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In the linearized theory, Poisson's equation for the potential P(r) due to an impurity ion in a semiconductor is

V (EVP) —K„A, t( =0. Here K(r) is the spatially varying dielectric constant, E„-=K(co) and R, is the Dingle

length. The large-r solution is P—+Aeg '"o/(E „r) where e, is the electronic charge. In this article the value of the
constant A, which is unity if K is not spatially varying, is investigated. An integral theorem is derived which relates
the change BA in A to a change 6E(r) in K(r). This integral theorem employs a "complementary" potential P(r)
which diverges exponentially at large r. It is shown that 6A is proportional to (r+R 0) where r, is the range of the

spatially varying part of E(r). Because of this small ratio, the expected value ofA is, in typical cases, less than unity

by an amount of the order 10 ' or less. Two related Poisson equations are also discussed.

INTRODUCTION

Recently there has been considerable interest
in the potential due to an (assumed pointlike) im-
purity ion in a semiconductor. A knowledge of
this potential would enable one to calculate
the electron scattering due to this impurity
ion and therefore to obtain the mobility. An

early approach to this problem is that of
Dingle' which leads to a nonlinear Poisson-type
equation for the potential Q(r} The .nonlinearity
arises because the screening charge density p
is a nonlinear function of Q. As an approximation,
this screening charge density can be linearized
in P; the solution to this linearized theory being the
Dingle potential Pn:

yn= ece ""o/(K„r) . (1)

Here x is the distance from the impurity ion, R,
is a characteristic length called the Dingle length
(typically many Bohr radii), ec is the magnitude
of the electron charge, and K„ is the static dielec-
tric constant. (In previous articles, this static
dielectric constant was denoted by Ko; for pur-
poses of the present article, K„ is a more suitable
notation. Its value is approximately 12 for Si and
16 for Ge.)

An interesting modification of Dingle's theory
has recently been proposed by Csavinszky. ' This
modification consists of replacing the (spatially
independent) dielectric constant with a spatially
varying dielectric constant K = K(r). Retaining the
linear approximation of Dingle, Csavinsky obtained
the following Poisson equation for the potential
Q(r):

V (KVQ)-K„R /=0, (2)

where K„=—K(r-~). The boundary conditions for
y(r) are

y -e, /(K, r) for r -0,
P-0 forr-~.

Here K,=K(r -0). Equation (3) expresses the
fact that there is a single-charged positive ion
at the origin. Equation (4} is the usual condition
on the potential at large distances. Note that if
K(r) =K„, one recovers the Dingle solution (1).

For large r, K(r} approaches K„. The general
solution of the Poisson equation (2) for large r
is therefore

Q
= e, (Ae "~no+ Be '" "c)/(K„r) .

Here A and B are constants; the factors of eo and
K„have been inserted for convenience. The
boundary condition (4} then implies that B = 0.
Thus the solution for large r must be of the form

y = A e,e-'~"/(K„r}.

If K (r) = K„everywhere (the Dingle case}, then the
Dingle solution (1) applies and therefore A =1.
However, if K is spatially varying, then A. need
not equal unity. Several authors, either impli-
citly or explicitly, have implied that A. must be
unity; this belief was apparently based on the
fact that the differential equation (2) has the same
asymptotic (large~) form for variable K as it has
for constant K. Csavinszky' and Richardson and
Scarfone both employ a potential [obtained via a var-
iational principle approximately equivalent to (2)]
which has A equal to unity. On the other hand,
Morrow and Csavinszky' and Meyer both report
that a numerical solution to (2) yields a potential
with A different from unity (in fact, with A & 1).

In many cases of practical interest, the bulk of
the scattering due to this potential arises from the
large-r "tail" of Q; therefore the value of A can
be of extreme importance in the determination of
the electron mobility. The purpose of this article
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is to investigate the manner in which the value of
A changes due to a change inK(r). In particular,
we shall investigate how' A. changes from its value
of uIllty' lf K cllRllges f1'oIIIK =K toK =K(t}.

The dielectric constant K(r) is spatially vary-
ing in the manner shown in Fig. l. Here Ko
-=K(0), K„=K(~), and ro is the "range" of the spa-
tially VRI'ylng pRI't of th6. dlelec'tI'Ic collstRIlt (typ-
ically Ko is unity, K„ is 12 or 16, and ro is of the
order of a Bohr radius). Also shown in the figure
is a slightly varied dielectric constant K(r) +5K(x},
the variation being such that the asymptotic value
K„remains fixed. In the next section, an integral
theorem wiQ be derived which relates the change
5A in A to the change 5K(I ) inK(r).

As for the actual form of the spatially variable
dielectric constant K(r), several authors have
used the spatial dielectric function e(t)ba'sed on
the Penn model. Recently, Csayinszky' has pointed
out that the dielectric constant K(I ) should not be
identified directly with the dielectric function c(r).
This reference shows the correct relation between
these to be

I j) 1
+

where the prime denotes d/Ch.

The potential p(r) obeys the differential equation

V (Key)-K„Z y=0. (7}

The small- and larger asymptotic forms for
Q(r} are

y - (&0/Ko) [I '+ a+ br + ~ ~ ~ + ln (r)(o. + p r + ~ ~ ~ )]

fore-0, (8)

K, -
~

+ 6'K
O 0

FIG. 1. Spatially varying dielectric constant E'g) as a
function of r. Typical values are E„=12for Si (16 for
Ge) and E0=1. The range ro of the spatially varying
part of X(r) is of the order of one Bohr radius. Also
shown is a sli, ghtly varied dielectric constant E(r)
+ M.'(~), the variation being such as to preserve the
asymptotic value K„.

However, the large-r form for p is taken to be
complementary to that for P in the sense that

Q-Aeoe""+o/(K„I )+ (zero)e ""o
/( K„r)

for r - . (&8)

Here it is understood that for large r, P involves
only an increasing exponential function and no
decreasing exponential function. Thus both P and

Q satisfy the same differential equation (2) and
obey the same boundary condition (8) for r-0;
they differ in their behavior for r -~ in that P
involves a purely decreasing exponential function
of r while P involves a purely increasing function
of f'.

Corresponding to the Dingle solution (1), one has
the complementary Dingle solution for the case
K=K

yD = e,e'"~"0/K„r . (18)

Note that & = & for the Dingle solution and that
A = 1 for the complementary Dingle solution.

The general solution of Eq. (7) for larger con-
sists of a linear combination of an increasing and
a decreasing exponential function of r (divided by
I'}. Substitution of the small~ form (8) into (7)
shows that the leading coefficient a is arbitrary;
in fact, it is the selection of the correct value for
a which ensures that the large-x boundary condi-
tion (9}for /will be satisfied. Similarly, the
selection of the correct value for a in (11) ensures
that the large-r boundary condition (12) will be
satisfied for P. As for the leading coefficient in
the logarithmic part of the potential, direct sub-
stitution of the smaller form [(8).or (11)]into
the differential equation [(V) or (10)] sho ws that

(14)

their common value being K'(0)/K(0) where the
prime denotes d/dr.

Let f (r} and g(r} be any two solutions of the

p-Aeoe "~so/(K„r) for r-~ .
These are consistent with Eqs. (8) and (4); the ln
terms are needed according to the behavior of
K(r) near r = 0.

The integral theorem to be derived below makes
use of a "complementary" potential P(r) which
also satisfies the same differential equation as P,
namely q

V (K vy} -K„Il-,' y = 0. (10)

The small-r form for Q is taken to be similar to
that for P

p-(e, /K, )[I '+ a+ br+ ~ - ~ + In(r)(a+ pI + ~ ~ ~ )].

fore-0. (11)
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Poisson equation (7):

v ~ (K vf) K-„R f"=0,

V ~ (K Vg) -K„RO'g =0.
(15)

(16)

(1V}

Multiplying (15) by g and (16) by f and then sub-
tracting gives

v (fKvg-gKvf)=0.

fv [Kv(5g)]= v ~ [fKv(5g) —(5g)Kvf]

+(5g)v (Kvf),

fV ' (5K Vg) = V ' f(5K)f Vg] —(5K) Vf ' Vg,

and Eq. (15), Eq. (22) can be written

(23)

(24)

Next, Eq. (17) is integrated over the annular vol-
ume between the spherical surfaces ~ = e and ~ = R.
Letting d& be the volume element, this integration
will be denoted as follows:

) V ' [fK V (5g}—(5g)K Vf ]dT

+ Jj v ]())K)j'erg]dr -I (az')vy ~ igaT = o.
(25)

Application of Gauss's theorem to this volume
integral of a divergence gives

+ 4' K -gKdg d
dr dr

(18) We now choose f = )I) andg = Q-/[note that both of
these satisfy the Poisson equation (7}]. We shall be
interested in the limit e 0, R -~; the large-
and small-r forms for Q and )t) are given in Eqs.
(8), (9), (11), and (12). As for the large- and
small r forms for 5g = 5(Q —)I)), we have

—4]Tg fK -gKdg df3
dr dr

We now choose f = P and g = P [note that both of
these satisfy the Poisson equation (V)] and take
the limit in (19) as e -0 and R -~. Substituting
the large-. and small-r forms (8}, (9}, (ll), and

(12) into (19) and making use of (14}, one finds
that

= 0. (19)

Ko AA
0 —0=2 (20)

This relation will be used later [to process Eq.
(28)]. As a check, we note that Eq. (20) is satis-
fied in the Dingle ease (K, =K„, a = —1/R„a =

+ 1/R „A= A = 1).
Again, let f (r) and g (r) be any two solutions of

the Poisson equation (7} so that Eqs. (15}and (16}
apply. Multiplying (16) by f and integrating over
the annular volume from r = e to r = R, we have

5g - (8,/K, )[5 (a —a) + + r ln(r) 5 (J5- p) + ~ ~ ~ ]

—(8,5K, /K', )[(a —a) + ~ ~ +1 In(r}(P -P}+ ~ ~ ]
for t -0,

(26)

5g- (54)e,e'"~o/(K„r) —(5A)e,e '"o/(K„r-)

for r-~. (27)

Here the terms involving ~ and cancel in view
of (14). Note that the variation 5K, in K, is taken
into consideration; the variation in K„, however,
is omitted due to the stated assumption that
5K( ) =0.

In Eq. (25}, we convert the two divergence vol-
ume integrals into surface integrals, substitute
the large- and small-r forms for f, g, and 5g, and
take the limit e 0, R -~. After some algebra
we find

f[v (KVg) -K„RO'g)dr = 0. (21)
(4m', /K„)(2A 5A/R, )

—(4m eo/Ko)[5 (a -a) —(a —a) 5KO/Ko]

V KV 5g —KR 5g d&

Using the identities
+ v 5Kvgd7 = P. 22

Now take the variation 5 associated with a vari-
ation 5K(r) inK(r), this variation inÃ(r} being
such as to preserve the asymptotic value K„of
K(r), i.e., 5K(~) = 0. Thus K(r)-K(r) + 5K(r),
f(r)-f(r)+ 5f(r), and g(r)-g(r)+5g(r). In view
of (16), the 5 variation of Eq. (21) becomes

—JI (5K)VQ ~ V(&j) —P)dr = 0. (28)

Taking the 5 variation of Eq. (20),

5(a —a) = 2AA5KO/(K„RO)

+ 2KO(A5A + @5A}/(K„RO)

= (a —a) 5KO/K, + 2K,(A5A+A 5A)/(K Ro),

(29)

where the last form is obtained using (20} again.
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Next, Eq. (29) is used to eliminate 5(a -a) in Eq.
(28). The terms involving 5KO cancel, the final
result being

5W= K-„R,/(8ve', 5) 5Kvy V(y-y)d~.
a11 space

I'f we take the liberty of applying Eq. (35) to a
finite 5K, then typical data might be the following:
—5K =K„-Ko= 12 —1 to 16—1, ro/RD= 10 ' to
10 '. This gives, as the estimate for the change
in',

(80) 5A= —10-' to -10-'. (36}

5K(r) = 5K = const for 0 «r «r,
0 for i'o& x,

with

(82a)

(32b)

Xo«RO,

then

P =e,/(K„r)[1-r/R, + r'/(2R', ) -r'/(6R', ) + "],
(34a)

P =e,/(K„r) [1+r/R, + r'/(2R', ) + r'/(6R') + ] .

Equation (30) is the desired integral theorem. It
gives the change 5A in A in terms of the change
5K(r) in K(r).

It can be shown {see Appendix A) that the total
coefflclellt of 5K 111 Eq. {30)ls poslilve. We may
imagine starting with the Dingle case [A = 1,
K(r) =K„]and then changing K(r) into its actual
form (as shown in Fig. 1) by means of successive
changes with 5K(r) & 0. It then follows that for
each of these changes, BE&0. Because of all these
negative changes of A, the final value of A must be
less that its value for the Dingle case, i.e.,

(31)

This constitutes one of the major results of this
article: The tail of the potential associated with
the spatially varying dielectric constant is smaller
than that associated with the Dingle potential.

To obtain an estimate of the actual value of A. ,
we shall apply the "Dingle approximation" to
Eq. (80). Thus we take% = 1, KO=K„, Q= p~, and

If we make the further approximation that
5K(r) is of short range, in particular that

Thus, although A is not equal to unity, its departure
from unity cRn be expected to be 58xp 8ssQL/ ln
many prRct1cRl cRses.

In obtaining the estimate (35), three assumptions
were made: (i) that P and P could be replaced by
their corresponding Dingle potentials P~ and P~,
respectively, (ii) that 5K was infinitessimal, and
(iii) that r,«R0. In the next section it is shown
that an analog of (35) exists provided only that
assumption (iii) concerning the short range of 5K
1s sRtlsf led.

SHORT-RANGE APPROXIMATION

Suppose that the range ro of 5K(r) is short; in
practice this would be satisfied by xo« 80. Then,
as will be shown below, Eq. (30) can be processed
into a form which allows one to integrate with
respect to 5K. This will lead to an expression
for the finite change ~ in A. associated with the
finite change i' (r) in K(r). We shall assume that~ is built up from a succession of 6K's of the
form (32), i.e., that ~(r) is a "square well. "

We start witll tile fRci tllRt Q —f SRtlsfies tile
Poisson equation

V {KV(y-y))-K„R (y-y) = 0. (3V)

Next, this is integrated J,"{] dl with the limit
e -0 understood and with r «ro. The first term can
be converted to a surface integral; the contribu-
tion at the inner surface (r = e) vanishes in the
limit e —0 due to the fact that P- P is finite at the
origin. The second term can be evaluated by
using the short-range approximation P- P = (eo/
Ko)(a -a+ ~ ~ ). This gives, with the aid of (20),

(84b)

Substituting these into (30) and retaining only the
leading tel'nls ill r/R0 gives

2 2 3~8 4 2d

or

Substituting (38) into (30) and using the short
range approximation dp/dr = (eo/K, )(r '+ ~ ~ ~ )
one obtains

1K A.5K r
6 K2

(38)

(39)

(85}

This is the other major result of this article: The
change 5A. in A. associated with the change 5K in
K(r) is of the order (r, /R, )'. Here r, is the range
of the variation in K(r) and R, is the Dingle length,

This is the generalization of Eq. (35) and reduces
to it in the Dingle case (KO= K„,A = 1). However,
note that Eq. (39}applies to the perturbation of any

K(r}, not just the Dingle case. It is quite fortuitous
that, in substituting (88) into (30), the factor A,

cancels out; this will enable us to integrate (39)
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with respect to 5K. To do this, note that starting
with the Dingle case; A varies from I to I + AA. ,
K, varies from K„ to K„+~, K„remains fixed,
and [from (32)] 5K = 5K,. From (39}we have

0 0
~

sented. The terms involving 6KO are, in this
case, entirely absent (whereas in the preceding
section these terms cancelled}. The final result
[the analog of Eq. (30}]is

g2 5K

Hence the desired analog of Eq. (35 is

!II(1+AA1=
ge

(1- "~)(~) . (40)

Again, it can be shown (see Appendix B) that the
total coefficient of 5K in Eq. (43) is positive.
Therefore, by the same argument used in the pre-
ceding section, it follows that

5A lx(r 0/R 0} (41)

on the square of the ratio of the two naturally
occuring lengths.

The proportionality (41}agrees with a result
of Morrow' obtained by approximately solving an
integral equation equivalent to the Poisson dif-
ferential equation. [See Eq. (16) of Ref. 8. Mor-
row's x~ corresponds to the present x, and his R~
corresponds to the present Ro.]

INTEGRAL THEOREMS FOR RELATED POISSON
EQUATIONS

In Csavinszky's original work on Poisson's
equation incorporating spatially varying dielectric
constants, ' tw'o facets which are present in the
correct formulation were, for expediency, ignored:
(i} the term involving VK in (2} was omitted and
(ii) the boundary condition at the origin involved
K„(the Dingle case boundary condition) instead of
Ko in (3). Thus the problem discussed in this
reference was (in the present notation)

V Q -K R 0 &j)/K = 0,

g-e, /K„r for r-0,
P-Aeoe "+0/K„r for r-~.

(42a)

(42b)

(42c)

This differential equation can be treated in a
manner quite similar to that used in the preceding
section: A complementary potential P is defined
such that it obeys Eqs. (42) except that the sign of
the exponent in (42c) is positive and A is replaced
by A. Since the calculation is so similar to that
of the preceding section, details will not be pre-

Assuming that both the short-range approximation
and the "square-well" form (32}for ~ apply,
Eq. (40) is an exact expression for the finite change
bA associated with the finite change AK. When
typical numbers [such as those used to obtain the
estimate (36)] are substituted into (40}, it is
found that b, A is larger than the estimate (36) by
about one order of magnitude. Thus there is still every
reason to believe that the departure of A from
unity will be small. The principle reason for this
smallness is the proportionality

(44)

for Eqs. (42) with aK(x) as shown in Fig. 1.
To obtain an estimate of the actual value of A,

we shall apply the "Dingle approximation" to Eq.
(43). Thus we take A = 1, K, =K„, p= p~, and Q

If we make the further approximation that
5K(r) is of short range, in particular that Eqs.
(32)-(34) apply, then Eq. (43) gives

(45)

This is qualitatively similar to its analog, Eq. (35},
but is larger by a factor of 3. Thus, again we ob-
tain the proportionality

IIA ( ) (46)

V Q-K„RO Q/K = 0,
P-e, /K, r for r-0,

Aeoe "-0/K„r for r -~.

(47a)

(47b)

(47c)

This is the same as Eqs. (42) except that (47b)
has the factor K, in the denominator where (42b}
had the factor K„. Proceeding as before, an
integral theorem can be derived for 6A. In this
case the terms involving 5KD do riot cancel out.
The result is

6A =
8

-"- - Q(Q —Q)d& -A
K

—'.K„ 5KO
WeoR 0 A gg 8Pgce 0

(48)

The first (integral) term is similar to Eq. (43)
except for an additional factor of K„/Ko. Thus it
w'ould, in the Dingle and short-range approxima-
tions, contribute a small quantity proportional to
(ro /RO)'. The last term in (48), however, can be

and we may therefore expect the value. of 6A to
be very small.

One final Poisson equation is obtained by neglect-
ing the VK term while restoring the correct
boundary condition at r —0. This equation was
discussed by Csavinszky' and by Richardson and

Scarfone. ' In the present notation, this problem
is
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expected to contribute a large quantity which is
independent of the range r0. Neglecting the small
integral term, the remainder of Eq. (48) can be
integrated with respect to K, to yield

A =K„/Ko. (49)

This shows that the value of A can be expected
to change from unity to about 12 or 16 in typical
cases.

DISCUSSION

Poisson's equation for the potential P(r) as-
sociated with an impurity ion in a semiconductor
ls

V ~ (K VQ} -K„R02 (f&
= 0,

with the boundary conditions

P-eo/Kor for r-Q,
p-0 for r -~.

(50a}

(50b)

(50c)

Here K(r) is the spatially varying dielectric con-
stant, K, -=K(0) and K„=-K(~}. The large-r form
for /is

P -A e,e ' "o/K„r . (51)

In the "Dingle case, "i.e., K(r) = constant, the
value of A is unity. If K(r) is not constant, then
A need not be unity. In this article the dependence
of the factor A upon changes in the function K(r}
was investigated. Several integral theorems were
derived which gave the change AA in A due to a
change hK inK for both the above Poisson equa-
tion and two related Poisson equations. These
integral theorems made use of a complementary
potential P which diverged exponentially for large

For the Poisson equation (50), the major results
were that for aK(r) such as shown in Fig. 1: (i)
A is less than unity; (ii) b.Ais proportional to
(ro/Ro)', where ro is the range of the varying part
of K(r) and it is assumed that r, «RO. Typical
numerical values indicate. that AA should be less
than approximately 10 '.

A related Poisson equation which was studied
is similar to (50) except that the VK term is ne-
glected and an incorrect boundary condition for
r -0 [namely, the replacement of Ko with K„ in
(50b)] is used. It is found that these two omissions
almost cancel out in the sense that the above re-
sults. [(i) and (ii)] are still true although the exact
expression for bK is now larger by a factor of 3.

Another related Poisson equation neglects the
VK term but restores the correct boundary condi-
tion (50b). In this case the change AA in A turns
out to be very large, the predicted value for A
being more than 10.

APPENDIX A

We seek to show that the total coefficient of 5K
in Eq. (30} is positive. The proof consists of
two parts: (a) that dp/dr & 0 and (b) that (I/A)d(P
—P)/dr & 0. These two facts, combined with the
negative sign in (30}, assure the desired result.

(a) To show that dQ/dr & 0 for all r Cl.early
this is true for r-0. By continuity, if dP/dr & 0
somewhere, there would exist a certain r =r, at
which dQ/dr = 0. Multiplying the Poisson equa-
tion (7) for Q by P and integrating over the annular
volume from r = r, to r = ~,

V' KV -K„R d&=0. (A1)

This can be rearranged to give

V' (QK VQ) d&

KV ~ V d7 +K R0 d7 A2
1 Fj

Both terms on the right-hand side of (A2} are
manifestly positive. Transforming the left-hand
side to a surface integral yields

4vr'PK -4vr'PK '
~ & 0. (AS)

0+1 2 dh

This is a contradiction since both terms on the
left-hand side are zero.

(b) To show that (1/A)d(Q —Q)/dr & 0 for all r.
Clearly this is true for r -~. By continuity, if
(I/3)d(P —P)/dr & 0 somewhere, there would
exist a certain r = r, at which d(P —&f&)/dr = 0.
Multiplying the Poisson equation (7) for (p —p) by

(P —Q) and integrating over the annular volume
fromr = 0 to r =r„

(Q -Q) fV [K V($ —Q)] -K„RD (Q —p)) d~ = 0.
0

(A4)

This can be rearranged to give

In conclusion, if the correct Poisson equation
(50) is used, the expected value of A should be
smaller than unity but by an amount AA which
is so small as to render this change in A to be
negligible in many practical cases. However,
since this smallness was due to the factor (r /R )',
this effect would become important if the Dingle
radius R 0 were comparable to the range r 0 of the
spatially varying part of the dielectric constant
K(r).
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f v [(y y—)xv(y —y)]a~
0

40
Z' v(y —y) v(y —y)di

-4mr'(y —y)
(r~

This is a contradiction since both terms on the
left-hand side are zero.

APPENDIX B

We seek to show that the total coefficient of 5K
in Eq. (48) is positive. The proof consists of two
parts: (a) that Q &0, and (b} that (1/A)(P —P) & 0.
These two facts assure the desired result.

(a) To show that Q &0 for all r. Clearly this
is true for r-0. By continuity, if Q & 0 some-
where, then there would exist a certain r = r, at
which Q = 0. Multiplying the Poisson equation
(42a) for Q by Q and integrating over the annular
volume from r = r, to r = ~,

fi OO K RK„RO
"r K (Bl)

This can be rearranged to give

t'2

+ K„R0 (p -p)'dv. (A5)
0

Both terms on the right-hand side of (A5} are
manifestly positive. Transforming the left-hand
side to a surface integral yields

2(~ ~) d(0 -4')
dr

Both terms on the right-hand side of (B2) are
manif estly positive. Transforming the left-hand
side to a surface integral yields

&0.

r
'(y y)[v—'(y y) -Z„R-(y —y)/Z]d~ = 0.

"o
(B4)

This can be rearranged to give

v [(y -y)]v(y-y)]«

v(Q -p) v(y -y)d~

f' r&
+&„R,' Jl [(p —y)'/R]dT =0. (B5)

0

Both terms on the right-hand side are manifestly
positive. Transforming the left-hand side to a
surface integral yields

4~~'(y -y)

4m'' y —4m r'y-dd)f, d
(BS)

d t(„'
1

This is a contradiction since both terms on the
left-hand side are zero.

(b} To show that (l/A)(P -P)& 0 for all r. Clear-
ly this is true for r -~. By continuity, if (1/A)(Q
—P) & 0 somewhere, there would exist a certain
r = r, at which (Q —Q} = 0. Multiplying the Poisson
equation (42a) for (p —p) by (g -p) and integrat-
ing over the annular volume from r = 0 to r = r,.

v

(yves)d~

VQ ~ Vgdv +K„RO'
J

~ dw. (B2}
1

4n r'(y --y) (~ ~) - &0.
dr r o

(Be)
This is a contradiction since both terms on the
left-hand side are zero.
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