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We propose a theory of the heat of formation of alloys whose constituents are described by weak pseudopotentials.
The theory gives the correct trends in the heats of formation and good, though not spectacular, quantitative results.
The physical considerations on alloy formation are discussed in detail and concepts like electronegativity are

clarified.

I. INTRODUCTION

The theory of pseudopotentials® has lead to a
fundamental understanding of the nature of bonding
in elemental materials with s-p electrons only in
the valence bands (referred to as s-p materials
hereafter). Similarly, the development of the
theory of d bands? has yielded a great deal of in-
sight into the structure of elemental transition
metals (and compounds). Based on these develop-
ments theories of the bonding in alloys of such
materials can now usefully be constructed. A
possible approach in this direction is to perform
detailed self-consistent one-electron calculations
of ordered or disordered model compounds.
Another approach is to construct simple models
based on the essential physics determining the
stability of alloys.. Recently bonding energies of
transition-metal ailoys?® and of first-row atoms
to transition-metal surfaces®* have been success-
fully described and understood based on tight-
binding models. First-principles calculations®
have subsequently verified the essential physical
assumptions used in the former case.

In this paper, we consider the electronic binding
energy of alloys of s-p materials whose electronic
structure is well described by weak pseudopoten-
tials. Heine and co-workers® were able to calcu-
late the cohesive energy of such metals and metal-
loids by a very simple asymptotic theory to about
10% accuracy. The theory is based on model ion
pseudopotentials of the form

Vlr)=-v, O0<r<R,
==Z/r, 0<r<R, (1)

where 7 is the core charge of the atom, and Q,
=47R}3 is the average volume per atom in the solid.
In the past the parameters v and R,, were obtained
from spectroscopic experiments on one-electron
ions. More recently it has been shown that poten-
tials of the form Eq. (1) can yield excellent atomic
spectra over a wide range of excitation energies.”
The bare ion potential V(), the electrostatic
potential V,, (), and the exchange and correlation
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potential Vi.() of a uniform charge distribution

of total charge ~Z is averaged inside Q, to get the
average (g =0) potential, V, in the solid, i.e., the
bottom of a free-electron-like band. To 7V is added
the kinetic energy of the free-electron gas and
from the sum the overcounted electrostatic, ex-
change, and correlation energies are subtracted
off to yield the total energy of the solid.

Extensions of the above theory® relying mainly
on low-order perturbation calculations and linear-
screening approximations have been used for al-
loys. The calculations, however, have only worked
for alloys of metals with similar electronic struc-
ture, i.e., for situations close to the elemental
metals themselves. There has, of course, been
a great deal of other work in this field—we refer
the readers to a recent symposium?® on the sub-
ject for a comprehensive coverage of the various
approaches.

We present here a new theory of alloys of s-p
materials based on the pseudopotential method
which also works for quite dissimilar metals.
There are several difficulties in the theory of
alloys of such materials which are not encountered
in the theory of alloys of transition metals. For
instance, while electrostatic self-consistency
could be treated in a cavalier fashion during d-
electron charge transfer in transition-metal al-
loys (the neglected s-p electrons were supposed
to take care of it), it is an essential problem for
s-p alloys. Related to this is the question of elec-
tronegativity differences. Consider, for instance,
an alloy of Na and Al. A naive theory of the alloy
focusing only on the position of the chemical po-
tentials would predict transfer of electrons in
the alloy from near Al to near Na, because Eg
for Al (= 1.4 eV) is much higher than E, for Na
(~-1.7 eV), whereas chemical common sense
exemplified in ideas of electronegativity suggests
quite the reverse.

II. PROCEDURE

We now describe our simple asymptotic theory
for s-p free-electron-like alloys. Consider two
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s-p materials A and B with mean atomic volumes
2,4, Qp, respectively, and with density of elec-
tronic states per unit volume % (¢) and ne) which
are zero below the mean potentials V, and v,
respectively. V, and V; are calculated from the
pseudopotential parameters as discussed above.
Upon forming, for example, an equiconcentration
alloy of A and B, with new total volume per atom
45, ° one may in general associate a volume Q,
around A and a volume {, around B so that

4+ $0,)/2=0yp. Let the average local density of
states per unit volume in , be 7,(€) and that in
Qp be fizle). Let the self-consistent mean poten-
tials obtained from the pseudopotential parameters
and the self-consistent charge redistribution in
the alloy inside 2, and §; be V, and V,, respec-
tively. The electronic contribution to the heat of
formation of the equi-concentration alloy per atom
for s-p material can then be written in terms of
the above quantities, by summing the one-electron
energies and subtracting the multiply counted
electrostatic, exchange, and correlation energies,
by a slight modification of an expression derived
earlier®;

- E E
AE,(AB)~ % 2 ) (9, f Fdeeﬁi(e)-ﬂ, f  de eny(€)
i =00 =00

-3V —V.-)(ﬁ’;+N,)>, i=A,B (2)

where N; is the total charge per atom i and where
Ny = @, [*r de 71, (€) is defined as the total charge
associated with atom 7 in the alloy. The above
expression is accurate in a density functional
theory including terms of O(AN?), the only assump-
tion being made is that within a given sz‘,s'zi the
electrostatic and exchange-correlation potentials
do not vary considerably.

The key to the problem is to determine the local
density of states 7,(e) and 7iz(e). As a first ap-
proximation (to be improved on later), we consider
that the lowest state lies at the self-consistent
mean potential in the alloy, i.e., 7 (e)=7ig(e)=0
for e< V,,, where

V= (VaQ,+ V5 25)/ @ 4 +25). (3)
This amounts to assuming that the lowest state
is extended and thus to neglecting any contribution
from bound states due to spatial potential fluctua-
tions. Let A have the more attractive pseudopo-
tential, i.e., V,<Vz. Then, in the alloy, states
near the bottom of the spectrum will have large
amplitudes in @, and small amplitudes in .
Correspondingly 7, (e) > 7 (€) for € near V,;. How-
ever, for states with large kinetic energy, i.e.,
(e = V,5)> (V, = V,), there will be nearly equal
amplitude in Q, and @, and consistent with the
assumption about the elemental materials, 7,(e)

and #,(e) should converge to free-electron-like
behavior. From these considerations we can sim-
ply write

ry r1/2 — (! — T
) ={ 1€ e @
0, <0
with
fi(e')zl for €’>>([;A—I7B).

We have performed our calculations with the fol-
lowing form:

fale’) =31+ 20e"%)/(1+ ae"%), (5)
fal€)=%3/1+ae™"<),

although other forms satisfying the above require-
ments give similar answers. In Fig. 1 we illu-
strate schematically the changes in the density

of states described by Eqgs. (4) and (5).

We now determine the parameters «, €,, and
the self-consistent average alloy potential V .
The procedure we adopt is in the spirit of a self-
consistent effective medium theory or coherent
potential approximation.'® Consider an isolated
region Q, with mean potential V, embedded in
the most probable configuration, i.e., in the over-
all mean potential of the alloy V,;. Consider now
the lowest state in the alloy, which by our assump-
tion has zero energy with respect to VAB. This
state has a large amplitude inside ©, and by as-

FIG. 1. Schematic illustration of the changes in the
local density of states of two metals A and B upon alloy-
ing. Before alloying the mean potentials of A and B are
at 7; and V3, their local density of states are n,(¢) and
ng(€) with Fermi levels Eﬁ and Eg, respectively. After
alloying, as described by Eq. (2) of the text, there is a
common mean potential 7 and a common Fermi level
E‘F in the alloy, the local densities of states are #, ()
and 7g(€), respectively. For the situation illustrated,
B is the more electronegative element and charge is
transferred from A to B upon alloying.
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sumption uniform charge density associated with
it outside ,. Its lowest energy in this situation
requires it to be an eigenstate with energy zero
for a spherical attractive potential of depth AV,
=V, -V, inside ,. (Any state with lower energy
will decay into the average medium and thus be
inconsistent with our assumption of extended
states.) This immediately gives the self-consis-
tency condition

AV (a, € =m*/8R3, (6)

expressed in a.u. AVA depends on o and g,
since the charge inside $, and therefore the
electrostatic, exchange, and correlation energies
depend on the density-of-states parameters ¢ and
€o-

Equation (6) represents a self-consistency cri-
terion that imposes a relationship between o and
€, Another relationship can be obtained by noting
that, as in any density functional theory, we can
use n(r) and therefore N,/N, as a variational
parameter., This amounts to determining o for a
given ¢, or vice versa by minimization of the total
energy of the alloy system, subject to the self-
consistency constraints. Alternatively, since
from physical considerations we expect ¢, to be
a few times (V, - V), we can assign it such a
value and obtain o from the self-consistency con-
siderations with very similar results.

The above procedure can be corrected perturba-
tively by considering spatial potential fluctuation
or clustering. Let a given atom be surrounded by
(Z - 1) other atoms in all possible ways with equal
likelihood. This Z-atom cluster has the potential

= (Z_y)"/AQA+7I7BQB
Vi T .y, @

where the configuration y occurs with the binomial
probability ch. (For Z - «, we obtain the average
medium and the results discussed above.) Now
we can consider local densities of states of the
form of Eq. (4) for each configuration, find the
Fermi level of the cluster (y) and calculate the
new energy. The new average local density of
states has exponential tails from configurations
that are predominantly made up of attractive A
atoms. This simulates bound states and gives
lowering in energy. In principle each configura-
tion can be made self-consistent by evaluating
faly,€). We have, however, used only the £,(e)
for the self-consistency of the isolated atom in
the mean for all configurations. The lowering

of the energy is small enough and, more import-
antly, without significant structure across the
Periodic Table that nothing much is to be gained
by making each configuration self-consistent.

III. RESULTS AND DISCUSSIONS

We have performed calculations of the heat of
formation AH for all possible alloys formed by
16 s-p electron elements. The underlying pseudo-
potential parameters are taken from the tables of
Animalu and Heine."* Even though more accurate
pseudopotential parameters are available today, 82
the chosen potentials are known to yield cohesive
energies of elemental metals' to within 10% which
is good enough in view of the simplicity of our
alloy theory. The potentials given by Animalu
and Heine are nonlocal or angular momentum de-
pendent. To simplify our task, only local averages
are used in the present calculation. Several test
calculations showed that the general trends in our
results were unaffected by particular choices of
local averages. The results presented here are
all obtained by choosing the /=0 pseudopotential
component to represent the local average. These
parameters are listed in Table I. The atomic
parameters are also graphically displayed in Fig.
1 where the bottom of the valence band v, the
Fermi level €, and the crystalline atomic volume
Q are compared. We notice that for alkali metals
the atomic volume increases dramatically going
from Li to Cs coupled to a drastic decrease in
the valence-band width. This is in contrast to
the polyvalent metals where the volume increase
with atomic number is rather moderate. This
general difference will influence the results of
alloy formation. The complete results of our alloy
calculations are compiled in Table II.

To display trends in alloy stability we focus on
one element, for example, Na or Si as they are
combined with all chosen s-p elements. This is

TABLE I, List of pseudopotential parameters, taken
from Animalu and Heine (Ref, 11), All quantities are in
au.

4, Ry Q z
Li 0.336 2.8 1443 1
Na 0.305 3.4 254.5 1
K 0.240 4.2 4814 1
Rb 0.224 44 587.9 1
Cs 0.205 48 7455 1
Zn 0.99 2.2 102.0 2
cd 0.88 2.6 1448 2
Hg 0.97 2.6 157.8 2
Al 1.38 2.0 111.3 3
Ga 1.44 2.4 1314 3
In 1.32 2.4 175.3 3
Tl 144 2.4 191.7 3
si 2.08 2.0 134.3 4
Ge 2.10 2.0 151.8 4
Sn 1.84 2.0 181.5 4
Pb 1.92 2.1 203.4 4
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TABLE II. List of heats of formation of equiconcentration alloys calculated by the method described in the paper.

Li Na K Rb Cs Zn cd Hg Al Ga In Tl Si Ge Sn Pb
Li 0
Na 0.2 0
K 0.6 0.3 0
Rb 0.7 0.3 0.0 0
Cs 0.8 04 0.1 0.0 0
Zn 0.9 1.3 1.7 1.7 1.7 0
Cd 0.4 0.9 1.1 1.2 1.3 0.4 0
Hg 0.3 0.7 0.9 1.0 1.2 0.5 0.4 0
Al 0.7 0.8 1.3 1.4 1.4 0.3 0.9 0.9 0
Ga 0.5 0.8 0.8 1.2 1.3 0.0 0.7 0.7 0.7 0
In 0.1 0.5 0.7 0.8 0.7 0.0 0.1 0.1 0.9 0.5 0
Si -0.2 =01 0.2 0.2 0.2 -0.2 0.3 07 -=0.1 0.4 1.0 0
Tl 0.0 0.3 0.6 0.4 0.4 0.1 0.1 0.0 0.9 0.7 0.3 1.2 0
Ge -0.7 -0.1 0.0 0.0 0.0 -0.1 0.4 0.3 0.0 0.0 0.6 1.0 0.0 0
Sh -04 -0.4 -0.1 ~-04 -0.3 0.0 -=0.1 0.2 0.0 0.2 0.3 0.4 0.8 0.3 0
Pb -0.6 -0.2 -0.2 -0.2 =0.1 0.1 -0.1 0.1 0.3 -01 -0.1 0.2 0.9 0.6 -0.1 0

shown in Fig. 3 (Na) and Fig. 4 (Si). All the re-
sults shown are for equiconcentration alloys. The
comparison is made with the empirical parametri-
zation of Miedema?!? for liquid alloys which is de-
signed to give the correct sign of the heat of for-
mation. In the Na series we find two different
types of behavior. As Na is alloyed with other
alkali metals, the heat of formation increases

and is always positive, indicating no stable alloys.
This results mainly from the drastic volume dif-
ferences between Na and other alkalis and thus
confirms Hume-Rothery’s rule.’* As Na is alloyed
with other nonalkali elements, the heat of forma-
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FIG. 2. Values of the principal parameters determin-

ing alloy formation for materials with weak pseudopo-

tentials. V is the mean potential, €, the Fermi energy,

and © the atomic volume.

tion generally decreases with increasing atomic
number within each column. While these trends
are parallel to Miedema’s results, the absolute
values are too large about 0.5 eV/atom in average.
Unusually large errors (~1 eV/atom) though
correct trends are found for the divalent metals
Zn, Cd, and Hg. We attribute this discrepancy
to the marked deviations from free-electron be-
havior for these metals within or near the bottom
of the valence band. The second-column elements
Be, Mg, Ca, Ba, and Sr could not be described
by our asymptotic free-electron-like theory,
(except for their alloys with the monovalent met-
als), due to the presence of strong d-like reso-
nances'® just above the Fermi level. The higher-
valence materials (third-, fourth-, and fifth-
column elements) have stronger pseudopotentials
and higher Fermi levels, so that such resonances
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FIG. 3. Calculated heat of formation (solid curves) of
equiconcentration alloys of Na with other s-p materials
compared with Miedema’s parametrization (dashed
curves).
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FIG. 4. Calculated heat of formation (solid curves) of
equiconcentration alloys of Si with other s-p materials
compared with Miedema’s parametrization (dashed
curves).

begin to be occupied giving a strong attractive
contribution to the energy, a contribution not
included in our theory. We thus know the limits
of validity of our theory, it works when the den-
sity of states of the individual metals A and B
are nearly free-electronlike not just in the occu-
pied region of A and B separately, but also ap-
proximately in a region |V, — V,| or |ep, = €pp|
(whichever is larger) around it.

In contrast to Na very different trends are found
for Si (see Fig. 4). As Si is alloyed, the heat of
formation A H always increases within each col-
umn with increasing atomic number. Generally
speaking, this result can also be linked to the
difference of atomic volumes.

We now analyze in some detail the various con-
tributions to A H. For this purpose we consider
alloys of Na with the trivalent metals Al, Ga, In,
and T1. (Similar physical points can be made with
reference to the others.) In Fig. 5, we plot the
variation of the “potential energy”, AE ,, (this
includes the electrostatic, exchange, and correla-
tion energies plus the one-electron part), the
kinetic energy AEy;,, and the perturbation cluster
correction, AE,.,, against the volume difference
[2n.—Q,|. Note that AE ., yields a relatively
structureless lowering of A H across the series.
This leaves the balance of AEy, and AE;, to de-
termine the general trends. The kinetic energy
change AEy, is always negative and AE,,, is (gen-
erally) positive. As a function of volume difference
the latter is more rapidly varying than the former
and determines the trend across the series in the
case shown in Fig. 5 as well as in the others. The
increase in the potential energy AE ,, is simply
the increase in the mean potential over that of
the simple average of the two components. AE
is of course related to the transfer of electrons

into the sphere around the more electronegative
elements upon alloying.

Just precisely what makes one element more elec-
tronegative thanthe other is the interesting question.
If no change in the local density of states LDOS was
considered, charge transfer would be determined by
the relative position of the Fermi level and one would
get seriously wrong answers, for example, charge
transfer from Al to Na. Infact, however, the
local density of states is severely distorted, as
illustrated in Fig. 1. For the cases considered
in Fig. 5 the difference in the Fermi level of the
individual metals is small and that of the mean
potentials V; is large and it is the latter which
predominantly determines the distortion in the
LDOS and the charge transfer. The difference in
the Fermi levels does have a small effect, how-
ever. We find the charge transfer from Na to Al,
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FIG. 5. Detailed consideration of contributions to the
heat of formation of equiconcentration alloys of Na with
trivalent metals T1, In, Ga, and Al. It was found useful
to plot the various contributions against the absolute
difference in atomic volume of the constituents. AEpot
is the change in potential energy and AEy;, that of the
kinetic energy. AE,e: is a small correction from con-
sidering clustering as described by Eq. (7) in the text.
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Ga, In, and Tl is, respectively, 0.14, 0.20, 0.16,
and 0.22¢. These numbers are best studied in
conjunction with Fig. 5.

Given a certain amount of charge transfer, AE,,
is determined by the difference of one-electron
potentials V; (this is an attractive contribution
to AEM) and the electron-electron part propor-
tional roughly to |(AN/S2,)"/® - (AN/Q5)"/? which
is repulsive. The latter is usually the larger
contribution except when the difference of one-~
electron potential becomes very large, as in Na
with the four-valent elements. The kinetic-energy
decrease reflects directly the self-consistent
change in the density of states and the requirement
of a common Fermi level as illustrated in Fig. 1.
The individual kinetic energy of A increases upon
alloying while that of B (the more attractive ele-
ment), which develops a hump in the new local
density of states at low energies, decreases. This
hump accomodates the extra charge transferred
from A. The smaller the volume of B with re-
spect to A, the larger is the hump [(as reflected
in our calculations by the parameters ¢ and ¢,
of Eq. (5)] so as to accomodate the extra charge
and the greater is.the decrease in kinetic energy.
This trend for Na alloyed with Al, Ga, In, and Tl
is illustrated in Fig. 5. We suspect that the actual
local density of states of the more attractive ele-
ment has a more pronounced hump than in our
calculations and that we underestimate the kinetic-
energy decrease. With the restriction of the form,
Egs. (4) and (5), this isthe best we can do, how-
ever. There may also be a contribution towards
lowering the energy from lattice relaxations which
are not included in our use of Vegard’s or Zen’s
rule® for the volume per element of the alloy.

There is a paucity of experimental data on the
absolute magnitudes of the heats of formation.

For Sn, however, a substantial amount of data
is available.'® The heat of solution [~ 2 (heat of
formation of equiconcentration alloys)] of Al, Cd,
Ga, Ge, Li, Na, and Pb in liquid Sn is measured

to be +0.14, +0.07, +0.03, —0.6, and + 0.05
eV/atom, respectively. Our calculated values
for the same quantity are + 0.04, -0.2, + 0.4, 0.6,
-0.8, -0.6, —0.2 eV/atom, respectively. Mie-
dema’s values are + 0.14, -0.01, +.03, 0.00,
-0.56, —0.31, + .07 eV/atom, respectively. It

is clear, therefore, that Miedema’s empiricism
gives better absolute numbers than our calcula-
tions.

We have, however, demonstrated the essential
physical principle involved in describing the heat
of formation of alloys whose elements have weak
pseudopotentials. Some confidence can also be
obtained from the quantitative accuracy which is
about 0.5 eV/atom while the individual cohesive
energies of the elements are of the order of 10
ev.

We conclude by stating three general rules gov-
erning the heat of formation of s-p electron met-
als, all of which come about basically from the
decrease in the local density of states at low en-
ergies of the less attractive element and an in-
crease in the local density of states of the more
attractive element.

(@) The charge transfer AQ occurs to the more
electronegative components. The electronegativity
is determined primarily by the mean potential
of the components and secondarily by their Fermi
levels.

(b) The charge transfer lowers the total kinetic
energy and raises the total potential energy mono-
tonicly as a function of volume.

(c) The variation in total potential energy over-
powers that in total kinetic energy, thus determin-
ing the variation in heat of formation A H.
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