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Screening near a metal surface: Plasmon effects
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We present a formulation of the problem of the screening of an electron by a metal surface in which electron-gas
dispersion is fully taken into account. This is done by introducing a model Hamiltonian that treats on an equal
footing the interaction of an electron with all the normal modes of a metal with a surface. The coupling functions
describing this interaction are obtained in terms of general response properties of the bounded electron gas. As an
example, we obtain explicit results for the coupling functions for a simplified model of the metal surface response, in
which only collective modes (bulk and surface plasmons) contribute to the imaginary part of the density response
function. We establish the plasmon-pole approximation for the surface problem, by showing that our model response
function exactly satisfies the f-sum rule for an inhomogeneous electron gas (in the particular case of a sharp electron
density profile at the surface). We present explicit results for the "image potential" acting on a charge as a function
of its distance from the surface (the charge can be either outside or inside the metal). Our results stress the
importance of including electron-gas dispersion (spatial dispersion) in the problem. In particular, model
Hamiltonians for the electron-metal surface system that do not include electron-gas dispersion in the coupling
functions, give a poor description of the screening at distances from the surface of the order of the electron screening
length.

I. INTRODUCTION

There is considerable current interest in the
study of screening processes near a metal sur-
face.' " In particular, it has been known for
some time that the coupling of a charged particle
to the surface plasmon leads to a screening self-
energy that in a semiclassical approximation'
(necessary to localize the particle) reduces to the
classical image potential at distances from the
surface that are large compared with the electron
screening length. %bile this role of the surface
plasmon has been repeatedly emphasized in the
literature, it is noteworthy that the role of the
bulk plasmon has been either ignored or (as we
shall see below) treated inadequately. A rather
common misconception in this context is the as-
sumption that effects specific to the surface re-
gion arise only from the surface mode. Thus in
previous theories of the screening response of a
metal surface, bulk and surface modes are usually
not treated explicitly on an equal footing.

The present paper aims at a description of
screening near a metal surface that does treat
bulk and surface modes on an equal footing. As
we shall see, this can be achieved by taking into
account electron-gas dispersion (spatial disper-
sion) consistently. Our theory, of course, resorts
to approximations. 1t has, however, the appeal-
ing feature that the approximations are introduced
in a well defined fashion, namely, at some point
we must choose a model for the density response
function of the bounded electron gas )t(q„e ~zz').

A convenient method for the study of the electron-
metal surface interaction is the use of model
Hamiltonians. ' ' " This method has the advan-

tage of its relative simplicity. lt provides a phy-
sical insight into the microscopic behavior of the
system that is sometimes absent in methods in-
tended to obtain numbers of quantitative signi-
ficance (like the density functional method). A

further advantage of a Hamiltonian formalism is
that dyngmical screening processes can be treated
on an equal footing with static screening.

The problem is usually formulated as fol-
lows. '""0 '4 The external particle (e.g. , an elec-
tron) is coupled to the boson field of a dispersion-
less surface plasmon of frequency e, = u&~/v"2

(~ being the bulk plasmon frequency). The Hamil-
tonian describing this coupling is written as"

If(si —@1/ 2 e (ax xi' (s&'(z)(& + &V„)int (i~) q))

where the coupling function f-'"(z) is given by" "
Fe (d[f(x)( )]2 0 -2xxl xl

9'l) ~S
(1.2)

Here q„ is the surface plasmon wave vector, z is
the coordinate perpendicular to the jellium sur-
face (the jellium occupying the half-spa, ce z &0),
and 4 is the surface area. As mentioned above, ""
this model leads to a description of the external
charge-surface interaction given by the classical
image potential -e /4z. Obviously, if the external
charge is near the surface, z-0, Eq. (1.2) cannot
properly describe its screening by the surface
plas mon.

Another shortcoming of the above model is the
following. Equation (1.2) implies that the inter-
action under consideration is the same, whether
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ff(B) hl/« ~ gN z))f (8) (z)(g +gt )int Cji «0&
Cfj «Cg

(1.3)

where q= (q„;q,z) and the coupling function f „.', (z)
1s given by

[f,.'s.', (z) j« = -« —,(1-cos2qp)e(-z), (1.4)

0 being the volume of the system. (Here q, =nv/d;
A=Ad, n=l, 2, 3, .. . )

Now a more realistic description of screening
(Xv0) immediately invalidates the result that

pe =0 at z =0. (This fact has been ignored even in
papel s whose pux'pose ls to 1nelude the effects of
electron-gas dispersion' ). Thus, an external
charge can interact with the bulk modes for
z &0.""It has been estimated" "that the bulk
modes account for 30/0 of the "image potential" V
felt by a charge localized at z =0 [whereas the
above model gives no contribution to V(z ~0)].
Furthermore, a continuity argument suggests
that when the external chaxge penetrates the sur-

the external charge is outside or inside the metal. .
We note that in this model. the density fluctuation
corresponding to the sux'face plasmon is a delta
function locabzed at the surface, and its asso-
ciated scalar potential satisfies Laplace's equa-
tion for both z &0 and g &0; hence the factor
exp(-2qe

I
z

I ) m Eq. (1.2). Now in a real metal,
the electron screening length X is finite (not zero,
as in the above model), and the density fluctuation
that corresponds to the sux face plasmon acquires
a finite spread (of the order of X) into the metal.
Its associated potential mist then satisfy Poisson's
equation for z &0, and the coupling function must
reflect this fact. Thus, Eq. (1.2) is not qualitative-
ly correct for z &0. %'8 note that it has been sug-
gested" that spatial dispersion (Xv0) can be ac-
counted for by simply letting rv, in Eq. (1.2) be-
come ~,(q„), the dispersive surface plasmon fre-
quency. The above argument suggests that this is
not correct for z &0. (In Sec. 1II we show this to
be incorrect for z &0 also. )

Related to the preceding remarks is the fact
that the coupling to the bulk modes9 "has not, in
general, , been treated adequately. The root of this
probl;em is the fol.lowing. In the absence of elec-
tron-gas dispersion' (X=0), the scalar potential

cp~ due to the bulk modes happens to vanish at the
surface, z =0. Since outside the surface V'cp~=0,
it follows from potential theory that q~=-0 outside
the surface. Hence, a charge at position z &0
would not interact with the bulk plasmons. Thus,
the Hamiktonian for the coupling to the bulk modes
is usually written as follows

face (z& 0) its screening by the bulk modes will
not be properly given by (1.4) for lz

In this paper we present a description of scxeen-
ing near a metal surface which is conceptually
simple and at the same time is free from the ob-
jections posed above on earliex theories. Of the
pxocesses that contribute to the dressing of an
electron in the surface region we isolate those due
to the screening response of the electron gas. In
Sec. II we introduce a Hamiltonian for such pxo-
cesses. We note that in this paper we do not dis-
cuss the Hartree-Fock self-energy at all. . We ob-
tain general expressions for the coupling functions
that generalize Eqs. (1.2) and (1.4) in terms of gen-
eral properties of the bound'ed electron gas. In
Sec. 111we evaluate those coupling functions fox a
xnodel of the bounded electron-gas response" in
which only collective modes contribute to the im-
aginary part of the density response function. %8
explicitky show that our choice of response func-
tion exactly satisfies the important f-sum rule"
in both its "local" and "global" forms. '0 Thus,
the model of Sec. Ill establishes the suQace
counterpart of the rather populax plasmon-poke
approximation first proposed by Lundqvist~' fox
the homogeneous electron gas." Note that for
large wave vectors this approximation effectively
takes into account the electron-hole pair contribu-
tion to screening in an "average" sense. " Now the
model of Sec. III assumes a shaxp el,ectron density
profile at the surface. This is known to be a
crude approximation to the a,etual density profile
at a metal surface. However, the generalization
of the theory of Sec. Ill to more complicated (if
not entirely realistic) density profiles" is straight-
fox'ward. While we hope to x'epox't on th1s exten-
sion of our work i.n a future publication, we be-
lieve that our px esent approach and results merit
separate presentation. The analytical results of
Secs. III and IV display rather cl.early the role of
the collective modes of a metal with a surface in
the screening response of such a surface. Fur-
thermore, because our approximate model satis-
fies basic requirements like the local conservation
of charge (f-sum rule), it is free from the objec-
tions we have raised on the existing theories, and
the fact that we obtain physically reasonable image
potentials in the vicinity of the surface, we expect
our results to be of qualitative significance in a
variety of surface problems' "deal. ing with the
ekectron-plasmon interaction near a surface. In
Sec. IV we obtain a result for the electron self-
energy that generabzes an earlier result of Feibek-
man et gl. '"' by the inclusion of electron-gas dis-
persion in the aforementioned coupling functions.
In ordex' to show expl1c1tly the consequences of
electron-gas dispersion, we consider a simpl. e
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semiclassical approximation in which the self-
energy becomes a local function of position. We
are thus led to an "image potential. "

We present explicit results for the image poten-
tial as a function of distance from the surface, for
an external charge either outside or inside the
metal. When compared with previous work"b'
our results show differences brought about by
electron-gas dispersion (spatial dispersion).
These differences should be directly observable
in experiments like the measurement of relaxation
energies' as a function of the distance of the photo-
emitting atom from the surface. A summary and
critique of our results is given in Sec. V. Finally,
in Appendix A we briefly quote some formal re-
sults from the many-body theory of the (inhomo-
geneous) electron gas which are used in Sec. 11,
and in Appendix 8 we obtain an explicit result for
the imaginary part of the density response func-
tion of a semi-infinite metal which we utilize in
Sec. Ill. (We note that Appendix B constitutes a
useful extension of the work reported in Ref. 17.)

II. MODEL HAMILTONIAN

Consider a metal described by a jellium back-
ground occupying the half-space z(0, and an elec-
tron gas that is characterized by a ground-state
density profile n, (z), such that the system as a
whole is neutral. An "external" electron moving
in the surface region will couple, via its Coulomb
field, with the normal modes of such a metal.
We can study this coupling by considering the
electron self-energy Z(xx'Itt'). ' '4 25 ln Appendix
A we recall that, from the exact electron self-
energy for the full electron Hamiltonian we can ex-
tract a contribution, Z„„(xx'Itt'), that arises from
the collective (screening) response of the electron
gas. For the geometry of the present problem,
we Fourier transform Eq. (A5) according to

Z„„(xx IQ„) =„—ge'" '* -""Z„„(E„Q„Izz'),(2.l)
k„

(where x„ is the component of the vector position
x on the plane of the surface) and obtain the result

Z (k„Q„Izz') = — —QQ I dz, dz, v-(z —z, )v. (z' —z, ) G; - (zz'IQ„—Q )g„'„'(q„Q Iz,z, ).
II t5

(2.2)

Here pr =1/kaT and the frequencies Q„and Q
are defined in Eq. (A6). In this paper k„and q„
are two-dimensional wave vectors in the plane
of the jeLLium surface (the plane z =0). In Eq.
(2.2) there appears (the frequency Fourier trans-
form of) the electron Green's function G„-„(zz' Itt')
defined by

Gg (zz'
I
t, t') = (-i)(y'(c„- (z, f)c„- (z', t'))), (2.3)

IL

where 1 is the Wick imaginary time-ordering op-
erator. Also:

(z z ) — e Qfl 8 zy I
2M

~ll i
q

(2.4)

is the two-dimensional Fourier transform of the
Coulomb potential energy and )L„'~'(q„Q Izz') is
the two-dimensional Fourier transform of the
time-ordered density response function
X„'r'(xx' IQ ), defined in Eq. (A4). We note that the
latter has the spectral representation (A7), which
can be Fourier transformed [according to Eq.
(2.1)] to give a spectral representation for
x„'P(q„Q Izz ), namely

I ~ 2 (R)y„'„ l(q„Q Izz') =— die, , lm)f'""(q„lv Izz'),
0 m

(2.5)

I

where

is the imaginary part of the "retarded" density
response function )i'"'(q„&u Izz'). Now from Eq.
(2.6) and the symmetry property:

(-q„lv Iz'z) =Imp' '(q„ld Izz'), (2.7)

which follows from the corresponding result for
Imp'a'(xx'I&u) [see Eq. (All)], we can show the
following result

Lm)f'""(q„lv
I
zz') = sgnld Q W ""(zz')5(uP —(u'„(q„)),

(2.8)

where the "weights" W-'"'(zz') are given by (T =OK)

W.'"i(zz') =—e„(q„)(0In,- (z) In)(n
I
n;„(z')

I
0), (2.9)

and the frequencies lv„(q„) give the poles of the
retarded density response function as a func'. ion
of Iq„I. We stress that the sum over n runs over

Im)i'"'(q„&v Izz') =— dt e'"" ' '
2k

x([n; (z, t), n; (z', t')] )

(2.6)



SCREENING NEAR A METAL SURFACE: PLASMON EFFECTS 1545

both collective and single-particle modes (involv-
ing single-pair and multipair excitations"), i.e.,
over the excited states ~n) coupled to the ground
state ~0) by the density fluctuation operator

n; (z).
Substituting Eq. (2.8) into Eq. (2.5) and the re-

sulting equation into Eq. (2.2), we obtain the re-
sult that

Z„„(k„n„izz ) =-—'
@'A P~S

dz, v;„(z —z, )

Equation (2.10) is an exact consequence of Eq.
(2.2). However, it is too formal a result. Its
physical meaning can be most clearly understood
by introducing a model Hamiltonian. We noted
before that the purpose of this paper is to describe
the dressing of an electron by the screening re-
sponse of the normal modes of a metal with a
surface. We thus consider the following electron-
boson Hamiltonian (note that both plasmon and
electron- hole- pair-type excitations obey boson
statistics):

H -H, +H~+H, q. (2.11)

Here H„ the free-electron Hamiltonian is given
by

(2.12)

while H„, the free-boson Hamiltonian is defined by

g @&,„[a;„„(t)a;„„(t)+—'], (2.13)

and II, „ the Hamiltonian for the electron-boson
interaction is given by

p +co

H =gg O'"
J

dzg-'"'(z)c- (z, t)c- - (z t)
~t

n ~}}~ qll
~ 00

x [a~ „(t)+ a,.„(t)]. (2.14)

Here the operator c~g (z, t) creates an electron with
momentum gk}l at position z and time t. Similarly,
the operator a~„„(t) creates an n-channel boson
with momentum Iq„at time t. (Note that none of
the normal modes of a metal with a surface car-
ries a momentum perpendicular to the surface. )

In Eq. (2.14) we have introduced the (unknown)
coupling functions g&"'(z). They provide a mea-
sure of the strength of a process in which an elec-
tron at position z and with momentum K(k„—q„) is
scattered via the destruction (creation) of an n-
channel boson of momentum Sq„(-kq„). We re-
mark that prior to this work the coupling functions
have only been obtained ignoring electro'-gas dis-
persion" which, as indicated in the Introduction,
is not satisfactory. One possible approach to the
present problem is the canonical quantization
method. " This method treats the external elec-

where

Q

is the bare n-channel boson propagator. The
physical meaning of Eq. (2.15) is clear: An elec-
tron at position z' with momentum Sk„creates,
via the electron-boson interaction g, a virtual n-
channel boson with momentum hq, . The electron
then propagates (via G) to position z, where it
destroys the boson (which propagated via its own
propagator D'"'). We emphasize that Eq. (2.15)
provides a normal-mode expression for the self-
energy in which bulk and surface modes are
treated on an equal footing.

At this point we make the definition [see Eq.
(2.13)]

(2.16)

(2.17)~e„n=~n(Qn) i

and as indicated above, we require that Eq. (2.15)
be the same as Eq. (2.10). This leads to the fol-

I

tron classically. Moreover, it requires the know-

ledge of the frequencies +, „gpriori. Thus, one
must start out by solving some dynamical equa-
tions of motion explicitly, and this can only be
done for very simple models. " Another approach"
is provided by the paper of Feibelman et iL. ,""
which starts out in a general fashion, but appears
to be difficult to use except in the simplest case
that, again, neglects electron-gas dispersion.
Other methods, like that of Gersten and Tzoar'
do not treat bulk and surface modes on an equal
footing (or, equivalently, electron-gas dispersion
is not adequately included, see Secs. Ill and IV).

At this stage our method for obtaining the coup-
ling functions rather suggests itself. " We require
that, to second order in the coupling functions,
the electron self-energy for our model Hamilton-
ian be the same as that given by Eq. (2.10). To
second order in g, the self-energy Z„;,(zz' ~A„)
corresponding to Eqs. (2.11)-(2.14), can be ob-
tained in a rather straightforward fashion. '~ The
result is given by

E- (zz' III ) = Z..EZg-'"'(z)a-'"'(")-1)r r

x G„-„,- (zz'
~

II„-fI„)
x D'"&(q„;fI ), (2.15}
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lowing result for the coupling functions g&"'(z):

] fh+oo
p

+ oo

2IIAoI„(q„)d „
&&g; (z —z,)WI"'(zlz, ) .

(2.18)
Our theory, up to this point, is general. In

order to proceed forward, we must introduce a
model for the bounded electron-gas response that
provides us with the weights W&"„'(zz'). That is
the subject of the next section (w~here, of course,
we circumvent the pxoblem of finding 'the com-
plete set {~n))).

In order to apply the method presented in Sec.
II to specific prob1. ems, we must introduce a
model for the dynamical response of an electron
gas whose ground-state density profile is n, (z).
According to Eqs. (2.8) and (2.18), this in turn
will provide us with a model for the coupling
functions g&"'(z).

A. Piasmon-pole approximation for X(if~~cuizz')

The exact )t(q„~ ~zz') (Ref. 31) for a self-consis-
tent ne(z) is not known. In fact, it is not known

even in the much simpler case of the homogeneous
electron gas-, in which y„depends on the difference
z —g', and the relevant quantity is the Fourier co-
efficient )t(q; u&)

—= )f(q„,q, ; oI). We note that the theo-
ry of Sec. II is fully microscopic and it would in-
deed be desirable to utilize a microscopic density
response function. Unfortunately, the explicit form
of X(qp oP

~
zz ) ls not known for any microscopic theo-

ry (except in the x-~ limit""). To date, the only .

microscopic calculations of the density response
function" "treat the dynamics of the electron gas
in the random-phase approximation and assume
the presence of an infinite potential barrier to con-
fine the electrons to the metal interior (of course,
in reality the barrier is finite; furthermore in a
self-consistent calculation the barrier is not an

external potential). In particular, Zaremba and

Griffin" obtained the Fourier coefficients
g(q„oI~q~,') of a double cosine Fourier series for
)t(q„aI~zz'). Thus, a double integration (that must
be done numerically) separates their results from
y(q„+Izz ) which ls what we need. At this point

we recall that, as suggested in the Introduction,
a model Hamiltonian (like that of Sec. Il) is meant
to give a qualitative picture of what to expect
from a more elaborate calculation. Hence, intro-
ducing an gppxoxim gee model for the response
function that will require rather extensive numeri-
cal calculations, while eventually unavoidable,
does not seem ideal in a first application of the
theory. Thus, in what follows we will adopt the
explicit res~it for )t(q„~ ~zz') obtained in Ref. 1V

(hereafter referred to as l) for a macroscopic
(hydrodynamic) model of the bounded electron gas.
In this model, the only modes that partake in the
screening response are collective modes (plas-
mons). From the point of view of the above, this
is a choice born of necessity. However, it allows
us to obtain a qualitative picture of collective ef-
fects in the electron-metal surface interaction
that is expected to be useful as a guideline fox' a
more complete calculation. In this connection we
recall that, as emphasized by Hedi. n and Lundq-
vist" for the case of the infinite electron gas, the
dominant effect in the screening response of the
electron gas is given by the singular nature of the
electron-plasmon coupling in the long-wave), ength
limit. Furthermore, provided the f-sum rule is
satisfied, "meaningful qualitative results for the
electxon self-energy are obtained, ignoring the
detailed structure of the electron-hole pair con-
tribution to )((q; (u) (plasIIlon-pole appl'oxilllatloll ).
Qur Illodel fol' X(q„QJ~zz') provides tile plasmon-
pole approximation for the surface problem. We
show below that our )t(q„&u tzz') exactly satisfies
the f-sum rule and thus, in an "average sense","
the electron-hole pair contribution to screening
is taken into account.

In I, the hydrodynamic density response function
)t(q„&u ~zz') was obtained for a jellium slab of width
2L, assuming that the electron density profile
exactly replicates the jellium background ("sharp"
density profile). The close reiation between the
model of I and the (microscopic) semiclassical
RPA (Ref. 33) is analyzed in detail in I. ln Appen-
dix B we outline the steps necessary to take the
(rather tricky) f.-~ limit (half-space problem).
In this limit, the series of delta-function lines
that compose the bulk plasmon spectrum of a thin
film [Eq. (3.18) of I] merge into a continuous
structure. Qur model for Imp(q„oI ~zz') ls, tllen:

imX(q„~~zz') = '. sg»e(-z)e(-z') q".";q" e"."'"'~(~'- ~'(q„))
~0 ll

+— dp
~
(q.'„+p') cospz cospz'

Ir

&(q„;p Izz') (3.1)
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B(q„;p lzz') =- ~, q'„cosp(z+z')

+ 4q pv' sinp(z+z'), (3.2)

where

CtPv'(q, p) =~&+P'(q'+p'), (3.3)

with P2=~2v2~ (v~ being the Fermi velocity). Note
that in the present model the parameter P ac-
counts for the finite screening length of the elec-
tron gas." We have also defined

~,'(q„;p) = ~', + p'(ql+p'), (3.4)

the dispersion relation for the bulk plasmon con-
tinuum and

(d g~ 2)~l 2 p2
~2(q )=e+pq 2+" q"

l
+

2 ~' 2 4 ) 2
(3.5)

the surface plasmon dispersion relation. Finally,
we have called y, (q„) the inverse decay length (into
the metal) of the surface plasmon charge fluctua-
tion. It satisfies the quadratic equation (B21).

Qf course, the integration over p in Eq. (3.1) is
trivially done noting that, for w' ~ (u'+P'q~, :

16(&'- ~', (q„;p)) = - 5(p-p, ),
2p pB

with

(3.6)

(~ ~' )t (3.7)

Here, however, we will only utilize the form (3.1)

which consists of a sharp (delta-function) surface
plasmon peak and a (very narrow) bulk plasmon
peak at (u-= (u~.

35

In Eq. (3.1), e(z) is the unit step function and we
have defined

"'"dx n—&u Im)t(q; ~) =~q2,
J 77 m

(3.9)

the "usual" form of the f-sum rule. " We note
that, as stressed by Griffin and Harris, ' Eq.
(3.8) provides a "strong" {or "local") form of the

f-sum rule which has a "global" counterpart of
the form (3.9) in terms of the dynamic structure
factor S(q; &u) of the inhomogeneous electron gas."
We emphasize that both local and global versions
of the sum ruj.e apply in the case of the inhomo-
geneous electron gas, the former version being
more restrictive than the latter one. It is note-
worthy that except for the work of Griffin and
Harris" and Wikborg and Inglesfield, "no attempt
appears to have been made in the past to examine
the various models put forth for the response of a
metal surface in the light of Eq. (3.8) which, as
remarked above, is an important constraint
(related to charge conservation'2) on any approxi-
mate density response function.

With the result for Imp(q„&d lzz') given by Eq.
(3.1), we can show the result that (the interme-
diate steps are omitted for brevity)

for Im)t (which form is convenient both to make
contact with the theory of Sec. II and to verify that
the f-sum rule is satisfied. We consider first the
latter question).

We note that the exact y(q„co lzz') satisfies the
following result" (which is the f-sum rule in the
case of an inhomogeneous electron gas with
ground-state density profile no(z) j:

1t 82—(u Im)t(q„(o lzz') =—lq'„+, n, (z)6(z —z'),
0 woo

(3.8)

where z and z' lie inside the metal. Note that for
the homogeneous electron gas we can Fourier
transform Eq. (3.8) and obtain (q' =q'„+q', ):

"'"de &d2 ~2 ty—&dime(q„u&lzz') =—', e(-z)e(-z') ' -"' ' " e"2' "'
7&

" 4ve2 2p2 (y + 2q„)

+l 2+ 6(z zi) P qni .~ qn~ er2&2+2')
Bz ez'& 2p (y, +2q„)

n=—2e(-z)e(-z')liq'„+, lb(z —z'),

(3.10a)

(3.10b)

and since here n2(z) =noe(-z), Eq. (3.10b) agrees
with Eq. (3.8) [recall that in Eq. (3.8), z and z'
lie inside the metal]. We note that the surface
plasmon peak in Imp gives rise to the first term
in Eq. (3.10a), while the bulk modes account for
the remaining two terms, the last of which (mani-

festly a surface-induced contribution) exactly can-
cels the surface plasmon term. Our theory thus
indicates the importance of treating the response
of the bulk and surface modes on an equal footing
if one is to have a theory of surface response con-
sistent with the local f-sum rule (3.8). Finally,
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we note that it was indeed to be expected for our
result (3.1) to satisfy Eq. (3.8), since local charge
conservation is built into it from the beginning. "

. I.O

B. The coupling functions for a semi-infinite metal

Having put forth a model for 1m)t(q„o} ~zz'), we
can obtain explicit results for the coupling func-
tions g "}(z). Comparing Eqs. (2.8) and (3.1) we
can read off the following results for the weights
~in}(zzr).

gr g}(zz ) ~ 'Vlf fit e( z)e( zt)e}~ g+i(i+ )'
4e' (j +-,'q„)

C4

0.6

&3

0.4

for the surface plasmon channel, and

(dW!' (zz') = ' e(-z)e(-z')
2M

x (q'„+p') cospz cospz'

B(q„;p izz')

p +p qo+=a I+4 4)

(3.11)

(3.12)

0,2 I I I I

0 0.2 0.4 0.6' 0.8 I.O l.2 l.4 l.6 l.8 2.0

Fla. 1. The ratio vs {a~~ )/(ys {Ift~)
+

q~~ /2). According
to Eqs. (3.13) and (1.2), this ratio gives the effect of
electron-gas dispersion in the coupling function g'~~ (z)qtl
for an electron outside the surface. Note that the inter-
action is effectively cut off at large wave vectors. Pn
the absence of electron-gas dispersion the above ratio
equals unity for all wave vectors. ) (Note: A, =P/cv& is
the electron screening length).

for the bulk plasmon channels (labeled by the con-
tinuous variable p, 0 ~ p & ~). We next substitute
Eqs. (3.11) and (3.12) into the general result
(2.18). Note that in Eq. (2.18) z can be either
positive or negative, depending on whether the
electron is outside or inside the metal, respec-
tively. We consider both cases separately.

(a) Elect} on outside the metal (z &0). This is
the simpler case. A little algebra yields the re-
sults:

4'tl ~g(VII) &g(alt) + ~2ell

(3.13)

&s e~ 1 p

pR 4p4

(3.14)

Consider first Eq. (3.13). We note that setting
P=0, i.e., dropping electron-gas dispersion, it
reduces to Eq. {1.2) [as P-O, y, -P ', see Eq.
{821)]. Another limit in which both results agree
is q„-0. Then, since for large z the factor
exp(-2q„z) strongly favors the coupling to the

qI, -O part of the dispersion curve, we conclude
that (as expected) when the electron is far from
the surface, its coupling to the surface p1,asmon
is adequately given by models that ignore electron-
gas dispersion. ' However, as the electron moves
closer to the surface, it can couple to a surface
plasmon with a finite q„, for which the factor

(gp)/[p(gf[)+lag/2]1eviates from unity [its value
in E~q. (1.2)]. This ratio is plotted in Fig. 1, which
clearly shows that the coupling to the surface chan-
nel is substantially reduced, for q„@0, from what
it would be were the plasmon dispersionless. We
stress that, since the interaction is effectively
cutoff for large values of q„, the electron self-
energy will be finite for z -0. Finally, note that
in terms o'f the distance from the surface, Fig. 1
implies that the coupling is reduced appreciably
for values of z that are not necessarily small
compared to X=P/u&~.

We now turn to Eq. (3.14). We note that the
right-hand side vanishes if P-0. Thus, when the
electron is outside the surface, its coupling to
the bulk modes is {as argued in the introduction)
entirely due to electron-gas dispersion '6 We
notice that the factor exp(-2q„z) is also present in

Eq. (3.14) (as it should be). This, again, favors
the c'oupling to small-qI, modes. However, where-
as g"}is sinn&la}" at small wave vectors (g"}

g j~ ) y g is analytic in that limit . Thus, un-

like the case of the surface mode, the coupling
to the bulk modes is of short range. Note that at
small distances from the surface (e.g. , distances
of interest in the grazing scattering of, say, fast
ions from surfaces" and/or chemisorption prob-
iems') the relative importance of the coupling
to both channels is not obvious a priori {see Sec.
IV).

(b) Electron inside the metal (z &0). Equations
(3.11), (3.12), and (2.18) lead to the following re-
sults:
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» e„~.(4 ) (I', +-'V„}(~.-e„)' (3.15)

where

&&) I )12 —1' I 112 e & 1 p G(qflf p l~)
LAoal lllf p/1 AP4 { .p) ( 2+p2)28 7 ll 9 9 )I p4 +p3 2 +

p2 4P4

(3.16)

)2 2e Gaff 14 co(qll f P ] A ( 2+p2) ( .p)
(3.17)

3 ~ (dp g)
G(q„;p ~2) =se24ll'- (o2se2" v'cospz+ —'~ sinpz +, p'v'- —'qtf cos2pz+ ~2v'q„p sin2ps

I

(3.18)

Consider Eq. (3.15). As suggested in the Intro-
duction, Eq. (3.15) is not obtained from Eq. (3.18)
by setting g --z. This reflection symmetry holds
only for q„-0, that is, for values of ~g

~

large
enough that the finite spread of the surface plasmon
charge fluctuation is irrelevant. Note that in both
cases the coupling is singular for q„-0. Thus
the surface plasmon also gives rise to a long range
screening interaction inside the metal.

We note that in Eq. (3.16}we have expbcitiy se-
parated out the function g„[see Eq. (3.17)], giving
the coupling to the bulk plasmon deep inside the
metal. Equation (3.17) agrees, for P-O, with the
first term in Eq. (1.4). The second term in Eq.
(3.16) gives the effect ong's' brought about by the
presence of the surface. Because of electron-gas
dispersion, this term differs quglitgtiUely from the
corresponding term in Eq. (1.4). Now the first
term in Eq. {8.16) obviously vanishes for z- —~.
That the remaining terms in that equation give a
vanishing contribution to screening deep inside
the metal, is a consequence of the fact that the
poles of Eq. (3.16) occur on the imaginary axis.
Finally. , we note that a major qualitative change
that Eq. (3.16) presents with respect to Eq. (8.14)
ls that now the coupling to the bulk modes is
singular for q2=(q2„+p2)-0. Thus, the associated
screening of the electron is loygg xgnged.

The coupling functions obtained above lead us
to the following picture of the el.ectron-metal sur-
face interaction. For an electron far outside the
metal surface, the screening is dominated by the
surface plasmon channel. For an-electron deep
inside the metal, the bulk plasmon channel is the
dominant one. In the surface region both channels
are expected to be relevant. In Sec. IV we shal. l
give an approximate measure of the relative im-
portance of both channels in the particular case of
the static screening of a charge in the surface
region.

Finally, it seems appropriate that we compare
the results of this section with those of Gersten
and Tzoar, ' who first addressed the question of how

9'll +~ qllt

In Eq. (3.19), e(q;0) is the static dielectric func-
tion of the Aomogeneous electron gas. In Eq.
(3.20), e(q„;0) is the static limit of tbe "surface"
dielectric function' ""e(q„; tu), namely:

(3.21)

Now, utilizing the "hydrodynamic" approxima-
tion" for &(q; v), nameiy42:

~(-. ~)
~—&2- P 0

+2 p2 2 f

Eq. (8.21}gives the result that
O'll

(qll& ~ ~2 1/ 3 '

(3.22)

(3.23)

Equations {3.22) (rather, its &v=0 bmit) and (3.23)
agree qualitatively with the corresponding expres-
sions utilized in Ref. 9 (see Figs. 1 and 2 of Ref.
9). Substituting Eqs. (3.22) and (8.28) into Eqs.

to d'escribe the coupling of an electron to the bulk
and surface plasmons in the presence of electron-
gas dispex sion. Their method, however, fails
to treat bulk and surface modes on an equal footing.
In particular, the method of Ref. 9 hinges on an
expression for the scalar potential due to the nor-
mal modes of a metal with a surface [Eq. (2.13)
of Ref. 9] whose fo2m is valid only in the absence
of electron-gas dispersion (see the Introduction).
Furthermore, Gersten and Tzoar's derivation of
(in our notation} g's' is made assuming the me-
dium will respond like aninfinite, homogeneous
electron gas. The results of Ref. 9 for the coup-
ling functions can be written as follows:

2e (dp
fgoT(q, ;pie)] = A-

( 2,p))

e(q 0)-1 "'
x ' (1-cos2pz)e(-2)s q;0)

(3.19)
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(3.19) and (3.20) yields, respectively;

[gGT LqlltP [ j A ( 2+P2)~ ( .p)

&& (1 —cos2pz)e(-z) (3.24)

where we have called

(n) 1 1
S„- .; (k,;0„)=

u 0 —0„+ [(k I

—q„)'+k2]

and 2u&„(q„) (4.4)
xe2&u 1 P[0 2&(q (Z)] =— 2 ——q2+—2 —qclGT II ~2+ q Z II P2

(3.25)

IV. THE ELECTRON SELF-ENERGY: RESULTS
FOR THE IMAGE FOTENTIAL

Equations (2.15) and (2.18) give the self-energy
of an electron that results from its coupling to
the normal modes of a metal with a surface (or,
equivalently, the self-energy due to the collective
response of the metal). Since the Green's function
G is a functional of the self-energy Z, Eq. (2.15)
is really an integral equation for 7. Formally,
Eq. (2.15) can be solved by iteration. Here we
shall follow common practice" and keep the
"zeroth-order" iteration only, i.e., we set G =G' '

in Eq. (2.15). The bare-electron Green's func-
tion G' ' satisfies the differential equation

CP
~+ 0„-O'„G~&0) zz' 0„= 5 z —z' . 4.1

It is convenient to consider the solution to Eq.
(4.1) in its Fourier representation, namely:

+ 1k'(g-a")
G(0)(zzi

~
g )—

II )2 y ~ 27' 2m ~ (~2 ~2)
n jl g

(4.2)

Substituting Eqs. (2.16) and (4.2) into Eq. (2.15)
gives

Z„- (zz'
~
0„)=gag("'(z)g-'"'(z')

(4.3)

Comparing Eq. (3.24) with Eqs. (3.14) and (3.16)
and Eq. (3.25) with Eqs. (3.13) and (3.15), we are
led to the following conclusions. For an electron
outside the metal surface, Eq. (3.25) is qualitative-
ly similar to Eq. (3.13). As expected, however,
for an electron inside the metal, the coupling
functiohs (3.24) and (3.25) agree with the ones ob-
tained in the present work only in the (rather
trivial) limit that z --~. Thus, in an actual cal-
culation of a screening self-energy in the surface
region, we expect our coupling functions to yield
different results from what would obtain by using
Eqs. (3.24) and (3.25). In Sec. IV we argue that
this should lead to observable results.

The sum over the frequencies 0 [defined in Eq.
(A6)] can be carried out in the usual way. " Upon
substituting its value into Eq. (4.3), we analytically
continue the self-energy to frequencies just above
the real axis (i.e. , 0„-&u+iq, q-0+). This gives
us the self-energy for the retarded Green's func-
tion. " Finally, we take the T =0 K limit. We thus
obtain the following result for the self-energy
(u& real):

Z„- (zz'
~

) = QQg "'(z)gI"'(z') 9„-";(z —z'
~
(u),

where we have called

with

(n)

((II r&ll

(4.5)

(4.6)

(n ) 2tPl 1/2 " 1/2a;,. (~)=( ~ — (o„(q„)+ (k„—q„)*+In

(4.7)

Equation (4.5) generalizes a result of Feibel-
man et al. ' by including the effects of electron-gas
dispersion in the electron-metal surface interac-
tion. The self-energy given by Eq. (4.5) is, ob-
viously, a nonlocal function of position. The con-
tribution to Eq. (4.5) from each channel becomes
complex (o.("' real) above the threshold for emis-
sion of the corresponding excitation. Of course,
the spatial range of the various channels is de-
termined by the coupling functions g "'(z). For
the bulk (surface) plasmon channel, the self-ener-
gy is always real for (d&(d (&«d /~2. Note
that if the single-particle channels were included
explicitly in Eq. (4.5), they would provide decay
channels at small frequencies.

Now, both the nonlocality and dissipative char-
acter of the self-energy (4.5) are essentially de-
termined by the "propagator" O'"'. Hence, in both
regards the analysis of Ref. 7(a) applies qualita-
tively here. The major difference that Eq. (4.5)
presents with respect to Ref. 7 is brought in by
the coupling functions g,.'"'(z). Thus, in order to
illustrate the effects of electron-gas dispersion
in a clear fashion, we now consider the semi-
classical. approximation nz -~, in which
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9,- .{z-"[~)(,), 6(z —z')
m~ &- &,(cii)+i0

(4.8)

[Eq. (4.8) can be proved, for example, by Fourier-
transforming Eq. (4.6)]. Then, defining the "po-
tential energy" V(z) such that

Z„-,(zz'
i

cu =0) = 6(z —z') V(z), (4.9)

me have the result that

V{z)=- g g [g,", '(z)]'.
g 4ll

(4.10)

Thus, in the present semiclassical approxima-
tion, the self-energy becomes a local function of
position. ' Note that in Eq. (4.9) we have set k„=0,
~=0 in order to localize the massive particle.
(Obviously, in this iimit the particle whose self-
energy me are considering is no longer an "elec-
tron", but rather a heavy ion).

Vfe stress that the above approximation for g
is useful not only to quantify the effects of electron-
gas dispersion in the electron-metal surface inter-
action, but also because of the widespread use of
the image-potential concept in surface physics.
Equation (4.10) generalizes the classical image
potential -e'/4z, by taking into account electron-
gas dispersion in the response of the metal sur-
face.

A final. reason why Eq. {4.10) is of interest is
found in a, related physical problem. It is possible

I

to show that (the magnitude of) V(z) gives the "re-
laxation energy'"" ' of a deep core level. of an
atom located in the surface region. Equation
(4.10) generalizes Eq. (16) of Ref. 6 by including
the effects of el,ectron-gas dispersion in the hol.c-
metal. surface interaction. Thus, measuring the
relaxation energy as a function of the position of
the hole left behind by the photoemitted electron,
one could obtain useful information about screen-
ing processes in the surface region.

Vfe note that no assumption has been made in de-
riving Eq. (4.10) with regards to the form of tbe
coupling functions g "'(z). ln what follows we uti-
lize the coupling functions rve obtained in Sec. III.
Qur program is then to substitute Eqs. (3.13) and
(3.14) (for z &0), and Eqs. (3.15) and (3.16) (for
z &0), into Eq. (4.10) and carry out the required

. lntegrals. In both cases lt, is convenient to de-
fine the separate contributions to the image po-
tential. V(z) from the surface and bulk channels,
Vz(z) and Vs(z), respectively. Then

V(z) = V, (z)+ V,(z). (4.11)

(a) Image potential for z &0. Proceeding as just
indicated, me obtain the results that

8 Q)t), „1
Vz(z) = — dq„e "~~', '(~", , (4.12)

«0 g(Q li) Xg{Ift) 27II

and (upon performing the integral over p by con-
tour integration)

2+
2

2 Q2

Vs(z) 2 'III'Vile III DB 2 2 2 1 / 3(d ~ Qit+ +&
4 2P'

From Eqs. (4.11)-(4.13) we can show the result that

v(z) =-
g ki "" Vii+ 2 Wii Cn+ 2
P 0 la

(4.13)

(4.14)

Equation (4.14) agrees with the result first ob-
tained by Nuns~ in a purely cl.assical calculation
of the image potential [note that with the approach
of Ref. 42 the role played by the normal modes of
themetal goes unnoticed]. Equations (4.12) and

(4.13) agree with the results of Barton, "wbo used
the canonical quantization method to study the
coupling of the external charge and the meta, l sur-
face.

lt is, in fact, possible to evaluate the integrals
in Eqs. (4.12)-(4.14) in terms of known functions,
namely, the Struve and Neumann functions of order
zero and one. ~' We shal. l not display the resulting
expressions, however (They .are useful to obtain
the bmits for large and smal. l. values of z/& given
in Ref. 44). For intermediate values of z/X it is

8'
V, „.(z)=- —, {4.15)

is obtained from Eq. (4.10) if we use Eq. (1.2) for
g;"'(z). Figure 2 shows that approximation for
the coupling function g"'to be totally inadequate
for z —X. (This was anticipated on more general
grounds in Sec. 1118). The main conclusion to be
drwvn from Fig. 2 is that, provided g'~' is given
by Eq. (3.13) [and not by Eq. (1.2)], the surface

more illuminating to give a plot of the image po-
tentials obtained above. This is done in Fig. 2.
Note that, as mentioned in the Introduction,
(Vs/V), 0—= 0.3. We stress that the classical-image
potential
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channel by itself gives a sufficiently accurate
description of the screening for z ~ ~. For small
values of z/X and, as we shall see below, for
z &0, it is important to include on an equal footing

I

the contribution to screening from the bulk chan-
nels.

(6) Image potential fox z &0. Equations (4.10),
(3.15), and (3.16) yield the results

e'e~ " 1 y, [(y, +q, I)
' * — q„e"~']'

(4.16)

and (after carrying out the p integral by contour integration)

V (z)=- —„+e' dq, „, "„„,q, — q'„+—„—, exp2 q'„+, z — 1+„.. . '„"„„e"'
E.

2 'Vll~s

(q„—r,)' (r, +zq„)(r, +q„) 2P'

1 4 3,~~

( 2 )2 qtt 4 qll P2 4P'4
(4.17)

We note that Vs(z =-~) =-e'/2A. , is the screen-
ing energy due to the bulk plasmon in the case of
an infinite, homogeneous electron gas. The in-
tegral in Eq. (4.17) gives the surface-induced con-
tribution to Vs(z) (it consists of terms that vanish
as z--~). From Eqs. (4.16) and (4.17) we can
show that, for Iz i

» Z:
e' e e

Vz(z) -—4, Vs(z) ——~~+ . (4.18)

Thus, for

e2 A. 2

V(z) ———+ 0—
2~ z (4.19)

Hence, deep inside the metal, the surface-in-
duced contribution to Vs(z) exactly cancels the
image potential due to the surface plasmon. Now,
the cancellation leading to the absence of the z '
term in Eq. (4.19) is a general feature of our re-
sults. In effect, it is possible to show that the
last three lines in Eq. (4.17) exactly cancel Eq.
(4.16) (the algebra involved in the proof is lengthy,
so we omit it). Thus we have the result that

-0.5
0
II

- 0.7

0 2+
p2

9')I+

xexp 2 q„+—
2 z . (420)

-0.9

0.4 0.6
x~Z/X

o.s I.O

FIG. 2. The "image potential" V(z) fsee Eq. (4.14)j
acting on a charge localized at a distance x =z/A. out-
side a metal surface. Here A, is the electron screening
length. Vz(z) is the contribution to V(z) from the sur-
face plasmon channel (the difference V-V& being due
to the bulk plasmon channels). Also shown is the class-
ical image potential, Vj~g@ 8 /4z. [Note: V(0)
= -e2/3X].

We emphasize that Eq. (4.20) shows that the total
image potential nzonotonicglly decreases from its
value at z =0 [V(0) = —e'/3X] to its value at z =-~
[V(-~) = —e /2A]. Also, our demonstration stresses
the importance of treating bulk and surface modes
on an equal footing (this point was also emphasized
in Sec. ill A in connection with the f-sum rule).

ln Fig. 3 we present plots of Vz(z), Vs(z), and

V(z) throughout the surface region. Note that
whereas the total potential. reaches its bulk value
for ~z

~

-A. , the separate contributions to it, name-
ly Vz(z) and Vs(z) have a more complicated behav-
ior, reaching their asymptotic values only after
several electron screening lengths.
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FIG. 3. Plots of V(z), Vs(z), and Vgz) in the surface
region. Note that whereas the total potential gives a
smooth potential barrier that reaches its bulk value for
~zl ™X,its separate components Vs (z) and Vs (z) have
a more complicate behavior. These potentials reach
their asymptotic values Vs( —~) =0 and Vs ( —~) = -e /2X,
respectively, rather deep into the metal. tNote: V(-~)
= —1.5

~
V (0) ~ ]. Also shown are. the potentials Qs(x),

(II)~(x), and ft)(x) [=Q&(x) +Q~(x)] obtained from Eq. (4.10)
with the coupling functions given by Eqs. (3.24) and

(3.25). Note that Q(x) equals V(x) for x&0.

We note that in the absence of spatial disper-
sion"b'~" [i.e. , utilizing the coupling functions
given by EIIs. (1.2) and (1.4)], the surface-induced
contribution to the image potential from the bulk
modes exactly cancels (for all z &0) the classical-
image potential (-e'/4 ~z ~) due to the surface
piasmon. [This can be proved, e.g. , from EII.
(4.20) with P-0]. The remaining (bulk) term,
-e /2A. is, in this approximation, infinite (X-P).
Thus the smooth "barrier" V(z) of Fig. 3 is en-
tirely due to spatial dispersion.

This new feature of our results could be directly
observable in surface-sensitive photoelectron
measurements of relaxation energies' and is in
marked contrast with, for example, the results of
dispersionless theories like those of Barrera and
Duke" ' and Chang and Langreth. " The former
authors obtained an image potential [EII. (28) of
Ref. 7(b)] that is a (cutoff-dependent) constant for
all z &0. For z &0 it gives the classical-image
potential (4.15). Chang and I angreth" calculated
(for z &0) the relaxation energy ~ =-V(z) of a
deep core level. These authors utilized the coup-
ling functions (1.2) and (1.4). They obtained a
finite (see above paragraph) and z-dependent re-
sult via the use of a cutoff in their integrals over
gg Their results for V(z) show an absolute mini-
mum at a finite value of ~z ~, which is absent from
Fig. 3 of the present work [see EII. (4.20)]. Final-
ly, we consider the results obtained by substituting
in Eq. (4.10) the coupling functions obtained by

Gersten and Tzoar' [see EIIs. (3.24) and (3.25)].
This is shown in Fig. 3 where, for convenience,
we have called gs, Qs, and P(= Q-s+ Qs) the cor-
responding image potentials. For z &0, it is found
that Q(z)[-=ps(z)] exactly agrees with V(z) [note
that Qs(z) -=0 in this region]. For z &0, agree
ment between the various potentials is found only
for z «-X. We note that the curve for &f&(x) shows
a small local minimum just inside the surface.
(This is reminiscent of a similar feature of a
calculation of Evans and Mills"" of the surface
polaron binding energy). Such a minimum is not
present in our result for V(z), that is, the mini-
mum disappears with a proper inclusion of elec-
tron-gas dispersion effects. We note that the dif-
ference between our method and that of Ref. 9 is
expected to be even more pronounced in dynamicgl
problems, since then the bulk and surface chan-
nels can manifest themselves separately.

V. SYNOPSIS AND CRITIQUE

We have presented a theory of the screening of
an electron by a metal surface in which a key role
is played by the functions coupling the electron
to the normal modes of a metal with a surface.
Explicit results for the coupling functions were
obtained in Sec. 111within the surface plasmon-
pole approximation. We can summarize the new

results of Secs. II and III with the statement that
the coupling functions given by EIIs. (3.13)-(3.18)
are free of the qualitative shortcomings that, as
noted in the Introduction, apply to local (or non-
dispersive) theories of electron conduction (A, =O),
and to some extent, to more general theories'
that, in the presence of spatial dispersion, fail
to treat bulk and 'surface modes on an equal footing.
While the detailed functional forms of our coup-
ling functions are surely dependent on, e.g. , our
assumption (Sec. III) of a sharp electron density
profile at the surface, some of our conclusions
are expected to be more generally valid. Among
these: (a) our explicit result that the coupling to
the bulk modes, while finite outside the metal sur-
face, is of short range (g's" analytic as q„0);
(b) the fact that the coupling to surface plasmons
with q„e0 (this coupling is absent in theories with
X=0) leads to an interaction that is already strong-
ly reduced (with respect to those X=O or "bare-
image" theories) for z - A. , suggests that the de-
tailed electron-hole pair structure of the true re-
sponse function is important for z «A. only. This
is in agreement with earlier numerical results of
Gadzuk4', (c) our results for the coupling func-
tions for z &0 are qualitatively different from, and
g priori more realistic' than those from previous
theories.

As a first application of our results for the
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coupling functions, we obtained in Sec. IV, ex-
plicit results for the image potential. While the
very concept of a local image potential is an
idealization of the actual self-energy of a finite-
mass particle like an electron, these results are
nonetheless of direct interest to the study of the
relaxation energies of deep core levels of atoms
near the surface of a simple metal (e.g. , alumi-
num). ln fact, the measurement of these relaxa-
tion energies' as a function of the distance of the
photoemitting atom from the surface should pro-
vide (especially for z &0) a good experimental test
of our new results and their differences with pre-
vious work in the area. Finally, as noted above
(and for the same reason), we expect that the de-
tailed electron-hole pair structure of a real metal
should affect our results for V(z) for z«A only.
(Recall that the single-particle response is con-
sidered only in an average sense in the plasmon-
pole approximation. ) For example, it is possible
to show that the slope of V(z) has a logarithmic
singularity at z =0. Also, our result for V(z)
does not (as expected) show Friedel oscillations
(see Fig. 3}. Both deficiencies of our results
would, of course, be absent in a more complete
theory. Given the difficulties inherent in such a
theory, our simpler results should be useful as
an average representation (which is the spirit
of the plasmon-pole approximation) of the screen-

Finally, we note that the coupling functions con-
sidered in this paper can be utilized in calcula-
tions other than the static screening results of
Sec. IV. This is, in fact, one of our reasons for
centering our theory around them. For example,
we can consider the case of a hole in a deep core
level of an atom in the surface region. The func-
tions coupling the hole and the normal modes of
the metal, A. ~.';, are found to be given by

'
&~&if'

(5.1)

also thank Professor A. A. Maradudin for a read-
ing of the manuscript and Professor D. L. Mills
for useful comments.

APPENDIX A: ELECTRON SELF-ENERGY

where
(A1)

i'(1; I') =i d2~| d3 v(1 —2)G(1;3)r(3, 1', 2)

+ Z„„(1;1') (A2)

5„„(1;(')=1f d2 d3, ; d4 d5v(1 —2)v(4 —5)G(1;3)

x I'(3, 1', 4}}(t„2(5;2).

(A3)

Here 1-=(x„t,), 2=-(x„t,), etc. , and the integrals
run over all of configuration space and over the
time interval [0, iPrh],-(Pr =1/kaT). In Eq. (Al),
A(2) =(j)t(2)(1)(2) is the density operator and v(l —2)
=v(x, —x,)5(t, —t, ) is the Coulomb interaction. In
Eqs. (A2) and (A3), I'(l, 2;3) is the so-called
"vertex function, " defined, e.g. , in Eq. (13.18) of
Ref. 25. We note that the first terms in Eqs. (Al)
and (A2) are, respectively, the usual Hartree
term and a generalized exchange term (the latter
reduces to the more conventional Fock term if
Q —Qo, the bare- electron G reen's function and
I'-1). Finally, Z„„(l;I') represents the contribu-
tion to the total self-energy arising from the col-
lective response of the electron gas. It is a func-
tional of the time-ordered density response func-
tion of the electron gas, }i(~"(1;2),defined by

From chapters 5 and 12 of the book by Kadanoff
and Baymz4 (see also Ref. 25), we can obtain an

exact equation for the electron self-energy for the
full electron Hamiltonian, namely:

2(1;1')=5(1—1')f d2v(1 —2)(5(2))vl(1;1'),

where p(x) is the wave function of the core level.
The coupling functions (5.1) can be utilized in the
study of photoemission problems. 4'

(~I 5(R (1))
X~ ( 5 ) 5U(2)

(A4)
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We note that U(x; t) is an auxiliary scalar potential
that is introduced'4 to relate the two-particle
Green's function and the one-particle Green's func-
tion (through the latter's functional derivative
with respect to U). lt is set equal to zero at the
end [see Eq. (A4)j.

ln this paper we are only concerned with Z
which we now consider in the usual approximation
of neglecting "vertex corrections. " This approxi-
mation (which is hard to justify a priori" ) here
means I'(l, 2;3) -6(1—3)5(1—2). Then, noting
that G and Z„„satisfy (on the imaginary time axis)
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the periodic boundary condition" appropriate for
fermions whereas X„'~' satisfies that appropriate
for bosons, we Fourier transform Eq. (A3) and ob-
tain

Z„„(xx'
i
0„)= — g d'x, d'x, v(x —x,)v(x' —x,)

"m

x G(xx' iQ„-0„)
x &t' &(x,x, in ),

(A5)

where

Imp'" '(x'x
i
v) = Imp'"'(xx'

i
&u)

(which we shall refer to in Sec. Il), and

[imp„'„"&(xx'
i
~)]*=Im)t„'"„'(xx'

i
tu) . (A12)

which can be proved" starting from Eq. (A8) and

noting that the Hermitian operator A(xt) has a de-
finite signature under time reversal (+1). [In the
simpler case of the translationally invariant sys-
tem, the definition (A8) suffices to prove (A10)
(Ref. 19)]. Other useful symmetry properties
that follow from time-reversal considerations
are

nr apl 7
AQUI P gP f SQm yP

(A6) APPENDIX B: Im X(q~~ m Izz') FOR A SEMI-INFINITE
METAL

n(m) being an odd (even) integer. Note that here
the chemical potential of the electron gas p, ap-
pears in the fermion but not the boson frequencies
because the density operator does not create or
destroy particles.

Equation (A5) is used in Sec. II for the special
case of the surface problem in which Z„„(xx' iQ„)
= Z„„(x„—x,', ; zz'

i 0„) .
We close this appendix by noting some results

for the time-ordered density response function
that we shall need in Sec. 11. (These results are
more commonly found in the literature in the sim-
pler case of the homogeneous electron gas". ) We
first note the following spectral representation:

&t„'~&(xx'in )=— d(u, ~ Imp„"&(xx'i&a),
» 0

(A7)

In this appendix we briefly indicate how to ob-
tain the half-space limit of the imaginary part of
the density response function obtained in I for a
metal slab of thickness 2I, [Eqs. (3.18) and (3.26)
of I].

Taking the limit L -~ of Imp(q„&u
i
zz') is trivial

in the frequency region below ~~, but it requires
a careful treatment of the bulk plasmon continuum
(e) &u~). We start out by changing variables (with
respect to I) according to z -z+L, z'-z+L. This
sets the origin of coordinates on the right-hand
edge of the film. Note that now L - ~ means that
the slab is semi-infinite (half-space limit). For
frequencies &u &&u~, ImX(q„&sizz') is given by Eq.
(3.18) of 1 which, for brevity, we do not reproduce
here. We must consider the L -~ limit of the
products:

where cosy, „(z + L) cosy, „(z'+ L) (B1)

Imx„'„"'(xx'i ~) =-—~l dte'"" "
2S) „ simy, „(z+L) siny, „(z'+ L), (B2)

Im)(„'e'(xx'
i

—u)) = -Imp„'„"& (xx'
i
~), (A10)

x ([tt(xt), A(x't')] ) (A8)

is the imaginary part of the retarded density re-
sponse function, i.e. , the physical response. to an
external scalar potential q,„,. Specifically, "

n(x; cu) = d'x')t„'s'(xx'
i

&v) q&,„,(x', &u) (A9)

gives the fluctuation in the electron-number density
produced by q&,„,(x; &u).

We emphasize that the proof of Eq. (A7) makes
explicit use of the following property:

where y,„(q„) and y (q„) are the solutions to the
eigenvalue equations

tanyL q„&,(q „)
cotyL y &o', (q„)+P'(q'„+y') '

with

(B3)

(d
&',(q„)=~(1+e z'~~~) (B4)

Utilizing simple trigonometric identities for
cosy,„(z+L) and siny „(z+I,) in conjunction with
Eq. (B3), w~ can write

cosy LI&y,„[&u'+P(q'„+y' )) cosy, „z +q„&u.' siny, „z] (B5)

and
siny„„I(y„„[&u'.+ p'(q'„+y„'„)] cosy.„z+q„&u'siny„„z]

siny z+L =
art y [+3+ pR(q2+y2 )]
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We next introduce the "phase shifts" 5 according
to

y,„(q„)=—[n2 —5,„(q„)],
1

y.„(q„)=—[(n + —2')7( —5,„(q„)], (88)

cosy, „L= (—1)"cos 6,„(q„) (89)

where n=1, 2, 3, . . . ." Note that the phase shifts
represent the difference between the solutions of
the eigenvalue equations (83) and the values of the
"standing-wave" wave vectors nm/L and (2n+ l)w/
2L that are sometimes used as effective wave vec-
tors for the (symmetric and antisymmetric) nor-
mal modes of a metal film. From Eqs. (87) and

{88)it follows that

The above holds for arbitrary values of L. We
next note that Eq. (3.18) of I has an overall factor
of L '. It is then possibl. e to show that, in the limit
L-~, only the first term in a Euler-Maclaurin
series of the form"

Qn„=f d nn()nn'n(n=-l)
n=l 1

(811)

contributes to Eq. (3.18) of 1. Furthermore, the
integrand in that term is to be taken to zexotk
oxdex in L '.

Consider then Eq. (87). Setting P =nn/L (notice
that now p is a continuous variable running from

p =0 to p =~), we have

siny, „L= (-1)"cos 5 „(q„). (810)
1

y,„(q„) — y(q„'p) =p —
L &(q„;p),

L~~
(812)

Equations (89} and (810) are to be substituted into
Eqs. (85) and (86), respectively.

I

and, to zeroth order in L ', cosy, „z = cosP8 and

siny~ = sinpz. Thus

pv' cospz + 2q „(((22sinpz)
lim cosy (z+L) =(-1)"cos5(q, ;p)
L~oe

where we have called
(d

v'(q 'P) = '+P'{q', +P—') .

(813)

(814)

We next note that tany, P =-tan6, „and thus for L- ~, recalling the identity cos'6 =1/(1+tan'5), we ob-
tain the result

cos25(, — P v (qt fp)t

4~

Utilizing Eqs (813) a.nd (815) leads to the result

lim cosy „(z.+L) cosy, „(z'+L) =cospz cospz'+
L~~

B(q„;przz')
(d (d

(815)

(816)

where we have defined

(@4~ COg,

B(Q((;p)zz') = — ', q'„cosp(z+z')+ 2 qpv'sinp(z+z') . {817)

We note that Eq. (816) was cast in a way convenient in connection with the f-sum rule (see Sec. III).
We finally note that it is straightforward to show that the product (82) equals the result (816) in the limit
L-~. This ensures that (as it should be) the symmetric and antisymmetric modes of a slab contribute
equally to the L- ~ result (818).

As mentioned above, the IimL-~ of Imp(q„&u ~zz') in the frequency region &u(A@2 [see Eq. (3.27) of I],
is straightforward (recall that we must set z-z+L, z'-z'+I. before taking the limit). Here we only give
the final result. The preceding discussion leads us to the following expression for the imaginary part of
the density response function for a hydrodynamic model of a semi-infinite electron gas that occupies the
half-space z &0:

Imx(q„(d ~zz') = ', sgn(ue(-z)e(-z') —
i dp~ (q'„+p') cospz cospz'+ ' ', —,

~

&(&' —(d'(q„;p))B(if((;P zz')

+ tf q( ynyqnft) e(' (gng ) 5(+2 +2 ( )) (818)
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In Eq. (818) we have defined

~;(e;P) = ~', + P'(e'„+f '),
the "bulk-plasmon" dispersion relation, and

~', (v, ) = &',+ P'fv'„~', (e„)],

(819)

(820)

the surface plasmon dispersion relation, where y, is the inverse decay length of the surface plasmon
charge fluctuation [n(x) - exp(zp)], satisfying the (very useful) relation

'. =r, (w, +q„) . (821)

Note that Eq. (3.5) is obtained by substituting the solution of Eq. (821) into Eq. (820).
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