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Short-range order in theoretical models of binary metallic glass alloys
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Computer-generated models of metallic glass alloys are explored to exhibit the short-range order of their atomic
structure. Binary alloys Pd-Si, Fe-P, and Fe-B are studied as a function of composition. Several approaches are used.
The distribution of near-neighbor types is calculated in detail, from which it is argued that a specific coordination is
preferred and satisfied by a local unit structure around each metalloid. The metalloids are removed from the
structure and the size distribution and shapes of the Bernal holes remaining are calculated; the results corroborate
the conclusion drawn above. The local geometry is explored by computer graphic methods and a surprising degree
of regularity is discovered. Two local geometries dominate the surroundings of metalloid species: the octahedron
and the trigonal prism. The relative occurrence of each is seen to vary with composition but the two methods used
differ as to the degree of variation. Finally, the alloy density is calculated from a Voronoi polyhedral analysis for the
first time. Density and its variation with composition are seen to be adequately simulated by the models under study.

I. INTRODUCTION

Recently a number of computer-generated
models of metallic glass alloys of the transition
metal-metalloid type have been described'; they
possess many of the measured characteristics
of such materials. One of the more striking fea-
tures of these models is the fact that each metal-
loid has a constant number of metal near neigh-
bors even as the composition of the alloy is
changed. It was suggested that the metalloid sites
form the center of some kind of molecular unit
which is characteristic of the alloy system. The
existence of such units has been proposed by the
independent arguments of Gilman. Taking the
unit concept literally, Gaskell has built and an-
alyzed some small but successful niodel struc-
tures. We have sought to clarify the nature of
the short-range distribution of atoms in models
of metallic glass so as to shed further light on
the kind of order which might be responsible for
the deductions made earlier strictly on the basis
of statistical measurements.

Three approaches are reported in this paper.
First we calculated the distribution of near neigh-
bors in more detail by actually studying the neigh-
bors of each atom individually. Secondly we used
computer graphic techniques to produce pictures
of the local geometry. Finally, a new kind of an-
alysis was applied to tabulate the distribution of
Bernal hole sizes in the models with and without
metalloid atoms included.

Density is one of the simplest physical quan-
tities one can measure, and it was realized very
early that in metallic glasses it was only a few
percent lower than values associated with cry-
stalline alloys of similar composition. However,

the calculation of density from models is one of
the most difficult tasks to accomplish with ac-
curacy. Approximate methods were used to de-
termine the numbers previously repor'ted but
the estimates were consistently too low. In this
paper we report the density as determined from
a much more accurate calculation. This work
is based on a Voronoi polyhedral analysis which
was done on a few of our models by Finney.

II. NEAR-NEIGHBOR ANALYSIS

All information on numbers of near neighbors
obtained to date on the computer-generated
models is based on the coordination numbers de-
duced from calculated radial distribution func-
tions. The coordination number was defined as
the area under the first peak of 'a proper partial
radial distribution function, i.e. , the number dis-
tribution of distances of atoms of a certain type
from a central atom also of a particular type.
The area was determined by integrating to the
first minimum beyond the first peak. This pro-
cedure lacks precision in that, for some sites,
it includes more than first neighbors and, for
others, it misses some atoms which are proper
near neighbors. In the present case we have an-
alyzed for the distribution of near neighbors in
different and more revealing ways.

For each nonsurface atom in a structure, a
search was made for neighbors within an accep-
tance limit. The limit is defined in terms of
the hard-sphere-touching distance but adds a tol-
erance of a few percent to it. In practice we find
that 10% is a realistic tolerance; we base this on
a number of calculations for different tolerances.
As we increase to 8 or Q%%uo, the distribution of

1506 1981 The American Physical Society



SHORT-RAN GK ORDER IN THKORKTICAI MODE I 8 OF BIN AR'V. ..

neighbors shows pronounced changes in shape.
Further changes in shape do not occux' until tol-
erances of 12 or 13%%uo are allowed. The neighbors
are catalogued as to the number of each type found
and as to the type of the central atom. Thus for
each type atom, we can count the number of times
it is found with a given number of neighbor types, '

e ~ g. 1n a b1nax'y Fe B alloy how many times
does one find boron sites with, for example,
6 ixon near neighbors'p

A more meaIDngful measured' is howeverp the
probability of the occurrence of a site with a
given number of neighbors of each type. Table I
gives th1s 1nformatlon 1n detail fol the Pd-81

TABLE I. Probability of the occurrence of a site with a given number of neighbors for the
Pd-Si alloy series.

(a) Probability of Pd site with N(Pd) + M(si) neighbors

0
1 0.006
2 0.017
3 0.009
4 0.009 0.038
5 0.003 0.012
6 0.012

total 0.021 0,126

0.003
0.023
0.108
0.093
0.044
0.012

0.006
0.064
0.157
0.105
0.012

0.032 0.009
0.061 0.015
0.076
0.026

0.006
0.003

0.283 0.344 0.195 0.024 0.009

0.056
0.172
0.358
0.274
0.103
0.027
0.012
1.00

Pd sos&80 0.006
0.003

0
1
2
3

5
total 0.009

0.006
0.023
0.046
0.020
0.017
0.112

0.006
0.049
0.063
0.060
0.020
0.003
0.201

0.023
0.111
0.160
0.063
0.009

0.051
0.077
0.069
0.020
0.009

0.031
0.037
0.009
0.003

0.006
0.003

0.366 0.226 0.080 0.009

0.117
0.283
0.324
0.198
0,061
0.020
1.00

Pd858&~5

0
1
2 0.003
3.

5
total 0.003

0.006
0.012
0.020
0.020
0.012
0,003
0.073

0.017
0.061
0.075
0.041

0.084 0.122
0.151 0.122
0.096 0.032
0.014 0.012

0.061
0.023

0.194 0.345 0.288 0.084 0.012

0.302
0.369
0.226
0.087
0.012
0.003
1.00

(b) Probability of Si site with N(Pd) + M(N) neighbors

0.009
0.009

0.028
0.064
0.046
0.028
0.166

0.165
0,248
0.055

0.220
0.110

0.330 0.018

total

0.431
0.431
0.110
0.028
1.00

Pd808~80

0
1

3
total 0.011

0.044
0,033
0.01$
0.011
0.099

0.484
0.110
0.033

0.165
0.066
0.011

0.726
0.209
0.055
0.011
1.00

0
1
2

total

0.052
0.086

0.328
0.121
0,034
0.483

0.690
0,276
0.034
1.00
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alloy series. The Pd-Si system has been the
basis of more studies than any other binary al-
loy. In addition, the same model structure used
to describe Pd-Si is expected to serve as model
for an alloy in the Fe-P system. ' Table II lists
the same data for the Fe'-8 alloy series which is
an important magnetic material. The three com-
positions studied are below, near, and above
that composition at which the glass state is most
easily reached by the normal quenching process.
The number in the Mth row and /th column of
the table specifies the probability of a site being

found with Ã metal neighbors and M metalloid
neighbors (neighbors defined as above). The cal-
culations are based on a sample of approximately
500 atoms in a spherical shell whose boundaries
are nearly equidistant from the model center and
its outer surface. In general the trend is as ex-
pected: the more metalloid neighbors a site has,
the less room for metal neighbors. One point to
note in part (b) of Tables I and II is that some
metalloid sites are listed as having metalloid
neighbors and in a few cases more than one. The
original model-building procedure attempted to

TABLE D. ProbabQity of the occurrence of a site with a given number of neighbors for the
Fe-B alloy series.

(a) Probability of Fe site with N(Fe) + M(B) neighbors

Fe~sBe2s

M/N 6

0 0.109
1 0.019 0.063
2 0.014 0.136
3 0.003 0.030 0.090
4 0.003 0.009 0.025 0.049
6 0.006 0.003 0.017
6 0.003

total 0.003 0.017 0.091 0.377

10

0.038
0.099
0.131
0.058
0.019

0.044 0.003
0.060 0.006
0.044
0.017

0.345 0.165 0.008

total

0.104
0.247
0.325
0.198
0.104
0.025
0.003
1.00

10 11 12 total

FespB2p

0
1
2
3
4
5

total

0,003
0.011
0.014
0.009
0.006
0.003
0.045

0.023
0.064
0.043
0.043
0.023

0.186

0.092
0.132
0.126
0.062
0.017
0.003
0.422

0.063
0.100
0.074
0.020
0.003

0,023
0.037
0.026

0.260 0.086

10 12

0.117
0,334
0.283
0.124
0.049
0.006
1.00

total

FessBis

0
1
2
3 0.003

total 0.003

0.011
0.022
0.019
0.016
0.003
O.OV1

0.076
0.096
0.068
0.030
0.008
0.277

0.127
0.173
0.089
0.027

0,084
0.086
0.025
0.005

0,025
0.008
0.003

0'.416 0.200 0.036

0.323
0.384
0.204
0.081
0.011
1.00

(b) Probability of B site with N(Fe) + M(B) neighbors

FegsB2
0
1
2

total

0.008

0.008
0.01V

0.092
0.050
0.008
0.150

0.496
0.101
0.008
0.605

0.176
0.034

0.210

0.017

0.017

total

0.789
0.186
0,025
1.00

FesoB2o

Fess B~s

0
1

total

M/N

0,184

0.184

0.047
0,016
0,063

0.713

0.713

0.438
0.141
0.579

0.092

0.092

0.328
0.016
0.344

0.011

0.011

0.016

0.016

0.100
0.000
1.00

0.829
0.173
1.00
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avoid the occurrence of near-neighbor metalloids
in order to simulate the expected chemical order-
ing in the alloy. During the energetic relaxation of
the hard-sphere model, a few near-neighbor met-
alloids occur at statistically insignificant levels,
i.e., their contribution to the radial distribution func-
tion (HDF) is in the noise of the calculation. Within
the 10% tolerance of sphere touching used in this
study to find neighbors, there is a significant
number of metalloid-metalloid pairs found. The
more metalloid one tries to stuff into the struc-
ture (compare Pd75Si» to Pd»Si„), the more
frequent the occurrence of such pairs, as one
might expect. As the tolerance is tightened, the
total probability of the rows M =0 in Tables I(b)
and H(b) exceeds 0.9. However, for all models
except those with very few and very small met-
alloids, it is impossible to avoid some metalloid-
metalloid nearest neighbors. This may also be
true of real metallic glasses in which case the
double metalloid sites could be very interesting,
Existing experiments have not ruled out the ex-
istence of such sites occurring with the prob-
abilities predicted here.

A graphic representation of some of these data
is given in Fig. 1 for the Pd-Si series; basically
the row and column totals are plotted as histo-
grams. Figure 2 illustrates the same data sum-
mary for Fe-B alloys. In each case at least
half of the metalloids occur with the dominant
coordination, 6 for Fe-B and 7 for Pd-Si (or
Fe-P). The most notable feature is the sharp-
ening of the peak describing the number of
metals surrounding the metalloid [Figs. 1(a) and
2(a)] near the center of the composition range,
i.e. , at 80/20. At this composition the geometry

of the molecular units formed by a central met-
alloid and its metal neighbors are found in high
preference with a fixed number of vertices.
Further, we have been able to describe the shape of
these units in the Fe-8 system as described in alater
Figs. 1(b) and 2(b) have been used to calculate the
hyperfine field distribution in Fe-based alloys and
compared to data extracted from Mossbauer ex-
periments. ' The peaks of these distributions shift
to smaller numbers of metalloid neighbors as
metalloid content is reduced. Likewise the dis-
tribution of metal-metal neighbors [Figs. 1(c)
and 2(c)] sharpens as the alloy composition ap-
proaches pure metal. Both of these observations
fit one's intuitive expectations.

III. SHORT-RANGE GEOMETRY

A constant coordination number, of course,
does not necessarily imply that the geometric
arrangements of neighbors is unique. In this
section we try to explore this point. We view
each of the near neighbors of a given atom as a
vertex of a polyhedron. As long as there are
more than four vertices, there are a number of
possibilities as to the shape of the polyhedron
formed. %e are primarily concerned with the
geometry of the metal atoms surrounding the
smaller metalloid atoms. In the Fe-B models
most boron atoms have six iron near neighbors.
The most regular shapes with six vertices are
the octahedron and the trigonal prism, although
several distorted shapes may be defined in be-
tween these two. For the Pd-Si models, the
silicon atoms most frequently occur with seven
or eight pallad&um near neighbors. A variety

(c2) Si -Pd (b) Pd-S i (e) Pd-Pd

Pd Si
75 25

SiSB7a9

0.5

LO
0 1 2 8 4 5 B 5 B 7 B 9 10 li

Pd Sa
80 20

0 5

3 4 5 B 7 8 9 0 1 2 3 4 5 B 5 B 7 S 91011

Pd Sa
85 15

I

8 4 5 B 7 8 I

0 5

0.0 ~ ~

0 1 2 3 4 5 B 5 B 7 8 91011

FIG. 1. Probability distribution of the number of near neighbors in models of Pd-Si glass alloys. {a) Pd atoms
around Si atoms, {b) Si atoms around Pd atoms, and {c)Pd atoms around Pd atoms. Near neighbors are defined as
atoms within 10~0 of the hard-sphere-touching distance.
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(a) 8-Fe (b) Fe-8 (a) Fe-Fe

3 4 5 6 7 8 9
f

6 7 8 9 10 11 12

0.5

a I t a i a I

3 4 5 8 7 8 9
CL0

0 1 2 3 4 5 S 6 7 8 9 10 ll 12

3a567a9 LO I

0 1 2 3 4 5 6 6 7 8 9 10 )1 12

FIG. 2. Probability distribution of the number of near neighbors in models of Fe-B glass alloys. {a) Fe atoms
around B atoms, {b) B atoms around Fe atoms, and {c)Fe atoms around Fe atoms. Near neighbors are defined as
atoms within 10+p of the hard-sphere-touching distance.

of shapes with seven or eight vertices are pos-
sible, including trigonal prisms with one or tmo
half-octahedral caps, and the square (Archi-
medlan) Rlltlpl'lslll.

In the Fe-8 and Pd-Si. models me investigated
the frequency with mhich the various shapes oc-
curred by direct inspection of computer graphic
displays of the atoms surrounding each metalloid.
The polyhedra observed are not exactly regular
but occur with varying degrees of distortion.
For example, a continuous range of distortions
is available between the octahedron and the
tx'1gonal prism. T,hus 1t ls neeessal y to estab-
lish explicit procedures which define whether a
specific neighbor polyhedron is one shape or
another. Two approaches have been used. (I)
According to the network of near-neighbor con-
nections between the metal atoms foxming the
shape, and (2) according to the directions from
the center (or metalloid) to the surrounding
atoms. We have concentrated our efforts on the
case of six metal atoms surrounding a metalloid,
as appropriate for the Fe-8 models.

For the network approach we make connections
betmeen all the xnetal atoms that are closer to
each other than soxne particular distance. The
shape is then defined according to the topology of
the network of connections (which we may call
edges) that surround the metalloid. If a larger
neighbor distance is used for a particular arxange-
ment, then there may be more connections created
which would result in a change of the topology
of the network; thus the identification of the s'hape
mill change. Statistics that report the frequency
of occur."ence of various netmork shapes are in-
complete without explicit specification of the

neax'est-neighbor distance. For this purpose me
have used 1.30 metal-sphere diameters. If too
small a neighbor distance is used, the shapes mill
llot be ldell'tif led ln R 1116Rllillgflll WRy. Tllls is
because a mildly distorted regular shape is likely
to have one or another edge stretched beyond. 1.1
or 1.2 diameters, while it still remains more

,nearly one shape than any other. At the other
extreme, too large a neighbor distance mill give
confusing results. For example, with a neighbor
distance of v 2, the diagonals on the three square
faces of a regular trigonal prism would become
edges, and the network identification would be
meaningless.

We limit the catalog of possible netmork shapes
to those that have no "faces" with more than four
edges. (These edges need not be exactly co-
planar. ) Shapes with five or more edges are not
genex'ally useful to describe the complete sur-
roundings of the metalloid; the five-edged face
can be considered an open gap in the coordination
sphere. Such a gap often occurs when we are
considering the shape formed by the metal atoms
surrounding a metalloid that has another metal-
loid as nearest neighbor that has not been counted
as part of the shape. With the limitation to three-
and four-edged faces, the complete catalog of
possible network shapes with five or six vertices
is shown in Fig. 3. All the six vertex (point)
figux'es except the trigonal prism can be made up
of tmo of the five-point figures joined together
at four-edged faces. All the six-point figures,
including the trigonal prism, can be made by
breaking some number of edges in an octahedron.
For seven vertices there are many different pos-
sible networks that are topologically distinct.
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FIVE-POINT FIGURES

QIHEORON PENTATOPE

S I X-POINT FIGURES

TRIPLE OIHEORON QOUBLE OIHEORON QONLE OIHEQRON

WPPOSEQ KONNECTEO

TVO Q!HEQRA OIHEORON &

PENTATOPE

OIHEQRON &

PENT ATOPE

TRIGONAL PRISN

SEVEN-POINT FIGURES

TRIGONAL HEPTATOPE OIPLOIO HEPTATOPE

FIG. 3. Shapes used in the catalog of Table IG. The
five-point figures provide definitions. The octahedron
is the polygon with the maximum number of edges. The
sequence of six-point figures proceeds by successively
breaking bonds {eliminating edges) until the trigonal
prism is reached; it has three fewer bonds than the
octahedron. There are two six-point figures {pentatopes)
missing; they are generated by breaking four bonds
but are not observed in the model structures.

Only the two shown in Fig. 3, however, cannot be
made up from two or three of the five- and six-
vertex figures. For eight points there are still
more possible networks, most of which can be
made by combining smaller shapes. Those that
cannot are the square antiprism (Archimedian
antiprism ) and the shapes created by removing
one to four edges from an antiprism (For ex-
ample, a cube can be created by removing four
edges. )

The alternative to the network approach of
polyhedron shape definition is an approach based
on the directions of the vectors from the metalloid
to each of the surrounding metal atoms. (We
could also have used the center of mass in place
of the metalloid location. ) This approach only
gives meaningful results if all the metal atoms
are about the same distance from the center, in
the present case, within the nearest-neighbor
shell. The shapes possible for, for example,
six points are therefore the possible distinct
ways of arranging six points on the surface of a

sphere. It simpbfies the range of possibilities
to specify that no two points (vectors) can be
closer than some given distance (angle). If the
closest metal-metal approach is 1.00 and the
metal atoms are 0.76 from the central metalloid,
the closest vectors are at 82' from each other.
This is in fact the angle between vectors to the
corners of a regular trigonal prism (81.786 VQ').
If six points form an octahedron, the vectors
will be at 90', and for the same metal-metalloid
distance the metal atoms would be spaced 1.0748
diameters. The metal atoms could be thought
of'as being loose to move out of position to pro-
duce a range of distorted shapes. An octahedron
can be created by twisting a trigonal prism along
an axis through the triangular faces until one
triangle is oriented 60' from the other as depicted
in Fig. 4. From this we can devise a simple
method to define whether a given shape is more
nearly an octahedron or a trigonal prism. One
could determine which set of three vectors among
the six is closest together (minimum total of the
three angles between them). The end points of
these vectors form a triangle, and the other three
points necessarily form a second triangle. Each
triangle is projected onto a plane perpendicular
to the line joining their centers (intersection
points of medians). If the projected triangles
are more nearly aligned, then the figure is called
a trigonal prism; if more nearly staggered (ro-
tated by 60') then it is called an octahedron.

Results for both types of shape definition were
found by studying the neighbors (as defined in
Sec. II) of individual metalloid sites by computer
graphics programs. Atoms are displayed on a
screen at points corresponding to their (x, y) co-
ordinates, with symbols whose size is scaled by
their a coordinates (larger means closer to
viewer). For the network definition, those neigh-
boring metal atoms closer than 1.30 diameters
are connected by lines, and the shape is visually
identified. To make an identification according to
directional definition, a program is used which ro-
tates the set of points on the screen at the user's
instruction. In practice a variant of the procedure
described above proved more effective especially
in dealing with nonsixfold coordinated sites. Each
triangular face is considered in turn and the exis-
tence of a second triangular face nearly parallel to
the firstis sought. For six vertices, if the two tri-
angles had nearly congruently projections the poly-
gon was called a trigonal prism. Ifone triangle was
"upside down" with respect to the other, the
polygon was called an octahedron. For more than
six vertices the procedure becomes more com-
plex but we could almost always find one of the
underlying polygonal shapes above with an edge=
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FIG. 4. An octahedron cleft) can be viewed as a trigonal prism with one triangular face rotated 60' with respect to
the other. The number of edges connecting the rotated triangular faces ' th t d f'es m e s aggere con iguration is doubled.

bridging or face-capping atom.
To minimize the number of triangular faces

which had to be examined, edges were drawn only
if the atoms at the vertices were within 1.10
di.ameters. Thus the "connections" studied by
the two approaches were not exactly the same
and it is clearly possible to find a given poly-
hedron catalogued differently, e.g. , an octahed-
ron with several edges of length ): 1.10& l» 1.30
would be recognized as an octahedron by network
RnRlysls but Rs some fox'm of dihedlon by dlx'ec-
tion. Moreover some of the seven-point figures
could clearly be catalogued as basically octa-
hedral by direction and trigonally prismatic by
network analysis because the face caps form tri-
angles whose plane may be nearly parallel to a
distorted fRce of the underlying bRslc shape.
Each approach has its advantages but unfortun-
ately the variable "bond lengths" in the models
prohibit a completely objective criterion for
cataloguing short- range geometry.

An intexesting trend was found in the polyhedra
surrounding the boron atoms. According to the
directional shape definition, most shapes in
Fe»B25 wexe trigonal prisms. As boron content
was reduced, however, we began to see a more
frequent occurrence of octahedra. Typical ex-
amples of these shapes are shown in Fig. 5.
The trigonal prism in Fig. 5(a) is distorted on
one of i.ts rectangular faces to allow for the al-
most-near-neighbor iron atom which caps the
face. The interatomic forces under which these
structures were produced were twice as strong
between iron and boron than between iron and
iron, Rnd clearly favors the capping of the prism
and in some cases distortion of a face to allow a
closer proximity of the capping iron to the at-
tractive boron site. Figure 5(b) shows an oc-
tahedrally coordinated boron site from Fe858».
The reason for the more common occurrence of
octahedra when less boron is present is clearly
due to packing optimization, but we have not yet

(b)

FIG. 5. Geometry of short-range order around B sites in Fe-8 glass allo s. The bass a oys. e oron is at the center of the
s ruc ure s own by a triangle. The surrounding iron atoms are smaller if farther away from the viewer. (a) Trigonal
prismatic coordination in Fev&B25, (b) octahedral coordination in Fe858~5.
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studied the more difficult matter of packing of
the polyhedra themselves as suggested by the
work of Gilman and of Gaskell. An intuitive
explanation is that the trigonal prism presents
only five faces for next-nearest-neighbor iron
sites, while the octahedron presents eight. In
the alloys with small boron content, each boron
site must accommodate more iron sites in its
vicinity and this is favored by octahedral sym-
metry.

When the same sites were identified according
to the network definitions, this trend is reversed.
Results are given in Table III. Trigonal prisms
are slightly more common in Fe»B,&, though the
difference is not large compared to the expected
statistical counting errors. The conclusion must
be that certain sites are identified differently by
the two approaches. The various types of dihedra
appear to be distorted octahedra while the two
seven-point figures appear to be distorted tri-
gonal prisms with an extra capping point.
significant number of sites are identified in Table
III as "open. " These are boron atoms which have
a boron near neighbor; boron near neighbors were
not counted as part of the surrounding network.
As expected, there are more of these sites in the
model with more boron.

Turning attention to the iron sites, we found
that one could almost always see an icosahedral
arrangement of neighbors when the coordination
of neighbors was 12 [the average value, see
Figs. 1 and 2, (b) and (c)]. Figure 6 shows an

icosahedrally coordinate site from Fe«B20 It
is shown in two views so that one can appreciate
the regularity of the shape. Figure 6(a) shows
the staggered pentagonal rings and the three
atoms on the axis nearly aligned while Fig. 6/b)
shows a 90-degree rotation to illustrate the
planarity of the rings. Nucleation theory has
long pointed to the inherent stability of this

TABLE III. Bernal hole shapes in Fe-B glass alloys.

FegsB gs FessB&s

Half-octahedra
Octahedr a
Dihedra
Pentatopes
Trigonal prisms
Trigonal heptatopes
Diploid heptatopes
Antiprisms
Open

0.41%
10.29
39,92
0.82

32.51
2.05
0.0
1.65

12,35

0.68%
4.76

42.18
0.68

38.10
3.40
0.68
0.0
8.84

'Edges are formed for vertices within 1.3 sphere di-
ameters of each other.

arrangement of atoms and it has even been dis-
cussed in the context of metallic glass by Briant
and Burton.

IV. INTERSTITIAL SITES IN METAL
SUBSTRUCTURE

Another related type of analysis involves find-
ing the size of interstitial holes in the structure.
Frost has analyzed the hole-size distribution in
two of the more well known single-size-sphere
dense random-packing models. In particular
we used the same approach on the binary
models' with metalloid sites removed. The
remaining model structures had large voids
or holes at sites previously occupied by metal-
loid atoms; the size distribution of these inter-
stitial holes is quite revealing. The site of the
hole must be defined. Each of the transition-
metal (TM) sites remaining in the structure is
imagined to be surrounded by a unit sphere
("the atom"). Any set of four non-coplanar atom
centers defines a sphere, and if no other atom
centers are inside that sphere then it represents
a "hole" in which a smaller sphere can be

FIG. 6. Icosahedral units found around Fe (triangle) sites in Fe-B alloy models. (a) "Top view" shows staggered
pentagonal rings and central line of atoms. (b) Same unit rotated 90' about the x axis show the planarity of the rings.
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placed so that it touches the four original atoms
and none other. The diameter of the sphere which
fits in the hole is used as a measure of the hole
size (units of metal atom diameters). This pro-
cedure will occasionally define overlapping small-
sphere locations in a particular region, and i6.
such cases the largest small sphere is counted
and any it overlaps are discarded.

Figure 7 presents the hole-size distribution
histograms of the Fe-B alloy series while Fig. 8
has the same information for alloys of Pd8pSi2p
and PdspGe2p ~ The hole size is characterized by
the diameter of an inscribed sphere in units such
that the diameter of the transition metal atom is
1.0. The first peak is due to the smaller holes
formed by polyhedra of metal sites as vertices
but which are not big enough to enclose a metal-

loid. These holes exist in the original binary
models before the metalloids are removed. The
second peak exhibits the range of sizes of holes
occupied by metalloid in the original models. The
variation of hole-size distribution with changes
in composition is illustrated in Fig. 7. The sizes
of the holes occupied by metalloid atoms are more
sharply peaked about the average size at the 80/
20 composition than they are for the compositions
at which the glass state is harder to form. This
is consistent with sharpening of the distributions
shown in Figs. 1 and 2 as discussed in Sec. II.
As the size of the metalloid increases relative
to the metal, e.g. , Pd-Si and Pd-Ge shown in
Fig. 6. , the size of the hole increases accordingly
and is seen as a shifting of the second peak to the
right. The shape of the second peak in the dis-
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FIG. 7. Calculated hole-size distributions in Fe-B
alloy models. Inscribed sphere is measured in units
of Fe atom diameters. The metalloids were removed
before analysis, thus the second peak is the distribu-
tion of holes which are large enough to contain boron
atoms.
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FIG. 8. Calculated hole-size distributions for Pd-
based glass models. Note the large hole size for the
metalloid as compared to B in Fig. 7. Also note the
shoulder on the right of the first peak as discussed in
the text.
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tribution is seen to be sharper in the case of
Pd-Ge where the metalloid is only 10% smaller
than the metal. There is also a shoulder on the
first peak of the distributions for the Pd glass
models.

The shoulder is possibly a. very interesting
piece of data. It indicates two types of holes
formed by metal-atom vertices and these two

types could be associated with the double-poten-
tial-well concept used to explain a minimum in
the temperature dependence of resistivity' in
metallic glass alloys. This point will be the sub-

ject of further investigation, but it is also inter-
esting to note that the first peak of the distribu-
tions for the Fe-B alloys is broader on the right
side. It is known that the resistivity minimum
begins to di.sappear as metalhdd content is re-
duced, ' and the sharpening of the first peak in
the hole-size distribution in Fe-B alloys with de-
creasing amounts of boron correlates with this
if the speculative association is correct.

V. MODEL DENSITY

The density of crystalline materials is very
easy to calculate, ' one can readily determine the
number and kind of atoms in a unit cell as well
as the volume of that cell. The analog of the
unit cell for noncrystalline materials is the
Voronoi polyhedron. Each site is surrounded by
a polyhedron of a specific kind and size so that
the polyhedra of all sites pack together to fill
space with no overlap or voids. The polyhedron
is formed by the planes which perpendicularly
bisect the vectors to all the near neighbors of a
given site. Thus each Voronoi polyhedron con-
tains exactly one atom, information which, with
the volume, permits an exact calculation of den-
sity at a specific site. The density of the mater-
ial can then be calculated from suitable averages
of the local densities at the various type sites.

The procedures for performing a Voronoi poly-
hedral analysis are straightforward but complex
Finney has developed computer programs to
carry out the necessary calculations and has ap-
plied them to some of the models currently
being discussed, specifically the Pd-Si series
with 18, 20, 22, and 25 at. % Si, respectively.
These model structures are expected to serve as
well for the Fe-P series of glass alloys. '

As a starting point, the density of the alloy
Fe»P» was determined from the polyhedral an-
alysis on the model of that glass. This choice
was made because the densities are experimen-
tally weQ known and because the Fe-Fe spacing
is expected to be nearly the same as it is in the
crystalline material Fe3P which is also known.
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FIG. 9. Density of transition metal-metaIloid glass
alloys. Calculated values are given, for Pd-Bi by the
hexagons and for Fe-P alloys by the triangles. The
scale on the right is for Pd-based alloys.

The metal-metal spacing is required to determine
the scaling of theoretical results to physical dim-
ensions. Using 0.272 nm for the average Fe-Fe
separation, we calculate 6.84 g/cm' as the den-
sity of the glass which is in respectable agree-
ment with the measured value of 6.9 (see Fig. 9).
Considering the model of the alloy Fe80P20, we

find a density of 6.52 if the scaling factor is un-

changed and this is in very poor agreement with

experiment (point shown as inverted triangle in
Fig. 9). However, a 3% shortening of the Fe-Fe
spacing to 0.264 nm results in a calculated value
of 7.1 g/cm . This change of spacing with com-
position was observed by Logan' for the Fe-P
system and is numerically in accord with his
measurements. The decrease in Fe atom size
is consistent with a decreased amount of charge
transfer from metalloid to metal as the metalloid
content is reduced. However, the picture is not
as simple as this. If one uses the spacings at the
two compositions above to determine a linear var-
iation of spacing with composition, and then cal-
culates the densities at two other points (18 and
22 at. % P), the values of density are too high

by 4%. The density is extraordinarily sensitive
to changes in scaling since it has a cubic depen-
dence on scale factor. Thus a. good bit more de-
tail is needed before we can resolve theory and
experiment on this point.

The composition variation of density has not
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previously been reported for the Pd-Si system,
but two measured values (in toluene at 22.5'C)
are given in Fig. 8. To calculate density from
the models, the Pd-Pd spacing is taken from
Suzuki et al. ' as 0.290 nm. This results in a
value of 9.88 g/cm' compared to the measured
value of 9.98. Fukunaga et gl. ' report a "slight"
shortening of the Pd-Pd spacing as metalloid is
removed but do not quantify the amount. lf we
use the 3% found for Fe-Fe spacing reduction in
Fe-P, the density at Pd80Si20 is calculated to be
10.4 g/cm' compared to a measured value of
10.63. Considering the lack of detailed under-

standing of the variation of metal-metal spacing
with composition, one has to consider the cal-
culated values of glass density to be in excellent
agreement with measured values.
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