
PHYSICAL RKVIK% 8 VOLUME 23, NUMBER 4

Lattice dynamics of metal hydrides

15 FEBRUARY 1981

Hamid A. Rafizadeh

Massachusetts 02115
(Received 10 October 1980)

A simple nonstoichiometric model of pmtal hydrides is proposed and applied to the study of the phonon dispersion
curves and composition-dependent Young's moduli of PdH„(D„j system. The model can readily take into account
the temperature and composition dependence of the metal hydride properties including phase changes.

I. INTRODUCTION

'The interest in metal-hydrogen systems stems
from their potential technological applications as
fuel for transportation, ' energy-storage devices, '
and moderator and blanket in fission and fusion
reactors, respectively. ' Metal-hydrogen systems
can be classified by the nature of the hydrogen
bonding into principle categories of covalent,
saline, and metallic hydrides. The covalent hy-
drogen model assumes formation of covalent
bonds between hydx'ogen and metal atoms. The
saline, orhydride-anion model' assumes ionic
bonding accomplished by transfer of an electron
from metal to hydrogen. The metallic, or sereened-
proton model' assumes that the hydrogen enters
the metal as a proton contributing its electron
to the d-band states of the metal.

Metallic hydrides exhibit metallic properties
and the study of theix' electronic structure' has
indicated that the bonding is largely metallic,
similar to that. of d electrons in pure txansition
metals, but the results are not inconsistent with
the notion that some ionicity could also be present.
Neutron-diffraction studies' have shown that the
metal-hydrogen systems can be considered as
interstitial alloys in which the hydrogen atoms
reside in the interstices of the host metal lattice.

The lattice-dynamics treatment of the metallic
hydrides has been complicated by the nonstoichi-
ometry and consequent loss of translational sym-
metry because of random distribution of hydrogen
atoms in the metallic interstices. ' The only non-
stoichiometric model of metallic hydrides presently
available" increases the size of the unit cell rom
~' to (na)', m=2, 3, .. . , and randomly distributes
the appropriate number of hydrogen atoms among
the interstices of the larger "supercell" in order
to obtain the correct H/M ratio. This model
suffers from large computation times and pro-
hibitively so lf the re8ults become 8ensit1ve to
the size of the supexcell.

In this paper we present a simple model of the
nonstoichiometric metal hydrides which considers

average interaction force constants and average
hydrogen mass in arriving at the dynamical matrix
of a conventional Born-von Khrmin lattice-dy-
namics treatment utilizing the stoichiometric
structure. In See. II the theoretical development
of the nonstoichiometrie model is given. Section
III considers the application of the model to the
calculation of the dispersion curves of PdD, „and
composition-dependent Young'8 modulus. Section
Dj' includes discussion and concluding remarks.

II. THEORY

In the structure of a metallic hydride, MH„, the
metal atoms are located at the lattice points of
a periodic crystal structure. The hydrogenatoms,
on the other hand, randomly occupy interstitial
sites of type i with a probability of site occupation
I', In order to transform the random positions
of the hydrogen atoms to that of an equivalent
ordered arrangement, we- make the following
simpllfy1ng assumptions:

(a) The mass at an interstitial site of type i is
replaced by the average hydrogen mass xI',.m,
where x is the composition in MH„and m is the
mass of the hydrogen atom.

(b) The hydrogen-metal interaction force con-
stants are given by

xJ, yg (r, av),
where P"„„"(l', kk') is the stoichiometric inter-
action force constant between hydrogen atom A

in unit cell 0 with metal atom k'' in unit cell l'.
(c) The hydrogen-hydrogen interaction force

constants are given by

(xJ,)(~p;)ys,a(t, aa ), (2)

where P„","(l', kk') is the stoichiometric H-H inter-
action force constant. The resultant dynamical
matrix, D, takes the form
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and has dimension 3(n+i) x 3(II+i), where n is the
number of metal atoms per unit cell and i is the
number of interstitial sites per Unit cell. The
dynamical matrix elements are given by

D»(q, »)=g{~,~,,)-"'P&(f,»)e"".. , (4)

D„"„"(Z,» ) = g (m, m„, )-'~'{xZ,)

)yhIII()» )elf'FIICK

where q is the phonon wave vector and r~~, the
' te ato ep t'o . The eq at f ot
18 defined as

uPO=DU, (6)

where v is the frelluency of vibration and U{k, Il)
the displacement amplitude of the 0th atom. The
dispersion curves w vs q ean be calculated once
the structure and the force-constant values are
known.

Using the method of long waves, "and observing
that the stoichiometric structuxe of all hydridgs
is centrosymmetric, the elastic constants C „~)„
are given by

C., „=-,— gag 0".,"(&,» )( „,)„( '„',), + P "~„P,.y.',"{I,» )(rI;.)„(rI;,),

whex'e v, is the unit-cell volume.
Hellos, fl'OIII Elis. (6) Rlld (7) utlllZ111g tile dy-

namical matrix of Eq. (3) the composition-depen-
dent dispersion curves and elastic constants of a
nonstoiehiometric metal hydride ean be cal-
culated. The calculation can then be extended to
include other thermodynamic and spectral px'op-
erties. At this point it must be clarified that the
force constants Q„„(f',kk') are not composition
independent and in calculating composition-de-
pendent properties the variations of Q and x
shouM also be taken into account.

III. CALCULATIONS-

As an application of the px'oposed model, i.n this
section we will consider the calculation of the
dispersion curves and composition-dependent
Young's modulus of Pd H„(D„). The phonon dis-
persion curves of Pd Do „have been measured
by coherent inelastic scattering of neutrons and
the results IlRve been successfully fitted with R

12 force-constant stoiehiometric dynamical ma-
tl"1x. A noQstoichlomet1"lc caleulatlonq bRsed
on a supercell of 108 Pd atoms on an fcc lattice
with 68 D atoms randomly distributed on 108
octahedral sites, has been successful in fitting
the dispel'sion cux'ves usingq also~ R 12-param-
eter fox ce-constant model.

The palladium hydllde phase diagram Rt room
temperature consists of a solid solution e phase
(H/Pd & 0.05) and a Nacl-defect structure P phase
(H/Pd & 0.6). X- ray-diffraction studies at room
temperature' have shown the a phase to have a
lattice parameter of 3.89 A and the P phase to
have a lattice parameter of 4.92 A. For Pdoo „
the lattice constant has been measured" to be

TABLE I. Force consta, nt vR1ues obtained bp' Qthng
the observed dispersion curves of Pdoo 83 using the non-
stoichioDletric xnodel (in 10 d$11e/cm, ).

f (.', oO, Id 0)
p„(~oo, Pd 0)

Q»(- -o, Pd-Pd)

Q~(~ »O, Pd-Pd)

$„.(»»O, Pd-Pd)

4..(-', -', o, D-D)

4.,(-', -', o, D-D)

Q„g(»»o, D-D)

Q (1oo, D-D}

4..(1oo, D-D)

-14.4
-0.5

-18.2
-3.7

0.17

I

Neutron diffraction studies of the p
phase" have indicated that of the two octahedral
and tetrahedral sites of the fcc lattice, at room
temperature only the octahedral site is occupied
by the hydrogen atom and hence I'„~= 1 and P„,
=0.

If considering only the nearest-neighbor Pd-Pd
(3 force constants), D-D (3 force constants), and
Pd-D (2 force constants) interactions, all of the
dispersion branches except for the high-energy
optical ill'RIlch Rlong [001J Rlld [111t CRII be fl't'ted

to the experimental obsel vRtlons. TIle high-en
ex'gy optical branch i.s strongly dependent on the
next-nearest D-D (2 force constants) interaction
and with inclusion of these parameters, which
brings the total number of unknown force-constant
paraxneters. to ten, a satisfactory agxeement with
the measured dispersion curves can be obtained.
Table I gives the fox"ce-constRnt valuesq Rnd Flg.
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FIG. 1. Comparison of the experimental observation (Ref. 12) of the phonon dispersion curves of Pd Dp, 63 with the
calculations of a ten-parameter nonstoichiometrie lattice-dynamics model.

1 gives the comparison of calculated dispersion
curves with the experimental data.

Using Eg. (7) the expressions for the elastic
constants of PdH„(D„) are obtained as

C~~= ——[xoI~+ Q2+x (@3+2&~)]
4

+x'(n, +P, + 2n, )]

2
Cim= —[-2x Px - &2 P2-8

+2y, —x'(a, +P, —2y, )].
The calculated values are compared with the
elastic constants of palladium in Table II, clearly
indicating the softening effect upon deuteriding.
The degree of softening can be taken to be indi-
cative of the extent to which the changes in com-
position produce changes in the Pd-Pd inter-
actions.

In order to calculate the composition-dependent

TA&LE G. Cslculation of the elastic constants of
Pdoo 83 using the nonstoichiometric xnodel, and the com-
parison vrith the elastic constants of palladium Qlustrat-
ing the softening effect upon deuteriding {in 10~2 dyne/
cm2).

Cu C(2

Pdo() 63, calculated
Pd, measux ed

1.861
2,270

1.225
1.759

0.683
0.717

J.A. Bayne, Phys. Bev. 118, 1545 {1960).

Young's modulus we use the Voight-Reuss-Hill
(VRH) RpproxlIIlatlon ln calcnlating the shear and
bulk moduli. Since Young's modulus can be cal-
culated from either shear or bulk moduli, we have
taken the average of the two expressions, i.e.,

Z„= —,
' [2G„(1+v) + 3 K„(l —2v)],

where G„and K„are shear and bulk moduli in the
VBH approximation and v is the Poisson's ratio.
In our calculations we have assumed v to be com-
position independent with a value of 0.375 cor-



responding to that of pure palladium. '7

In utilizing the expressions in Eq. (8), as pre-
viously mentioned, we must take into account the
composition dependence of force-constant val-
ues, especially for Pd-Pd interactions. Assuming
that in the Pd-Pd interaction potential, V(r)
= &E(1'), only the potential strength e has a con-
tinuous composition dependence, that is, e(x)
=&,f(x), then the expressions in Eg. (8) can be
modified to include composition dependence of
Pd-Pd force constants by multiplying n„p„nad
y, by f(x). We have assumed negligible composi-
tion dependence for Pd-D and D-D force con-
stants.

In our calculations, we have taken a simple
linear variation for f(x), i.e.,

0
0,1
0.2
0,3
0.4
0,5
0.6
0.7
0.8
0.9
1,0

1.124
1~131
1.124
1.107
1.080
.1.045
1.003
0.960
0.910
0.853
0.788

1.124
1.111
1.098
1.087
1.080
1.075
1.074
1.084
1.096
1.112
1.130

1.124
1.121
1.111
1.097
1.080
1.060
1.038
1.022
1.003
0.982
0.959

TABLE Dt'. Calculation of the Young's modulus of
PdH„(D„) from shear and bulk moduli calculated using
VBH approximation (in 10 2 dyne/cm2).

x E =2GH (1+ v) & =MB (1-2&) E~= —(E~+&~)

f(x) ~A+Bx. (10)

Since our equations for elastic moduli are exact
at x =0.68, we can use the condition f(0.68) =1 to
reduce the unknown parameters in f(x); the
relationship between A and 8 is given by:

1-A'-
0.63 .

We have elected to calculate A from the Young's
modulus of pure palladium which has the value of
1.124 x 10"dyne/cm'. " The calculated values of
+ Rnd + Rxe given in TRMe III.

In performing the calculations we have to con-
sldel' t11e exls'tellce. of two pllases Q alld p 111 'tile

calculation of the Young's modulus. These two
phases have the same crystal structure and differ
only in their lattice constant. For the sake of
simplicity we will assume that the force constants
will remain the same in both phases. The Young's
modulus is then calculated for

O~x ~0.05, n phase

0.05 &x & 0.6, lever rule average of o'. and p phases

0.6 ~x «1, P phase.

The calculations- of' the composition-dependent
Young s modulus Rre summarized in TRble IV
and Fig. 2. It is of interest to note that although
the average E„calcutlaefdrom Eq. (9), shows

From shear modulus From bulk modulus

1.43
-0.68

TABLE m. The values of parameters in f(x)=A +ax
utilized in characterization of the composition depen-
dence of Pd-Pd interaction force constants, calculated
from shear and bulk moduli in VBH approximation.

FIG. 2. Comparison of the calculated decrease in av-
erage Young's modulus (solid curve) rvith the experi-
mental data (Bef. 19) (solid circles). The decrease in
Young's modulus calculated from shear modulus (dashed
curve) and from bulk modulus (dotted curve) are also
given.
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good agreement with the experimental obser-
vations, the values of E, calculated from shear
or bulk moduli act only as limiting cases. 'This

observation is essentially another manifestation
of the VRH approximation.

IV. DISCUSSION

A simple nonstoichiometric model of metal
hydrides has been proposed in which average
hydrogen mass and average interaction force
constants are utilized in a stoichiometric struc-
ture, and the standard lattice-dynamics formula-
tions are employed in calculation of the dispersion
curves and the elastic constants.

The proposed model is applied to the calculation
of the dispersion curves of PdD, „and com-
position-dependent Young's modulus of palladium
hydride. A satisfactory agreement with the mea-
surements of phonon dispersion curves is ob-
tained using only ten force-constant parameters,
as compared with twelve parameters of other
lattice-dynamics model calculations. More im-
portant, the computation time for the model is
considerably less than the supercell model, and

explicit composition-dependent expressions for
the frequencies of vibration and elastic constants
can be readily derived in the proposed model.

In the calculation of the Young's modulus of

PdH (D„) the model takes into account the phase
changes as a function of composition. Although
the phase change for palladium hydride, at room
temperature, consists only of an abrupt change
in the lattice constant with no structural change,
the model is, however, readily applicable to phase
changes where structural changes are also pre-
sent. The calculations of the Young's modulus
have been fitted to the data at essentially one
point, x=0, and the relatively good agreement
between the theory and experiment is not only
supportive of the model, but also indicative of the
strength of VRH approximation in the calculation
of the elastic moduli.

The model can easily calculate properties of
metal hydrides when more than two phases are
present. By making assumptions about prob-
ability of interstitial-site occupation by hydrogen
atoms, the model can dynamically consider all
temperature- and composition-dependent changes
in the calculation of the properties of metal hy-
drides.
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