential.

The trend for underestimating the band gap using
0' close to the Kohn-Sham value of 0.66 is by no
means universal. Stukel et al.4~4' found this to be
true for Si but in analogous calculations for
Ge (Ref. 46) and GaAs (Ref. 47) the Kohn-Sham
exchange gave larger fundamental gapa than the
Slater exchange. The band-gap variation is evi-
dently a complicated function of band-edge loca-
tions, wave-function symmetry, self-consistent
treatment, and, of course, the exchange-corre-
lation potential.

As a limited test of the above hypotheses I used
the final charge density and constructed another
potential using 0' = 0.66. This calculation is by
no means self-consistent but should exhibit rele-
vant trends. It was found that the X~, —I",, „gap
went from 2.28 to 1.73 eV, consistent with 3;ukel
et Qlo flndlngao ' Smmllarlyq ~ps c

—I 25 ~ de-
creased from 3.30 to 3.02 eV while the X", ,-I,", „
increased from 2.38 to 2.70 eV. All these trends
agree with those found by Stukel et al. in going



TABLE III. Comparison of the present non-self-consistent (NSCAP%) and self-consistent (SCAP%) silicon eigenval-
ues (in eV) with calculations of Zunger and Cohen (Ref. 2), Stukel and Euwema (Ref. 45, o. =1), Hamaml (Hef. 1), Che]-
ikowskg and Cohen (Hef. 6)~ and experiment.

I
F26

is
p/

ri

Xi
X4
xi

.X4
I '2

Li

—11.76
0.00
2.82
2.83

8.28
VoVV

—2.63
1.27

=11.44
0.00
3.30
2.38

10.3V

9.09
-V.66
-2.34

2.28
9.73

-9.42
-6.33

-1.03
1.95
4.47
2.06

+unger
and Cohen

-12.20
0.00
2.48
2.50

-8.02
-2.93

0.52
9.97

-9.92
7021

-1.28
1.13
3.36
0.5

-11.74
0.00
2.79
2.75

-7.75
-2.72

1.28
9.79

-9.53
-6.75

-1.18
1.60
3.83
1.10

-12.02
0.00
2.49
3.18

7.46
7.86

-7.84
-2.82

0.55
10.32
-9.64
-7.06

-1.16
1.40
3.37

Chelikowsky
and Cohen

-12.36
0.00
3.42
4.10

7.69
8.19

-7.69
—2.86

1.17

-9.55
-6.96

—1.23
2.23
4.34

Expel imental

-12.4 +0.6~

4.15+0.05, b

4.21+ 0.02 c
b

-2.9, b -2.5~0.3'
1.13 ~

-9.3 + 0.4d
-6.4 +0.4, '
-6.8 +0.2d
-1.2 +0.2

2.04+ 0.06 ~

3.9 +0.1"
1.12 &

~ Reference 50.
b Reference 51.

Reference 52.
Reference 53.
RefereIlce 54.
Reference 55.

& Reference 56.

TABLE 1V. CoInpal ison of the non-Inuffin-tin BCAPW
eigenvalues (in eV) with the calculations using the self-
consistent potential without nonspherical MT corrections
(%MT), and with the flat interstitial potential.

Non-MT Flat Pgr
Level SCAP% WMT potential

I'g

r%
r2

iS
rim

-11.43
0.00
2.38
3.30
9.09

-11.34
0.32
2 +22

3.12
9.00

-10.48
1.41
2.6V

4.29
&$0,,4

from 0'=1.0 to +=0.66. This is also testimony
to the fact that one-parameter variation cannot
improve all energy separations to yield agreement
%'1th expe riment.

In order to test various Qon-MT approximations,
the 8i bands were calculated first in the %MT
scheme and then with a flat interstitial potential.
Table IV displays the results. The flat-potential
approximation is the more drastic of the two, de-
viating by about 1.5 eV from the Qon. -MT results.
The %MT eigenvalues are shifted by typically

0.2 eV. This fuxther attests to the inadequacy of
non-MT calculations for directionally bonded
se nil cond uctol s

The Budge AP% formalism has been applied to
silicon without any shape approximations for the
potential. The scheme was shown to be compu-
tationally tractable and relatively easy to apply.
After the initi. al effort in calculating the Ewald
sums the method turned out to be as easy to apply
as the traditional AP% technique. The iteration
toward self-consistency has been. carried out as
well since Budge's formalism has this important
feature built in, .

The self-consistent band-structure results
agree very well for the valence band with avail-
able experimental data. The discrepancy between
the conduction band and the data can be directly
attributed to oui lack of knowledge Gf poteQtlals to
be used for excited-state properties of materials.
On the other hand the Qon-self-consistent AP%
bands are in better agreement with experiments
and empirical pseudopotential results for the con-
duction bands.
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