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The quantum-lattice-gas model is used to describe the solid phase of a system consisting of
Bose particles. The Hamiltonian is diagonalized in the spin-wave approximation and a two-

branch excitation spectrum is obtained. +hen the system exhibits a Bose-Einstein (BE) con-

densation (i.e., in the supersolid phase), the excitation is a coupled density —order-parameter
oscillation. The lower branch is proportional to k (co —k ) and is mixed with the phonon spec-

trum; the upper branch has a gap and is proportional to k (ao —aoo+bk, b & 0). The magni-

tude of the gap eo is a pressure-dependent quantity and is estimated to be in the range of 0 (at
the superfluid —supersolid transition) to 10 2 per sec (at the supersolid —normal-solid transition).
In the normal-solid phase (no BE condensation) these two branches do not couple to,density os-

cillations and cannot be observed by neutron scattering experiments. Therefore the existence of
the upper branch by neutron scattering experiments may be used as a criterion for the existence

of a supersolid.

I. INTRODUCTION

In the past decade there has been numerous
theoretical speculation' " concerning the possibility
of a Bose-Einstein (BE) condensation in a quantum
solid, and whether this BE condensed phase exists in
a real physical system such as solid 4He. So far there
has been no report on the experimental observation
of such a BE condensed solid (supersolid). But be-
fore any experimentalist can do research in this as-
pect, one must answer the following fundamental
question first: What physical properties characterize
a supersolid and how to detect them experimentally?
It is the purpose of this paper to provide some of the
answers to the above questions and hopefully this
would help the experimentalists in their research for
a supersolid.

The properties of a supersolid have been studied by
Andreev and Lifshitz, ' Saslow, "and Liu" from mac-
roscopic symmetric considerations. They used a mac-
roscopic theory, in close analogy to the theory of
two-fluid hydrodynamics'4' of superfluid liquid He,
to study the possibility of a persistent flow of defects,
and entropy flux, etc. While the validity of their
theory remains to be proven by experiments, we give
a microscopic approach in this paper. The model we
use is quantum-lattice-gas (QLG) model. This model
has been successfully used by several authors to
describe the superfluid transition and the phonon
spectrum, ' and other properties"" of liquid He.
The same model has also been used by several au-
thors """to describe the properties of a Bose
solid. In this paper, we use the spin-wave analysis to
derive the excitation spectrum of a Bose solid, and
find that the experimentally observable spectrum is

distinctly different for a supersolid and for a normal
Bose solid. We think this may be the simplest
method to detect a supersolid.

The excitation spectrum of the QLG model in the
supersolid phase has been calculated by Mullin and
by Liu and Fisher. However we think it is appropri-
ate to rederive and to reexamine the result more
thoroughly here because of the following two rea-
sons. Firstly, neither of the results of Mullin, or of
Liu and Fisher seems to be satisfactory. Secondly,
and more importantly, the physical nature of the ex-
citation spectrum has been overlooked and it
deserves a new explanation here. We explain these
two points more thoroughly in the following'.

(i) The spectrum obtained by Mullin has two
branches [a& —k' and cu —const+ 0 ( k') for small
k). However, Mullin used a set of parameters which
correspond to a limiting point in the parameter space
which would support a stable supersolid phase. 4

Therefore his result is not a general one. Liu and
Fisher used a correct set of parameters and also ob-
tained a two-branch spectrum [ao —k, and
ru-const+0(k') for small k]. The lower branch is

now proportional to k rather than k'. However their
result is also unsatisfactory because as the super-
solid —normal-solid phase transition is approached,
the lower branch does not change form and is still
proportional to k, which is incorrect. We recalculate
and obtain a two-branch spectrum similar to theirs
but with a different proportionality constant for the
lower branch. This new proportionality constant goes
to zero as the supersolid —normal-solid transition line
is approached, and the spectrum becomes that ob-
tained by Mullin for a normal solid. '

(ii) The QLG model is mathematically equivalent
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to the antisotropic Heisenberg model. ' ' Therefore
the spin-wave analysis can be used to obtain the
low-temperature excitation spectrum. However the
magnetic analogy is a fictitious one and care must be
taken in the explanation of the excitation spectrum.
In the QLG model (see Sec. II below), the space is
divided into cells and to each cell there associates a
"spin" operator 0-. At the ground state, all the
"spins" prefer to align along a direction different
from the z direction for a supersolid (o., is related to
the number density of each cell and (o„) or (ar ) is
the BE condensation order parameter). For the low-

lying excited states, the spins deviate slightly from
the preferred direction and a spin-wave-like excita-
tion ' is obtained. From this picture we see that this

type of excitation is a coupled density —order-
parameter oscillation (a, varies from cell to cell, and

(a„) W 0 and also varies from cell to cell). There-
fore this spectrum can be excited by phonon excita-
tion (e.g. , neutron scattering). For a normal Bose
solid the situation is completely different. At the
ground state, all the "spins" align in the z direction.
And the "spin-wave" excitation corresponds to a sit-
uation where cr, = const is independent of the posi-
tion of the cell and (o„)= (or) =0 (no BE conden-
sation). Therefore in the normal solid this type of
excitation does not couple to density oscillations and
cannot be observed by neutron scatterings. "

For a supersolid the spectrum has two branches
which are coupled density —order-parameter oscilla-
tions. The lower branch (rp —k) is mixed with the
phonon spectrum and will modify the sound velocity.
The upper branch (cp —rpp+ bk') has a gap and a
positive effective mass (b )0). Because of the simi-

larity of the excitation spectrum, it is tempting to
identify this mode as one of the types of "defectons"
discussed by Andreev and Lifshitz. ' This branch can
also be excited by neutron scatterings. For a normal
Bose solid, the spectrum has also two branches, ' but
they do not couple to density oscillations and cannot
be observed by neutron scattering experiments.
Therefore the presence (or absence) of the upper
branch by neutron scattering experiments may be
used as a criterion for the existence (or nonex-
istence) of a supersolid. z3

In Sec. II, we give a brief description of the QLG
model. In Sec. III, the spin-wave analysis is em-
ployed to derive the excitation spectrum. Discussions
and conclusions are given in Sec. IV.

II. QUANTUM-LATTICE-GAS MODEL

In order to have a close comparison with the result.
of Liu and Fisher, 9 we adopt their conventions and
notations. We consider a bcc lattice which decom-
poses into two interpenetrating simple cubic sublat-
tices a and P. In a "perfect" crystalline state, all the

[a;,a;]+= [a;,a; ]+=0

[a;,a; ]+=1
(2)

The commutation relations Eqs. (1) and (2)
characterize the operaters in. the model. They have
the same relations as the commutation relations of a
collection of spin units, with each unit fixed at a lat-
tice site and spin magnitude —,. In terms of the Pauli

matrices o-J we have

aj = a'j = (crj + l lr j )
1 (+) 1

1nj=aj aj l (1+oj)

Here nJ is the number operator for the jth cell. If
we approximate the kinetic-energy operator of the
system as the finite difference' of the operators of
the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) cells, and consider only the NN and
NNN interactions, the Hamiltonian has the form, 9

DC X I~ja ~ aj + X Vjll ~ llj
1

«J) «J)
1Ip+ —X Vj(r;*oj'.

«J&

——,
' $ jj(rr,"rrj"+ a rrr J) —Xo,'H, (4)

Here (ij ) stands for NN and NNN pairs, Vj's are
the potential energy, and tJ's are related to kinetic
energy; 10 is the part of the Hamiltonian which is in-
dependent of the 0.'s and H, is the external field.
Readers are advised to consult Ref. 9. for the details.
Let

1 1
t P= —J(, t =' —J2

1
V p= ——J(, 2 I

V = ——J2

and take into account the fact tha& for each site there

lattice points (or "cells") of the sublattice a are oc-
cupied, and those of is sublattice are empty. We call
a "regular" sites and P "interstitial" sites. The
scheme of the second quantization is adopted, and
the operators a; and a; are defined as the creation
and annihilation operator at the ith cell, respectively.
These being Bose operators, it is assumed that they
obey the usual commutation relations for different
cells,

[a,,aj] = [a,,aj ] =0 for i W j
In the lattice-gas model, there is also a restriction
that no cell can contain more than one particle at a
time. This simulates the hard-core potential and can
be accomplished by the Fermi anticommutation rela-
tions when they refer to the same cell,
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are eight NN and six NNN sites, we have

K = lo —
16 J1 X 0 a/0 pj

—
—,

2 J2 X (/T«/Taj + 0 p;0pJ )
1

J1 X (/Ta /Tpj + 0 a0/pj)
&J)

" ' "
&'J) &J)

„J2 X (0 a/0 aJ + /T a/0 aJ + 0 p//7 pJ + 0 pj 0 pJ ) . X (0 a/ + /T pI ) Hg
&J) I

(6)

III. SPIN-WA VE ANALYSIS

Consider a BE condensed solid in which the BE condensation order parameters (0") and (/Tp) are
nonzero. s 9" At the ground state all the spins of the a sublattice align along the same direction (denoted as the

g direction) which makes an angle 8 with the z direction. In order for the spin-wave analysis to be applicable we

transform to the new axes $Tif for the a sublattice, we have

o;= cr~; cos8+ cr~; sin8, cr" =0~ei ai o-'; = —o-&; sin8+ o-~; cos8

Similarly we have to transform to a new coordinate axes jj."Tj'f' for the P sublattice in which the g' direction, the
direction of the magnetization for the P sublattice, makes an angle /tj with the z direction. Equation (6) then
takes the form

3.'= 10+H, X (ot; cos8 —Ot; sin8+ Opt; cos/b —/T); sin/t/)
I

+ X [~ 11/Ta//Tpj + ~ 33/Ta//Tpj + Ji 13/Ta//Tpj +~ 31/Ta//Tpj +~ 22/Ta//Tpj + B11/Ta//Taj + B33/Tai /Taj
&IJ)

j I I j
+ B13(/Ta//Taj+ 0 a/CTaj) + B220 a/0 aj + B110 )//T)j+ B33 0 p/O pj + B13 (rr)j /Tpj + /Tp//Tpj) + B220'pj 0'pj ]

where

311=—
—, (J1 sin8sin/tj+ Jjcos8cos/b)

A 33 16 (J1 cos8 cos/b + J1 sin8 sining)

A 13 16 ( J1 sin8 cos/t/ + J1 cos8 sin/t/}

2 31 16 (—J1 cos8 sin/tj +J1 sin8 cos/b)

I

and a similar set of equations for 8„' if we replace 8
by it/ in the last four equations in Eq. (9).

To diagonalize Eq. (8) we make the transforma-
tions

/Tr;+ iO"; = X.exp[ —i k R;]a-„
x'N

(S}

1

72 1 6 J (9)
/Tt; —i 0";= Xexp[i k ~ R;]a

&&N
(10)

B» = —
—,

2
(J2 sin'8+ J2cos'8)

B33 12 (J2 cos'8+ J2 sin'8)

B13= ——(J2 —J2 ) sin8 cos8
12

2Ot;= I ——X exp[i(k —k') R, ]a-„a
k, k

and a similar set of equations for the P sublattice if
we make the substitutions (q( g'ri'(', 0; /8;,

a-„b-„,and a-„b-„. Equation (8) becomes

JC =JCO+ X [A 1, a 1,
a

1,
+ B-„b1,b-„+C-„(a -„b -„+a -„b -„)+ D-„(a-„b-„+a-„b-„)

k

+ 2E-„(a-„a -„+a-„a -„)+ —,F-„(b-„b -„+b-„b -„)]

where we have made use of the commutation relations

[a-„,a i] =5„„„[b-„,b „,1 =8-„-„, , [a-„,b„,] = [a-„,b-„, ] = [a-„,b-„] = [a i„b-„i[ =0
/

(12)



160 YI-CHEN CHENG

Xo is the k-independent part of the Hamiltonian and

A -„=—2H, cos8 —16M 33

—12822+ (8l l +822) 5-„

8-„=—2H, cos$ —16A 22

—12822 + (8 l'l +822 ) b, k

Itis easily seen from Eq. (16) that in the supersolid
phase ~ —k. But as the supersolid —normal-solid
transition is approached co becomes proportional to
k', because at the transition 8 = 0 and $ = n and
S = S&= 0, while the result obtained by Liu and
Fisher indicates that the lower branch is still propor-
tional to k at the transition which is incorrect.

(All A 22)'Yk D k (A ll+A22)yk

Ek = (8» —822)~k.

i k ~ 77)
&k=

77(

i k ~ 772~k=Xe
82

where S~ and 52 are NN and NNN lattice vectors,
respectively. In the derivation of Eq. (11), we
neglect third- and higher-order terms of a-k and b-„,
ete. %e also require the coefficients of the first-
order terms to be zero

—H, sin8+ 68»+ 8A (3 = 0

H, sing+ —68l'2 + 8A 3l 0 (14)

These two equations determine 8 and $ for a given
value of H, . H, represents pressure for a quantum
solid (and is the magnetic field for a magnetic sys-
tem).

By using the equation of motion ia-„= [a-„,H],
and assuming a-„—e '"', etc„we get from Eqs. (11)
and (12)

«l+(k) = —(A2+8 —E —F —2C +2D )

+ —,
'

{(A'-8'-E'+F2)2

+4[(A E)(D+ C)+ (8+F—)(D —C)]

——„(J2—J2 )JlS~Sp].k'&l+ 0 (k')
(16)

«l (k) = (J2 —J2 ) [ 4 JlS Sp+ 6
J2(S2 +Sp')]

x k2{8,{'+O (k4)

S =sin8, Sp=sing

x [(8 F) (D+ C)—+ (A + E) (D —C) ] ] '~2,

(15)

where A —=A-k=3 -„, etc. This is exactly the resuLt

obtained by Liu and Fisher, ' if we eliminate H, by
Eq. (14). However, in the small-k limit we get a

result different from theirs

«l~~(k) = Jl2 (Sp/S —S /Sp)2

+ [Jl2 + JlJ2(S /Sp+Sp/S —)

IV. DISCUSSIONS AND CONCLUSIONS

In order that the spectrum of Eqs. (15) or (16) has
any physical meaning, the system described by the
Hamiltonian Eq. (6) must exhibit a stable supersolid
phase for a certain range of H, . The stability condi-
tions at absolute zero have been studied by Matsuda
and Tsuneto, ' and they are'

-(Jl+ Jl') )J2- J2 ) 0 (17)

of which, the second inequality (J2 —J,' )0) can be
considered as the condition that there exist a finite
fraction of lattice vacancies in the ground state. '
Therefore J2 —J2 & 0 corresponds to the case where
ground-state lattice vacancies do not exist and the
system does not exhibit a stable supersolid phase.

As mentioned in the Introduction, the ground state
of a supersolid has the following pictures: For the o,

sublattice, the mean number of particles per cell
n = —,(I +cos8) is less than one, and the BE con-

densation order parameter $ =—(a") = sin8 is
nonzero. Similarly for the P sublattice, np

1= —2(I+cosp) and (p—= (ap) =sing WO. For low-

lying excited states, (n, i; ) and (np, gp) oscillate
about a mean value, respectively. Therefore this is a
coupled density —order-parameter oscillation. The
lower branch of Eq. (16) has an acousticlike spec-
trum «l —k, in which (n, {,') and (np, fp) oscillate
in phase. This mode is mixed with the phonon spec-
trum and may modify the sound velocity. The upper
branch has a gap and is proportional to k' («I «lp

+ bk2), in which (n, g ) and (np, gp) oscillate 180'
out of phase. This is different from an optical-
phonon spectrum because in the supersolid phase 5„
and 5& are small positive quantities and J~ and J2 are
positive numbers, therefore b & 0. Because this
mode exists (or, more precisely, can be detected)
only when there are ground-state lattice defects (in
this case lattice vacancies) and because of the similar-
ly of the excitation spectrum, it is tempting to identi-
fy this mode as one of the types of "defectons" dis-
cussed by Andreev and Lifshitz. ' This mode is an
order-parameter oscillation and it is quite possible
that the system may exhibit some types of super-
fluidity as discussed by some authors. '

Two remarks about the two branches in Eq. (16):
(i) As the system undergoes a phase transition



23 EXCITATION SPECTRUM OF A SUPERSOLID 161

as

and

~a J2 J1 J2 + (J2 Jl J2)

Sp Ji

8 0, $ 2r

1/2

(J2 J 1 J2)
Ql+ k = 2J1 J2

1/2

+O(k') . (Ig)

from a supersolid phase to a superfluid phase, the an-
gles 8 and $ change from 8 4 $ W 0 to 8= $ A 0, the
upper branch disappears. The spectrum has only one
branch with cu —k as that obtained by Matsubara and
Matsuda. '

(ii) When the pressure increases, or the parameters
of Eq. (6) do not support a stable supersolid phase,
the system will exhibit a normal-solid phase in which
8=0 and $=2r. The spectrum in this phase can be
obtained either by a direct calculation from Eq. (11),
or by examining Eq. (16). At the transition 8 0
and @ 2r, the lower branch becomes proportional to
k' (which is in contrast to that obtained by Liu and
Fisher9), while the upper branch still has a gap. The
magnitude of the gap can be calculated from Eq. (14)
by eliminating H, . In the limit 8 0 and $ rr

(cos8 1, cos1b —I), we easily find

the excitations correspond to a situation where o'
and cr& are constants, respectively, and do not couple
to density oscillations. Therefore in normal Bose
solids this type of excitation cannot be observed by
neutron scatterings.

In conclusion we have shown that in a supersolid
there exists a two-branch spectrum. which is the exci-
tation of a coupled density —order-parameter oscilla-
tion. The lower branch (cu —k ) is mixed with the
phonon spectrum. The upper branch has a gap and is
proportional to k' (co —a&o+ bk', b ) 0). The mag-
nitude of the gap coo is a pressure-dependent quantity
(as the angles 8 and @ are pressure-dependent quan-
tities). The gap rao is zero at the superfluid-
supersolid transition line and increases as the pres-
sure increases. It is of the order of J1 (estimated to
be a few degrees kelvin) at the supersolid —normal-
solid transition line. Therefore we would estimate Mo

to be in the range of 0 to 10" per sec depending on
the pressure. These two branches cannot be ob-
served by neutron scattering experiments in a normal
Bose solid. Therefore the existence of the upper
branch by neutron scattering experiments may be
used as a criterion for the existence of a supersolid.
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