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Theory of the temperature dependence of the direct gap of germanium

P. B.Allen* and M. Cardona

{Received 14 July 1980j

A complete pseudopotential calculation of the temperature dependence of the I', . conduction-band and the I'».
valence-band states is performed. The calculation uses the lattice dynamics of Weber's bond-charge model and a
local pseudopotential with a basis of 59 plane waves. Debye-Wailer (DWj terms and also self-energy terms are
included. While the DW terms alone are only slightly larger than experimental results, the addition of the self-

energy correction results in a total shift of the gap with increasing temperature which is nearly three times as large
as that observed. These results are compared with calculations and experiments for the second-order Raman
scattering of c-Ge. We conclude that the pseudopotential-rigid-ion calculation overestimates the electron-2-TA-
phonon coupling while it underestimates the coupling of the electrons with two TO phonons. The self-energy effects

are particularly large for optical phonons connecting the I ». with the L,. valence bands.

I. INTRODUCTION

Semiconductors exhibit large shifts of the fund-
amental absorption edge with temperature, ' either
to the red (germanium-zinc blende') or the blue
[PbS, PbSe, PbTe (Ref. 2)]. Part of these shifts
are due to thermal expansion and the concomitant
changes in the band structure with volume. This
effect, however, usually only accounts for a frac-
tion (-,

' to —,') of the observed shift. The remaining
temperature effect is to be attributed to an explicit
electron-phonon interaction,
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perature dependence of the band structure by using
pseudopotential form factors w'eakened by a Debye-
Waller (DW) term. The feeling was expressed
that this theory and the Fan theory were in some
sense equivalent, a feeling which to the present
date has permeated a great deal of the literature
on the subject. In a widely divulged but unpub-
lished report, Brooks and Yu' showed that the D%
terms stem from the second-order electron-pho-
non interaction to all orders while the Fan terms
are the first-order interaction taken in second-
order perturbation theory. They concluded, how-
ever, that the Fan terms are much smaller than
the DW ones, and thus can be neglected, a con-
clusion which has more recently been realized to
be erroneous. ' "Nevertheless, reasonable agree-

where & is the volume thermal-expansion coef-
ficient. The first term in the right-hand side of
Eq. (I) represents the "explicit" effect of the elec-
tron-phonon interaction while the second term
contains the "implicit" term of the thermal ex-
pansion. The latter can be obtained either ex-
perimentally (from the pressure dependence of
E~ ) or theoretically (by calculating the band struc-
ture as a function of lattice constant). In either
case it does not pose any serious conceptual prob-
lems.

The theory of the explicit effect of the electron-
phonon interaction has attracted the attention of
several workers since 1951, when Fan' presented
a calculation of the electron self-energy due to
phonons [first-order electron-phonon interaction
0",p' in second-order perturbation theory, Fig.
l(a)] within a simple model (Debye phonons, para-
bolic bands). This model yields a decrease of the
lowest gap with increasing T, in agreement with
experiments for Ge-type materials but not for PbS.

In 1955, Antoncik4 suggested calculating the tem-
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FIG. 1. Self-energy graphs corresponding to Eq. (2).
Graph (a) is the 'Fan theory and corresponds to the se-
cond term of Eq. (2). Graph (b) is the lowest-order
Debye-Wailer correction and corresponds to the first
term of Eq. (2). Graph (c) shows some higher-order
Debye-Wailer terms.
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ment with experiment has been obtained in many
cases by evaluating only the DW terms. '"'"

In this paper we perform a complete pseudopo-
tential calculation of the DW and self-energy con-
tributions to the temperature dependence of the
I"» valence and the I;. conduction bands of ger-
manium. Our main assumption is a local pseudo-
potential, 59 plane waves, and the rigid-ion mo-
del. W'e evaluate explicitly the contribution of
each phonon and each intermediate state to the
self-energy. The DW contribution for a given
band state is independent of the pair of phonons
under consideration. The results obtained are
listed separately for high-symmetry intermediate
states in order to illustrate the origin of the dom-
i.nant contributions.

The total tempex'ature dependence of the Eo gap

(I;.-I'»I) of germanium so calculated is two to
three times higher than the experimental one, the
relative discrepancy being larger at low tempera-
tures. The DW' term alone agrees better with the
expex'iIQeQt although it ls also larger. These x'e-
sults indicate that the theory overestimates the
total electron-two-phonon interaction for TA pho-
nons while underestimating it for TO phonons.

II. GENERAL FORMULAS

Consider a crystal with atoms of spec1es K which
occupy sites R(f&) and have displaeements u{I)& )
from the equilibrium, where T labels the unit
cells. To second order in u, the change in energy
of an electronic state gn of unperturbed energy m~
18'

~Z@ = g —,'(ksla'V/BR„(f~)BR, (f'~')Ign&
l. it:,1'K '

where SV/BR (f)&} is the change in the self-consistent electron-lattice potential per unit displacement of
the atom Tx in the c& direction. The subscripts &&', p, . . . denote Cartesian components which are summed
when repeated. The first term of (2) arises from the second-order electron-phonon interaction taken in
first-order perturbation theory while the second is the first-ox'der interaction in second-order perturba-
tion theory. The displacements u are approximated as time independent. Later a thermal average will be
taken over the ensemble of thermal displacements.

The condition of translational invariance' requires that if every atom is further displaced by a fixed
amount, u, the energy does Qot change:

/&)E&„((u„(f)&) + u„)) = nE„„{fu„(f/&))).

This relation is valid for arbitrary small displacements ~„(T' x'), in particular, take u „{1'tc') =u 5„„.&if &„,~
(i.e., only one atom moves). Then Eqs. (2) and (3) impose the following relation between matrix elements
of BVand 8't/'

5 Is'V/». 0'~)sR t ')I& & + 2 &&slav/sR„(T~)I&'s'&&&'s'I'V/BRB(('~')l&~&

ger I n CP&'

g &&~ I ev/8R dP~') I le s'&&Ps'
I 8&'/8&) &&» ) I &~&}.

gl ~P +Pl

This sum rule is valid for arbitrary ap, Ti&, and
guarantees that {2)vanishes as Q 0 if M„(l/&) re-
presents a long-wavelength acoustic phonon as
was argued by Zeyher" and in Ref. 7. Thus (4) is
a version of the "acoustic sum rule. " Using (4),
Eq. (2) can be rewritten in a form which explicitly
exhibits translational invariance,

~Z~ = g ( j[u„(T~)u,{j'x') ,'~„(j&&)ug-l-)& )
'fK, fIK'I

——'u (I'/&')u (f'/&')]

where the term ( ) is the same in (2) and in (5).

The operators BV/sR„and s'V/(BR~8) must in
principle be calculated self-consistently by work-
ing out the charge redistribution which accompan-
ies an atomic displacement. In practice this cal-
culation is frequently avoided, i.e., a guess or a
"cookbook" prescription is used. Almost all such
guesses are versions of the "rigid-ion approxima-
tion" which assumes that BV/BR„and O'V/(BR„BR 8)
are derivatives of an atomic potential. Ball" has
shown that insofar as this is true, the atomic po-
tentials sum to give the potential which determines
t eband str cture,
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V(r) = g V„(r-R(4 )) . (6)
1K

If this model is used, it is clear that -O'V/[QR (I «)
XGR8(l' «')] vanishes except for the term T = T', «

How'ever, this term is omitted from the sum
in Eq. (5) because the last factor vanishes.

Then Eq. (4} can be Fourier transformed and a

thermal average performed, giving

4&(,„(T)-=&&&& &
= Q sE&„/&%(o, (%%QJ + 2),

QS

(7)

where nQ~ is the Bose-Einstein occupation factor
(es"0& —1) ' for the phonon mode gj of energy
(so~ . The coefficient BE(„~&is

z I P &&%%
1
sv/8R~(«) I&+ &'& & &+ &'lsvPRa(«')I &%%&

N «X~ —«%+Qn '

(%))l())((()(„(((&1%))'&(%)('l()vPR((((('&1%))&) (().(, -, , )

xK j(f&i„M„,&o&&)-'~'c„( Qj, «-)ez(Qj, «'). (8)

e (-Qj, «)e„(Qj', x ) = 5jft,

Qe„(-Qj, «)e(&(@, «') = 5„~6„„..

Bloch's theorem has been invoked in the form

(10}

g &%'n'I e'o" a V/sR (I «)I kn&

=N6-„, -„,O&lt+ Q, n'l SV/BR. («) l ks&, (11)

where R„(«) means R~(fx ) for the cell at the ori-
gin T = 0. The factor of N in (ll} comes from the
T summation. We prefer to absorb this factor N

into the wave functions so that in Eq. (8), elec-
tronic wave functions are normalized to 1 in a
unit cell instead of in the whole crystal.

The perturbative formulas (7) and (8) can be
directly related to the more conventional equations
from diagrammatic perturbation theory. ' The rel-
evant diagrams are shown in Fig. 1. The first is
the "usual" self-energy diagram, first evaluated
by Fan. ' The corresponding self-energy E„$%%,&)
differs from our theory in having «g„replaced by

Qg + ig in the energy denominator, and nQg + g

replaced by a more complicated set of Fermi and
Bose functions. These differences arise because
the diagrammatic method correctly accounts for

In deriving this result, - several conventions have
been introduced. The lattice displacement is re-
presented as

u„(f«) = p (hf8lf„N&uz~)' 'e„(Qj, «)e'o'""~& yo, ,

(8)
wherel„ is the mass of the wth atom located in
the unit cell at position 7„, N is the number of
unit cells in the crystal, and Qo& is written in
raising and lowering operators as +o&

= ao& + a Q J .
The polarization vectors c„(Qj, «} obey the ortho-
normality and completeness relations

I

the time dependence of the phonon amplitude. How-
ever, in semiconductors (or in metals except at
low temperatures and at the Fermi level} the pho-
non frequency can be ignored in the denominator,
and the position of the real part of the pole of the
Green's function is given accurately by the re-
placement ++ig -«&„. If this is done, diagram
(a) gives exactly the first term of Eq. (8). The
diagram (b) is the first term in the Taylor ex-
pansion of the Debye-Wailer series (which was
first discussed by Antoncik'). When this graph is
evaluated, it gives exactly the second term of
Eq. (8}with no approximations requir ed In .the
next section these two parts of Eq. (8}will be dis-
cussed separately and labeled as the "self-energy"
(SE) and "Debye-Wailer" (DW) parts.

III. DIAMOND STRUCTURE

The starting equation (2) is exact to second or-
der in the phonon amplitudes, and the final result
(7) uses only the rigid-ion approximation. Other-
wise, Eq. (7} is valid for all cases and crystal
structures. In this section, the general result is
applied to the diamond structure and for the case
where V(r —R(f«}) is given by a local pseudopoten-
tial. The origin is taken midway between the
atoms so that their coordinates are 7 = 7, = —7,
= (1, 1, 1)a/8. Because of inversion symmetry and
time-reversal invariance, " the polarization vec-
tors satisfy

e(Qj, 1}= e(Qj, 2}+. (12)

It is convenient" to make a unitary transformation
to real variables

~(Qj, +) = [~(Qj, 1)+ ~(Qj, 2)]/I&,

~(Qj, -) = [~(Qi, 1) ~(Qj, 2)]/~2%—

The magnitudes of e(Qj, +)' and e(Qj, -)' give the
fraction of the mode Qj which is "acoustic" and
"optic, " respectively.
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The electronic wave functions are eigenvectors
of the secular equation

0 =g ([(%+6)'-~„)6-,;,+ V(6-C')S(6-C )}c-„„(6'},
Gt

g-r/$ g~ (6)ei()r+G) ~ r (14)
G

get;„(6)' = 1,

where 0, is the volume of the unit cell, V(G -G')
is the local pseudopotential form factor [or Fourier
transform of the local pseudopotential V(r) norm-
alized to the atomic volume], and S (6}is the
structure factor cos(G ~) The coefficients c-„„(G)
can be (and are} chosen to be real.

Using these conventions, the matrix elements
appearing in E(l. (8) are easily worked out:

(k+Q, n')sV/BR&(K')( kn) = ie -Q' '" [I'$$nn'Q) + ( —1) r'8$$nn'Q)],

I'$$nn'Q) =—Q c), Q „.(6')c),„(G)(G' -6+ Q)SV(G' -6+ Q) cos[(6' —G) 7].
GG'

The vector 8 is identical to I" except that the cosine is replaced by the sine of the same argument. Finally
the coefficient of E(l. (8) can be written

BE(( /8 sQj (BE)( /brrQ j)$$ + (SE)r /8BQ ' )D'()i

, ~ [I'$nn'Q) u(Qj+ )+ 0(%nn'Q) u(Qj —)]'
kn nQj SE

&%&-&k+Q~~

, ~ [I'$nn'0) .u(Qj + )]'+ [I'$nrr'0) ~ u(Qj -)]'
sE) n srroj Dw=

&I n &%n'

u(Qj a) —= (h/M(uoj)'+ g(Qja) .

These equations are now in a form convenient for
numerical calculations. The coefficient BE&„/snQj
has been expressed as the sum of two parts, la-
beled SE and D%.

IV. NUMERICAL PROCEDURE

Our aim is to evaluate the T-dependent energy
shift [E(l. (7)] for the electron states at the funda-
mental gap (Eogap) at k = 0 in Ge, i.e., for the I",'
conduction band and the I'» valence band. The
choice of %. = 0 simplifies the task because the co-
efficient GEO„/Bno j then has full cubic symmetry;
the sum over the Brillouin zone in (7} can be re-
stricted to 4~$th. We rewrite E(l. (7) as

an,„(r)=f dnr*r()n, n)[(e'" —)) '+-'. ),
0 (17}

'g(F%e, 0) —= g (BE),„/Snoj) t)(Q —(doj ), (18)
QS

where g'F is an electron-phonon spectral function
reminiscent of the function c($E(Q) in superconduc-
tivity. Both g'E and i)i'E are dimensionless (if 0
and e),„are measured in the same units) densities
of phonon states weighed by squared electron-pho-
non matrix elements. The difference is that in
superconductivity only intermediate states around
the initial energy (i.e., the Fermi energy) are con-
sidered, whereas here all intermediate states are
included, weighted by their energy denominators.

(16)

I

We find that 89 Q points in the irreducible «th of
the Brillouin zone are sufficient to give g'E to
quite good accuracy by using the tetrahedron
method" including linear interpolation of the
weights BE-„„/snoj as well as the fre(luencies ~&j .

The difficult part is the calculation of the weights
BEn„/Bnoj We have used a "rigid-pseudoion"
model, consisting of attaching to each atom a loc-
al pseudopotential V(r), which moves rigidly with
the atom. The matrix elements(a~sV/Sr~5) are
calculated using pseudo-wave-functions derived
from the same pseudopotential whose derivative
appears in the middle. The wave functions and
energies depend only on V(6}, the pseudopotential
Fourier transform at reciprocal-lattice vectors.
These values we take from Cohen and Bergstres-
ser." The matrix elements depend also on V(Q
+ 6), which we "derive" from V(G} by smooth in-
terpolation as indicated in Fig. 2. Also shown for
comparison is the Heine-Abarenkov-Animalu
"model potential" on the Fermi surface from
Harrison's book. " Ne have used Harrison's val-
ues as a general guide in drawing our own curve.
In particular, we have used the same value at
@=0, —(—', )e~, where ez isthecorresponding "free-
electron" Fermi energy, although this is not rig-
orous. All we can say with certainty is that the
"rigorous" value, Q e '(g, @+G}V „,(g+ G},
tends to a constant as Q-0 because of charge
neutrality and the acoustic sum rule. " The val-
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0.)— Q/2kF

V)
c9~ -0.2
UJ
Cl
C)

-0.I

-0.6-

FIG. 2. The local pseudopotential V(q) for Ge used in our calculations is interpolated through the empirical Cohen-
Bergstresser values (Ref. 17) and follows roughly the Heine-Abarenkov-Animalu model potential (Ref. 18).

ue —(—,)er is obtained using free-electron theory
for e ' rather than band theory; use of the latter
would exceed our computing capacity.

Having shamelessly abandoned rigor, it must be
admitted that the aim of the present calculation is
to make a reasonable model, satisfying all the
sum rules, to study the sources of T dependence
of ~g„ in microscopic detail. However, in the
final numerical answer a significant quantitative
uncertainty must be assigned to the ad hoc nature
of the model.

%'e have taken some care to ensure that the
"rigid-pseudoion" model is the only significant
source of uncertainty. The phonon frequencies
and eigenvectors are derived from experiment via
the excellent bond-charge-model parametrization
of Weber. ' The electronic energies and wave
functions are derived by solving a 59&59 secular
equation [Eq. (14)]. When a 15&&15 secular equa-
tion is used, "the results are qualitatively similar
but differ quantitatively by s20+. Three quanti-
tative tests of the method were made, as described
below.

(a) Translational invariance In the d.eriva-
tion of Sec. II, the condition of translational in-
variance, Eq. (4), has been used to eliminate
O'V in favor of VV in the final formulas. It is not
necessary to do this. The matrix element of V'V
is in fact easier to evaluate directly than by use
of Eq. (4). The risk is that if either V'V or vV
is inaccurate, then translational invariance will
fail and BZ-„„/sno, will not vanish as Q- 0 for
acoustic branches. Our programs use Eqs. (16),
that is, O'V is not evaluated directly. However,
we have verified that we obtain exactly (i.e., to
better than four figures) the same answer by the

Z (I;, , u) = E(I;,, 0) + D, u', (19)

whereas the degenerate F». conduction-band state
has its degeneracy lifted in first order. This is
conveniently described by writing down the per-
turbation matrix for the 1"» manifold. We choose
basis functions ~1), ~2), and )3), which trans-
form as ys, zx, and xy, respectively. Then group
theory yields the following form to second order
in the phonon displacement u:

direct evaluation. At first the exactness surprised
us —we had anticipated a small error arising from
the truncation at 59 plane waves. However, in ret-
rospect it is clear that it is a unique property of
plane waves to maintain translational invariance
even in a truncated basis set. This is because
plane waves are only changed by a phase when they
are translated. Thus plane waves give equally
good wave functions for a crystal before and after
a translation, whereas tight-binding functions (for
example) are tied to the original lattice sites and

give a poor representation for the displaced lat-
tice unless an infinite number of functions is used
as a basis." The fact that our calculation obeys
the sum rule exactly is therefore only a good indi-
cation of no programming errors.

(b) Optic deformation potentials. The condi-
tion of translational invariance guarantees that
eE&„/sno, . vanishes as Q-0 for j =an acoustic
branch. When j is an optic branch, there is a sep-
arate test —we can calculate the shift directly by
band theory with a "frozen-in" optic model defor-
mation. The results are shown in Fig. 3. The
nondegenerate k = 0 conduction band (I'2i) has only
a shift to second order (as required by symmetry)
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'D, u'+ D, (Su„'-u'}

H ~ = d25i u~ +D~u„uq

d25g u„+D u u

d25iug + D, +„u„d25I uy + D, u„u,

D, u' + D, (3u', —u') d»i u, + D, u„u,

d», u„+D, u„u, D, u'+ D, (Su,' —u)
(20)

We made calculations for a distortion u, = -u,
= (0, 0, u}. Following Eq. (19}, this splits the I;,,
levels according to

~ d» u
~

+ (D, Dq }—u2,

Z(l„,, u) = (D, + 2~)u',
—

i d25 ui + (D -Dq)u

(21)
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FIG. 3. The Eo gap of Ge calculated as a function of
optic-mode distortion amplitude. The atoms have been
displaced by u& =-u2= (0,0, u). From these curves,
first- and second-order deformation potentials are de-
rived.

By analysis of Fig. 3, we find D, i = —2.7 eV/A',
d», = 11.7 eV/A, D, = 7.9 eV/A', and D, = 4.1 eV/
A'. The perturbative approach of Eq. (2} can also
be used to calculate the second-order coefficients
D, and we have been able to extract D,i and D, di-
rectly from our computer codes for Eg„(T). The
two methods agree to 1%, the accuracy being lim-
ited by the numerical differentiation of the nonper-
turbative results. This gives a second check on
the internal consistency of our procedures.

It is possible to derive many of these results in
a simple way. First we use the perturbative com-
puter results to split D, and D,i into Debye-Wailer
and self-energy components. These are

D = 6.7 eV/A' D" = 1.3 eV/A',

LFY = —0.75 eV/A', D,"= —1.95 eV/A'.

d, = (a, /v 3)d„=38 eV,

D,(l"„)= ,D, a,'=200 e—V,

D, (I', ) = D, ao = —65 —eV.

(23)

The coefficient d» governs the strength of res-
onant first-order Haman scattering, as will be
described in a subsequent paper. Its magnitude
agrees r'easonably with others found in the litera-
ture for Ge and other zinc-blende-type materi-
als. ' Potz and Yogi have also performed thj. s
type of analysis for Ge and a variety of other
semiconductors using a tight-binding approach.
They found approximate consistency between tight-
binding and pseudopotential methods. Their pseu-
dopotential value of d, agrees well with ours. Also
they have pointed out that the spin-orbit interac-
tion, ignored in our work, has a drastic effect on
the Q = 0 optic-mode coupling, namely, that the
linear splitting of Eq. (20) is reduced by a factor
v 3 (because one of the states is split off by 0.3 eV)
but the quadratic shifts are greatly enhanced (by
amounts of order

~ d» ~

'/b, - 500 eV/A'), because
the off-diagonal linear terms d» u, cause the spin-
orbit split bands to mix and repel in energy. " At
first it might seem that our results ignoring the
spin-orbit interaction would therefore be mean-
ingless. However, for wave vectors Q larger than
about —,', th of the Brillouin-zone boundary, the
energy denominators cT,„-e-„~„will be sufficiently
larger than ~ so that the spin-orbit effect can be
safely ignored.

We point out again that the D so obtained are in-
dependent of the pair of phonons under consider-
ation. The coefficient D, contains only self-energy
contributions. Using the method of Ref. 23 it is
possible to write analytic expressions for the coe-
fficients of Eq. (20). For d» and 1P~ we find in a
15-plane-wave model

d„,= ——[p'(V, —V„)+ yp v 2(V, —V„)],4'.

0 (22)
2 2

Dn = —[4p'V, + pyv2 (-SV,+ 11V»)],
0

where p =0.83 and y=0.55. Equations (22) with the
pseudopotential form factors of Fig. 2 yield d»
= 10.5 eV/A and D, = 5.2 eV/A', in reasonable
agreement with the numbers given above. The
deformation potentials d, and D, are usually found
in the literature" "instead of the ones given
above. They are defined as" "
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(c) Debye W-aller effect. There is another sensi-
tive check of our numerical procedure, namely,
by direct calculation of the Debye-%aller effect.
In other words, in the secular equation (14) the
pseudopotential form factor V(5) can be replaced
by

V(G)exp( —G'@')/2), (24)

where (u') is the mean-square thermal vibrational
amplitude. Equation (24) includes not only the
second-order terms of Fig. 1(b) but also all high-
er-order terms of the form shown in Fig. 1(c).
The resulting eigenvalues E~„(T) should be com-
pared with the results from Eqs. (7) and (17) using
only the second-order Debye-Wailer part of BZ„- /
8eoi from Eq. (16) in Eq. (17). This comparison
is made in Fig. 4. At low temperatures the dif-
ferent procedures agree to about leuc, whereas by
500 K there are discrepancies of 18%%uc in the con-
duction band and 4%%uo in the valence band. These

1.2 z10

0.8
cf

eu 04
A

V

0
100 200 300 400 500

0- conduction- band shift

-10

&+200

E

UJ

+$00

I

300
I

400 500
I

100
I0 200

T(K)
FIG. 4. Temperature dependence of mean-square dis-

placement (u } normalized to the lattice constant a (so-
lid line) as compared with experimental x-ray data
lB. W. Batterman and D. B.Chipman, Phys. Rev. 127,
690 (1962)j. Also, temperature dependence of the Debye-
Waller part of the temperature shift of the k= 0 valence
(~2& ) and conduction (~2 ) bands. The solid curve is the
calculation by perturbation theory to order {u/a) using
Eqs. (16), and the dashed curve is obtained by solving
exactly the secular equation including Debye-Wailer
factors [pseudopotentials of Eq. (24)j. Notice that the
energy scale for the valence band differs by a factor 5
from that for the conduction band. At 500 K, the gap has
narrowed from 1.33 to 1.08 ev (including only Debye-
Waller corrections).

discrepancies reflect the influence of corrections
of higher order inn/a [Fig. 1(c)]. These results
demonstrate both the correctness of the perturba-
tive treatment and the low "noise" level in the
calculation arising from finite mesh size and simi-
lar sources. As a further check we have added to
Fig. 4 our calculated average vibrational ampli-
tudes compared with x-ray determinations. "

There remains a significant numerical problem
in summing the self-energy terms (BE/Bnd&)~z of
Eq. (15) over the Brillouin zone to evaluate Eq.
(17), especially since the energy denominators
occasionally vanish. An advantage of confining
our calculation to electronic states at k = 0 is that
for the valence band there are no small denomina-
tors except the intraband terms, as Q goes to
zero. Acoustic phonons create no problem here;
the matrix elements in the numerator approach
zero at the same rate. The Q=0 optic pho-
nons have I'„symmetry which means there is
no allowed matrix element in the conduction band
at k = 0 (I'„) as Q goes to zero, but there is one
for the valence band. 'Thus an integral of the type
go@ '6(&u —&u, „) is encountered for the valence
band. The Q

' divergence cancels against the
Q'dQ phase-space factor, which means that with
a fine enough mesh the integral will converge. Our
89-point mesh is coarse in this respect, and
therefore special care is needed. The problem
is more severe in the conduction band because the
k= 0 (I', ,) state is degenerate with a constant ener-
gy surface near the Brillouin-zone boundary. In
this case the integral is of the type J dQ(Q -Q, ) '
and gives a finite answer when the principal part
is correctly taken. However, numerical integra-
tion schemes using meshes not specially adapted
to this surface will not converge properly, no
matter how fine the mesh. Fortunately, we found
that the results for Z„„-(T)did not depend sensi-
tively on this part of phase space, provided ele-
mentary precautions were taken. We tried two
different procedures. First, the 89 mesh points
were examined and two were discovered which
had particularly small energy denominators for
conduction-band states, namely, %= (0.625, 0, 0)
with 4z =+ 0.0006 Ry, and k= (0.875, 0.875, 0) with
~& = —0.0028 Ry. In each case, only one phonon
coupled in a I,.-k transition, and the anomalously
large value of Be&, „/Bn@& was artificially set to
zero. All other denominators exceeded 0.006 Ry
in magnitude. The second procedure was aI orent-
zian broadening of each denominator by 4= 0.01
Ry. In other words, (A&) '=(e~„—c,.„,) ' was re-
placed by &e/[(&e)'+ a']. This corresponds to
giving each electron a complex self-energy with
ImZ = 1/2T = 0.005 Ry. If the Rayleigh-Schr'odinger
perturbation theory used here were replaced by
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FIG. 5. Spectral dependence of the function g2E for
the I'2 lowest conduction band of germanium. Debye-
Waller (dashed) and total (DW+ SE) solid-line effects.

the more realistic Feynman perturbation theory,
each state would be automatically endowed with
a complex self-energy, but the magnitude of ImZ
could vary considerably with kn. The value 0.005
Ry would be fairly normal for states at the Fermi
surface of a metal under electron-phonon scatter-
ing. It is hard to estimate a realistic value for
Ge, but 0.005 Ry is probably an overestimate. The
reason for choosing such a large value was that a
smaller one would not have been effective in
smoothing the noise arising from the finite-mesh
size of our calculation. The final r'esult for e„r(T)
was not sensitive to the prescription used to handle
the integration difficulties.

V. RESULTS AND DISCUSSION

We have evaluated numerically the function
g'E(kn, li) for k= 0 and n either the I', . or the I'».
gap states. 'This function consists, as already
mentioned, of a DW and an SE contribution. The
DW contributions and the total g'E are shown in
Figs. 5-7 for I'... I"„,and the E, gap (I', , -I'„,),

D
I

8 12 16 20 24 28 32 36 40
A (meV)

FIG. 7. Spectral dependence of the function g 5' for
the Eo gap of germanium obtained by subtracting the
curves of Fig. 7 from those of Fig. 6.

100 200
T (K)

300 500 600

respectively. These figures clearly show the can-
cellation of DW and SE contributions as Q-O. By
replacing the results of Fig. 7 into Eg. (17), we
obtain the temperature dependence of Ep shown in
Fig. 8 (both DW term and total =DW+ SE). We
have also plotted in Fig. 8 the experimental data'"
and the result of subtracting from these data the
thermal expansion effect of Eq. (1), using the ex-
pansion coefficient of Ref. 28 and the deformation
potential (SE~/elnV) of Ref. 29. The calculated
total explicit electron-phonon-interaction effect
(DW+SE) is three times larger than the observed
one (experiment minus thermal expansion). The
relative discrepancy, however, decreases with
increasing temperature. We encounter the para-
doxical result that the DW term alone accounts
better for the experimental results than the com-

20
I 25. valence band

-100-

15—

10-
LL

P4
Ol

self-, energy + DW —-200—E

-300-

I I

4 8 12 16 20 24 28 32 36 40
0 (meV)

FIG. 6. Spectral dependence of the function g2I' for
the I'25 valence band of germanium. DW and total
(DW+ SE) effects.

FIG. 8. Temperature dependence of the Eo gap of ger-
manium. Solid lines calculated DW or total (DW+ SE)
contributions. Dashed lines: experimental shift (Ref. 1)
and this shift minus effect of thermal expansion.
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piete DW+SE. 'This, of course, is the reason for
the large number of calculations in the literature
considering only D% terms"'"": they are much
easier and agree better with experiments than the
complete job. The spectral distribution of g'E(A)
has two main sharp peaks associated with the 'TA

(centered at 11 meV) and the TO (centered at 36
meV) phonons at the edge of the zone, respective-
ly. 'They account for the recent success of Mano-
ogian and Leclerc' in fitting the observed tem-
perature dependence of E, in Ge to two oscillators
at 15 and 34 meV, respectively.

The decrease in the discrepancy between theory
and experiment with increasing temperature sug-
gests that the present calculation overestimates
the electron-2TA-phonon interaction while under-
estimating that with 2'TQ phonons. A calculation
of the second-order Haman spectrum by the same
method used here" leads to the same conclusion.
It seems inescapable that the fault lies in our rig.-
id-pseudopotential model. The correct procedure
require, replacing the gradient of the pseudopo-
tential in Eq. (2) by a more complicated quantity

sV(r) „-, , -; sV, (r~)
(25)

where V, is the bare pseudopotential and c-' is a
dielectric function which gives a proper account of
the charge redistribution when an atom moves. If
the pseudopotential were so weak that V equaled
c 'V, and if c "(r,r') depended only on r —r', then
the model used here would be exact. Short of doing
a complete calculation of e ', it is hard to estimate
the accuracy of our model. However, as Ball"
has argued, there can always be a. component of
(25) which is transverse (i.e. , not equal to the
gradient of any scalar field) and thus fundamental-
ly nonrigid. A reasonable hypothesis to explain
qualitatively our discrepancy with experiment is
the following: Assume there is a significant non-
rigid charge redistribution out of bonds which are

TABLE I. Electron-two-phonon deformation potentials
D& (in eV) for the l2 conduction-band states and two
phonons at the Xpoint. The table includes the separate
contributions of the eight lowest X intermediate states
to the self-energy.

TABLE II. Electron-two-phonon deformation poten-
tials Df (in eV) for the I'25. valence states and two pho-
nons at the X point. The table includes the separate con-
tributions of the eight lowest X intexmediate states to
the self-energy.

X-point phonons

Intexmediate
state

Valence
bands

Conduction
bands

Total

Xg

X4
DW
D~(I'2s )

TA LA and LO TO

100
167

-71
161
355

43
255

-120
-30
161
250

12
0

-165
0

161
-20

TABLE lII. Electron-two-phonon deformation poten-
tials D~ (in eV) for the I'& conduction state and two pho-
nons at the L point. The table includes the separate con-
tributions of the eight lowest L intexmediate states to
the self-energy.

L-point phonons

stretched and into bonds which are compressed.
This ought to enhance the scattering from optical
phonons where significant stretching and compres-
sion of bonds occurs. If simultaneously there is a
net weakening of the rigid part of the potential,
this should have the desired effect of weakening
the 'TA coupling and enhancing the TO coupling.

In Sec. IV we gave the deformation potential
D,(1'», ) [Eq. (23)] which represents the interaction
of two optical phonons with the I'». and the l,.
states. In I'ables I-IV we present the corres-
ponding deformation potentials for the two phonons
at X(Tables I and 11), at J, (Tables III and IV), and
at W (Table V). The tables list the total D„ the
Debye-%aller contribution, and the separate con-
tributions to the SE using as intermediate states
the four lowest-energy bands. 'The main contribu-
tion to the SE arises for the LA and LO phonons
with the X, conduction-band state as intermediate
state and for the 'TA and TO phonons with the L~
valence band as intermediate state. 'The reason
for these large contributions is, at least in part,
the small corresponding energy denominators

Intermediate
state

Valence
bands

Conduction
bands

Total

DW

Df(12')

TA
0
0
0

~3
-18
-74

LA and LO
0
0

1810
0

-18
1780

To
0
0
0

-25
-18
-50

X-point phonons Intermediate
state

Valence
bands

Conduction
bands

Total

-16
I2 0
DW -18
D((I'2. )

LA LO
0 0
1 1
0 0

344 341
0 0
2 -2

-18 -18
304 300

TO
0
0
4.4
0

-17
0

-18
-65
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TABLE IV, Electron-two-phonon deformation poten-
tials +g (in eV) for the I'25 conduction states and two
phonons at the L point. The table includes the separate
contributions of the eight lowest L intermediate states
to the self-energy.

I=point phonons

Intermediate
state

Valence
bands

Conduction
bands

Total
DW
D~(I'2s )

TA LA

59 6.3
0 88

645 195
-27 -73
-51 -11

0 0
161 161
723 267

LO TO

5 60
89 0

199 642
-72 -28
-ll -51

0 0
161 161
272 721

(I'„,-L, ,=1.07 eV, I', , -X,= 0.06 eV). The total
contribution to g'E of the LA and LO bands, how-
ever, is small (see Figs. 6 and 6). The large SE
contribution to D,(I'„.) for TA and TO phonons is
the main contributor to the temperature depend-
ence of E,. The total D,(E,) for TA and TO pho-
nons is =720 eV. No independent determination
of these deformation potentials is available for
Ge. For GaAs, however, D,(E,) has been eval-
uated to be 2600 eV from the second-order Raman
spectrum. " For Ge, D, has been determined from
Raman measurements at the E, gap (2.1 eV). It
amounts to 2500 eV for TO and 170 eV for TA
phonons. " Under the assumption that the D, de=
formation potentials are about the same at E, as

TABLE V. Electron-phonon deformation potential D~

(in eV) for the I'2 conduction-band state and the I'2&

valence states and two phonons at the W point. The table
also gives the Debye-Wailer contribution to D~.

W-point phonons

Debye-Wailer
Total
Debye-Wailer
Total

I'2.

D( {I'2i)
~2S'
D~(I'2s )

TA
-18
-65
161
113

LA and LO
-18
-96
161
280

TO
-18
—61
161
102

at E, we conclude that the calculations presented
here (Tables I-IV) overestimate the D, (I'». ) for
TA and underestimate it for TO phonons. This
conclusion corroborates the analysis given above.

Further details of the individual two-phonon de-
formation potentials will be given in a subsequent
paper" on the alteration of phonon frequencies by
doping. The calculated values of Se1„/Sng& will be
plotted versus Q along symmetry lines. Experi-
mental measurement of the effect of doping on TA
and TO phonons would provide independent clari-
fication of the analysis given here.
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