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%e have used a canonical transformation to derive in effective extended Hubbard Hamiltoni-

an with intra-atomic repulsion and Ising-type interatomic exchange interaction in «n effective

external magnetic field from the extended Hubbard model with intra- atomic attraction. The ab-

sence of magnetic ordering in the original Hamiltonian is transformed into the condition of one

quasiparticle per atom. In the strong —intra-atomic —attraction limit„we can further derive from

the transformed Hamiltonian an antiferromagnetic anisotropic Heisenberg Hamiltonian in an

external field and with a given value of magnetization. A phase di &gr ~m of the charge-ordered,

the singlet-superconducting, the mixed, ind the nonordered phase is then obt tined with the

mean-field approximation. e continue to investigate the collective excit actions in the MFA

states. For various special cases our results reduce to the known results or the exact solutions.

I. INTRODUCTION

Much of the investigations of low-dimensional sys-
tems are devoted to the understanding of their low-

temperature behaviors in terms of various phase
transitions which are related to the metal-nonmetal
transition phenomena and the possibility of having
high-temperature superconductivity. The central
theme of such investigations is the role of the effec-
tive intra-atomic electron attraction which ca'n be
derived from the coupling between electrons and in-

tramolecular vibrations or electronic excited states, ' 4

or between electrons in different bands in a chemical
complex. ' Two models have been considered exten-
sively: an extension of the Luttinger or Tomonaga
model has been studied by many authors ' and a
modified Hubbard model by the others. ' ''5 "
While the former is mostly restricted to the quasi-one-
dimensional systems, the latter can be easily general-
ized to the case of three dimensions.

The Hubbard model with attractive intra-atomic in-
teraction (AII), i.e., with U ( 0 has been used by
Anderson, Street and Mott, ' and Adler and Yoffa
to interpret the electrical, magnetic, and optical prop-
erties of amorphous materials. The work has been
extended by Chakraverty et al. ' using a two-site
Hubbard model. Ionova et al. ' and Lubimov et al.
suggest the use of such a model with AII to explain

the alternating-valence ordering observed in some
inorganic compounds with mixed valences. ""For
the half-filled Hubbard model with AII, mean-field
approximation ' and the solution derived from the
functional-integral method"' as well as from the
variational treatment" predict charge-ordered solu-
tions in the large ~ U~ limit. On the other hand,
Brouers has shown the absence of charge ordering
in the framework of the. Hubbard III Green's-
function decoupling scheme.

Very few exact results exist for the Hubbard model
with AII. For the one-dimensional case the exact
ground-state energy has been determined by Shiba'
for one electron per atom n = 1, and by Krivnov and
Ovchinnikov' for arbitrary electron density. It has
also been predicted" " that for n = 1 the magnetic
susceptibility is strongly suppressed by the AII as
compared to the case of U ) 0, and that it tends to
zer'o as T 0. Moreover, Krivnov and Ovchinni-
kov'9 have shown that the single-particle excitation
spectrum has a gap for arbitrary electron density,
contrary to the case of U ) 0, where such gap exists
only for n =1.0

Recently an extended Hubbard model (for both
U & 0 and U ( 0) including the interatomic electron
interactions has also been analyzed for the case of
weakly coupled one-dimensional chains. ' " ' In the
limit of strong AII it has been shown by elementary
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degenerate perturbation theory that the model is

equivalent to a weakly interacting array of anisotrop-
ic Heisenberg spin chains. Therefore, for the case of
half-filled band the electronic correlation functions
for the extended Hubbard model can be derived from
the known corresponding ones of the pseudospin sys-
tem. Based on this equivalence, one obtains the
phase transitions leading to the singlet superconduct-
ing state and the charge-density wave in coupled
chains.

The purpose of the present work is to investigate
the extended Hubbard model with AII and arbitrary
electron density. In Sec. II we wilfi perform a canoni-
cal transformation to derive an equivalent model
Hamiltonian with U & 0 from the extended Hubbard
Hamiltonian with U & 0. This allows us to study the
physical properties of the latter on the basis of the
known results of the former. The rest is devoted to
the limit of strong AII for which the model Hamil-
tonian reduces further to an effective pseudospin
Hamiltonian. We then obtain the phase diagram
within the framework of the mean-field approxima-
tion (MFA) for arbitrary electron density in Sec. III.
The collective excitation will be studied in Sec. IV,
followed by a concluding remark in Sec. V.

tion of pairs of antiparallel spin electrons on the vari-

ous sites. Therefore, the ground state of H exhibits
no magneitc ordering. In this paper, we will restrict
ourselves to the case where the two penetrating sub-
lattices can be defined. Consequently, we will write
down the conditions that the ground state can neither
be ferromagnetic nor antiferromagnetic

(a;) =0.
N

(a')
Xexp(iQ R;) =0

(2.3)

e(7. +Q) = —~(7.), (2.4)

~here

e(7) =—Xexp[iÃ (R; —Rt) jt;,
I —J

where cr; is the u =+, —,z component of the spin
operator a; for an electron at the lattice site R;. Q
satisfies the condition exp(i Q R) = —1 for any trans-
lation R which transforms one sublattice into the oth-
er. For such systems with sublattices, the band ener-
gies satisfy the perfect nesting condition

II. CANONICAL TRANSFORMATION AND EFFECTIVE
PESUDOSPIN HAMILTONIAN

We start from the extended Hubbard model with
intra-atomic attraction

H = X' II c; ct ——, ) U ( X n; n,
I 0'

A. Canonical transformation

Let us perform the canonical transforma-
tlo n16' 18' 4 l ' 42

't'

c;t =exp(iQ R;)b, t, c;t =b;t

c;I = exp( —iQ R;)b;I, c, t
= b;I

(2.5)

+-,' X'W„n,.n, +X(Z, i)n.. . (2.-i)
IJ O'CF

Then the spin operators o-j are transformed to

+ +a.; = (a.; ) =c;tc;I = exp( —iQ R;)p;, (2.6a)
~here c;, cj, and n; are, respectively, the creation,
the destruction, and the number operators associated
to the localized orbital at site i. tJ is the hopping in-

tegral and —
~ U~ is the intra-atomic attraction energy.

The interatomic interaction energy 8'„" is assumed in

this paper to be spin independent for simplicity. The
single-site energy E; may be site dependent, and p, is
the chemicai potential. The primed sum in Eq. (2.1)
excludes terms with i =j.

We consider a system consisting of N, electrons
and N atoms. The electron density

where

+
p; =(p; ) =btbl

p; =
2 (nq+n;l 1)

t
P7j ~ 6j ~bj Iy' o

On the other hand, the charge operators are
transformed to

(2.6b)

(2.6c)

(2.6d)

(2.6e)

n =W, /%= X(n; )/W (2.2) +- +
p; = (p; ) = c;lc, l

= exp(iQ R, ) (2.7a)

has the value between 0 and 2. The first term in the
Hamiltonian Eq. (2.1) is of the Bloch-electron charac-
ter and so will not yield any magnetic ordering. No
magnetic ordering can be introduced by the third and
the fourth terms in H since they are spin indepen-
dent. The second term in Eq. (2.1) favors the forma-

1 —z
p,*= , (n;I+n;l —1—)=rr,

where

+o-; =b;tb;)

a;*= ,
'

(n;I —n;I)—

(2.7b)

(2.7c)

(2.7d)
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Therefore, within a phase factor exp(+i Q K;) the
charge. operators p; in the new representation (the
(b;,b I representation) play the roles of the spin
operators o; in the old representation (the I c, , c; I

representation), and vice versa. It is easy to see that
the operators p;, a. ;", and p; all obey the same com-
mutation rules as the spin operators a.; .

The canonically transformed Hamiltonian of Eq.
(2.1) has the form

B. Phase diagram of Hubbard model
with AII

From Eqs. (2.5) to (2.7d) „we readily obtain

X ((r; ) exp(l Q'K;) = —$ (c;Ic;I ')

l I

H = X' rj.b; bj +
2 I U I g n; n;

+2 $ ~go;*a&'+2 $(E,—p, )a,'

X (cr; ) = —X(c;tc;1)exp( —iQ K;)
I i

X(p;") exp( —iQ K, ) (2.13b)

--,' IUI Xn,.-(i --,'IUI+-,'ZB )W,

where

p, = p+ —IUI —zw

(2.8)

(2.9)

X (o *) exp(iQ K )
I

X (n&t + n&t 1) exp( I Q Kj )
I

Z is the number of nearest neighbors, and 8' is the
nearest-neighbor interaction energy. After the
canonical transformation, Eqs. (2.2) and (2.3) pro-
vide the following auxiliary conditions:

—X (o,') =n —I
l

—X(i7; )=1I

i0'

X(p; )exp(+iQ K, )=0,

(2.10)

(2.11)

Xn; exp(iQ R;) =0 (2.12)

Equations (2.8)—(2.12) show that the extended
Hubbard Hamiltonian Eq. (2.1) of N atoms and W,

electrons with intra-atomic attraction and spin-

independent interatomic H'„" has been transformed
into an extended Hubbard Hamiltonian of one electron

per atom with intra-atomic repulsion and Ising-type in-
teratomic exchange interaction in the effective external
magnetic field (E; —p. ) along the z direction. The
magnetization of the transformed system along the z

direction has a fixed value given by Eq. (2.10). By
the same token that there is no magnetic ordering in

the ground state of the original Hamiltonian Eq.
(2.1), Eqs. (2.11) and (2.12) indicate that there is
neither superconducting nor charge ordering in the
ground state of the transformed Hamiltonian Eq.
(2.8). We should point out that although the original
Hamiltonian has rotational symmetry in spin space,
the canonical transformation Eq. (2.5) does not
preserve such symmetry except for the special case
n = 1, 8 g

= 0, and F.; = Eo = p, .

X(p ) exp(iQ K, ) . (2.14)
I

The quantities at the left-hand side of the above
equations measure the magnetic long-range order
(LRO) in the canonically transformed Hamiltonian
Eq. (2.8), while those at the right-hand side measure
the singlet-superconducting or the charge LRO in the
original Hamiltonian Eq. (2.1). Equations (2. 13a)
and (2.13b) indicate that the magnetic order in the
XY plane, namely, the off-diagonal LRO (ODLRO)
in the transformed Hamiltonian corresponds to the
singlet-superconducting order in the original Hamil-
tonian. From Eq. (2.14) we see that the nonuniform
magnetic order along the z axis, i.e., the diagonal
LRO (DLRO) in the transformed Hamiltionian corre-
sponds to the charge order in the original Hamiltoni-
an. These equivalences are summarized in Table I.
%e should point out the rernarkab)e similarity
between the present situation. and the case of liquid
helium where such equivalence was derived many
years ago. 4 Nevertheless, our further analysis will

show that the thermodynamic properties of these two

cases are different.
Based on the correspondence listed in Table I,

some physical properties of the extended Hubbard
Hamiltonian with AII can be obtained from the
known properties of the transformed Hamiltonian Eq.
.(2.8). Let us first consider the case,n = I „W& ——0,
and F.; =Fo [then from Eq. (2.10) we have

Eo —p, =01 for which Eq. (2.8) turns out to be the
ordinary Hubbard Hamiltonian. Therefore, all the
physical quantities determined by the one-particle
correlation function are independent of the sign of U.
It may not be so for those physical quantities deter-
mined by the two-particle correlation function. For
example, the magnetic susceptibility is evidently
suppressed by the attractive interaction as compared
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TABLE I. Corresponding phases between the Hamiltonians Eqs. (2.1) and
(2.8).

Long-range order (LRO) Magnetic order Type ot' ordered state
Diagonal Off-diagonal in transformed in extended H ubbard model

LRO LRO Hamiltonian Eq. {2.8) with AII Eq. (2.1)

No

Yes

Yes

No

No

Ferromagnetic or
paramagnetic

Antiferromagnetic or
complicated nonuniform

order in z axis
Spin flopped

Intermediate state

Nonordered phase (NO)
Normal metal or phase

of uncorrelated pairs
Charge order (CO)

Singlet superconducting
(SS)

Mixed phase of CO and
SS {M)

to its value for the case of intra-atomic repulsion. ""
It is generally accepted for the ordinary Hubbard

model that the antiferromagnetic order should occur
at low temperature and at the large U limit, at least
for three-dimensional lattices. However, due to, the
rotational symmetry the sublattice magnetization can
point in any direction, Consequently, when trans-
formed back to the Hubbard model with AII, such a
symmetry property makes the singlet-superconducting
(SS) and the charge-ordered (CO) states degenerate
and so both kinds of the LRG can exist with arbitrary
weights. "~' The degeneracy will be removed by the
interatomic interaction 8',j. If 8'& & 0 the antifer-
romagnetic order along the z axis will be stabilized.
On the other hand, if 8',j ( 0, the magnetic order
within the XY plane will be stabilized. So for n =1,

0.15

the case of 8 ~
=0 is jus& the borderline between the

regions of pure SS (for W» ( 0) and pure CO (for
W» & 0) phases.

Recently, the phase, diagram of the ordinary Hub-
bard model with n = j. has been derived by
Economou and co-workers. Via the canonical
transformation, this phase diagram can be mapped
into the one for the Hubbard model with AII as
sho~n in Fig. 1. In the region with LRO we expect
gapless twp-electron excitations from the SS state,
whereas the one-electron excitations from the CO
state have a gap. In the region with short-range or-
der (SRO), the system behaves as a normal resistive
metal with charge unit 2e but with the magnetic sus-
ceptibility strongly suppressed,

The phase diagram for the general case n W 1,
8'& & 0, and E; ~ ED is very difficult to obtain. The
rest of this paper will be devoted to the problem of
large ~ U~ limit, while the situation of weak and inter-
mediate coupling will be discussed in a separate paper.

teWAL mTAL

. METALLIC PHASE
OF UNCORRELATED

PAQS
C. Effective pseudospin Hamiltonian at

the strong-coupling limit

0.05-.

0—
0

FIG. 1. Phase diagram of the half-filled Hubbard model
with intra-atomic attraction. T, and Tz denote the critical
temperatures for the onset of long-range ordering and for
the breaking of ellectronic pairs, respectively. J» = 2t»/J U [ (2.16)

Because of the condition (2.11) that there is just
one quasiparticle per atom, the degenerate perturba-
tion theory can be applied to the Hamiltonian Eq.
(2.8) at the strong-coupling limit

~ U[ && t»
45 To the.

second order in t»/~ U~ we have

H = X' J» ( o.; trt ——) + X'2 W»a; at
ij ij

+2 X (Ei —p, ) (at + —) —, ZWN, (2.15)—
where
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Equation (2.15) had the form of an antiferromagnetic
anisotropic Heisenberg Hamiltonian with a random
external magnetic field. According to Eq. (2.10), the
magnetization of the system along the z axis has a
fixed value —(n —1}.I

2

Using Eq. (2.5), we can rewrite Eq. (2.15) in terms
of the }c;,c, } operators as

H = —X' JJp,
+

p& + X' (J;, + 2 W;, )p pj*.

ij ij

We will formulate the MFA following the Bogo-
liubov variational principle. ' If Ho is the trial Hamil-
tonian, then an upper bound for the exact free ener-
gy is given by

I: «Fo= —inTr}exp( —PH0}}+(H—Ho)0 (34}1

/3

where 8 = 1/kBT and ( ' ' ' ) 0 is the thermal average
with respect to the trial Hamiltonian Ho, Ho can be
chosen as

+ 2 $ (E; —
P ) (P,*+—) — N( J0—+ 2 W0), (2.17) H0= —XA; S; —8 X(2S +1) (3.5)

where S'o=Z8', JO=ZJ, and J is the nearest neigh-
bor Jj. In terms of the same set of operators, Eq,
(2.10) becomes

with the molecular fields A; as variational parameters
to minimize the free energy Fo. After standard cal-
culation, one obtains

—X (p,*) = —, (n —1)1

I

{2.18) A,"=A) =2 XJ,J(sg)0 (3.6a)

Since the operators p; obey the same commutation
rules as the spin operators, a.;, p; can be considered
as pseudospin operators and we called Eq. (2.17) the
effective pseudospin Harniltonian. We should point
out that for E; =0, the pseudospin Hamiltonian is

just the same as the one derived by Emery. '

III. PHASE DIAGRAM

With the pseudospin Hargiltonian defined for arbi-

trary value of the bare electron density n, we proceed
to obtain the phase diagram for the nonrandom case
E; = Eo, using the MFA and the random-phase ap-

proximation (RPA}. Let us change the notation to
use S; instead of p; . Omitting the constant energy
in Eq. (2.17), we can rewrite Eqs. (2. 17) and (2.18}
as

H = X'J; (S"SJ"+S—~S&~) + X'KBS;*S,*.

{3.6b)

~+)~=cos( —,(}~}~—, ) +sin( , 9„}~———,) . (3.7a)

~

—)~
= —sin ( —,

'
0~) ~ —,

'
) +cos( —,

'
ll~) ~

——,
' ), (3.7b)

with the corresponding eigenenergies

E~- = —B + 58+

b, '= (8 —K (S*„)„)'+J,', (S"„),',

(3,8a)

(3.8b)

(3.9)

where
~ —,) and

~

——, ) are the two spin eigenstates,

and K0 = J0+ 2 W0. (S& ) 0 and (S*„)0 satisfy the
equations

r l

A =2 8 —XK;;(S*)
j

t

For a system with two interpenetrating sublattices
labeled by y = A, B it is easy to show that the trial
Hamiltonian H0 of Eq. (3.5) has the eigenfunctions

—8 X (2S,*+1) (3.1) (S~ )0= (J0(S",)0/2A, ) tanhpA i (3.10a)

—$ (S') = —(n —1)1

N I

(3.2)

where Kj = J;, +28;j and the effective magnetic field
8 is

8 = P, —E0 = P, +—
i U i

—W0 —E0
1

2
(3.3)

The Hamiltonian Eq. {3.1) has been extensively stud-
ied in the theory of magnetism' "

~s well as of
liquid helium. " However, in our case, the effec-
tive field B is determined self-consistently through
Eq. (3.2). Therefore, we are essentially dealing with

an antiferromagnet in a temperature-dependent mag-

netic field B. Since the direction of pesudospins in

the XY plane is not specified, it is sufficient to con-
sider the possible magnetic ordering in the XZ plane.

(S~)0= [(8—K0(S* )0)/2A ] tanhpd, . (3.10b)

In the above expression we have y A y'. Equations
(3.10a) and (3.10b) should be solved self-consistently
together with Eq. (3.2) which can be rewritten as

(S~ ) 0+ (SB) 0
= n —1 (3.11)

tant)w = (S~)o/(S~)0

= Jo(SB&0/(8- K0&SB&0},

tanHB (SB)0/(SB ) 0

= J0(sg ) 0/(8 —K0 (SA* )0}

(3.12a)

(3.12b)

0& and 08 are the angles between the magnetiza-
tion and its z component in sublattices A and 8,
respectively. From Eqs. (3.10a) and (3.10b), we have
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In terms of the eigensolutions, the free energy per
lattice site is derived as

Fo 1 ln[2e~ cosh(PA„) ]B

N 2P

1
ln [2e~s cosh (P ha ) ]

+ Jo(SA)0(S ) Ko('8)0(SB')0

D

0

2-

I
I
I

1
I
I
I
I
'I

1
I

CO

I
I
I
I

I
I

I
II

II

/

Using Eqs. (3.12a) and (3.12b), we can rewrite the
free energy as a function of 8& and 8~, and minimize
it with respect to 8& and 8q. Before going further,
we can draw the following conclusions from Table I:
(1) (8~, Hs ) = (0, m) and (8„,Hs ) = (m, 0) are solu-
tions for the CO phase. (2) H„=Ha =0 and
8„=Hs = m are solutions for the NO phase. (3) The
line 8~ =88 excluding the points 8& = 8& =0 and
H„=Ha =m is the solution for the SS phase. (4) The
rest of the 8~8~ plane is the solution of the M phase.

A. Ground-state phase diagram

—(B/2Jp) (COSH' + COSHS + 2) (3.14)

(S"„)0=—,
'

sinH„, (S~)0= —,
'

COSH~, y=A, B, (3.15)

and

—, (COSH' +COSHS) = n —I
1 (3.16)

The minimization of Eg with respect to 8~ and 8~
yields the conditions

2B sinHq = Jp sinHS cosHq + Kp sinH„COSHS, (3.17a)

2B sinHS = JoslnH„cos80 +KpslnHS cosHg . (3.17b)

To simplify the presentation of the phase diagram,
from now on we will retain only the nearest-neighbor
interaction in IV„or J„"". Taking the limit P ~ in

Eqs. (3.10a)—(3.13), one obtains

Eg = (H)o/J0N

= ——sinH~ sinHS + (Kp/4J0) COSH~ COSHS

0

SS

FIG. 2. Ground-state phase diagram of the Hamiltonian
Eq. (2.1). The heavy vertical line is the region of charge-
ordered phase. The SS-M ph ~se boundary is given by

Ep/Jp= [1 + (n —1) ]/[1 —(n —1) ]

The first one is the SS solution with 8g = 8g, and the
energy is

Eg (SS) = ————(Ko/Jo+ I ) (nl —1) (3.19)

The second solution is the M solution with 8& ~ 8~,
and the energy is

E~(M) = —(Kp /Jo —1)' '—(n —(n —I () —Kp/4J0

(3.20)

By comparing Eg(SS) and Eg(M), the phase boun-
dary between the SS and the M phases is determined
and is shown as the solid curve in Fig. 2 together
with the CO ground state indicated by the heavy ver-
tical line.

In Fig. 3 we show the order parameters for
Kp/J0=1. 75: curve A for (S$)p (S„)p, curve B for

If n = I, we have either the CO solution with

(H~, Hs) = (0, ~) or (8„,Hs) = (lr, 0), or the SS solu-
tion with (8&, 8&) = ( —,m, —m). By comparing the
energies of the two phases, we see that the ground
state is CO if Kp ) Jp (or W ) 0) but SS if Kp ( Jo
(or W'(0). For Kp= Jp (or IV=0) the CO and the
SS states as well as the M state with 88=m —8&„
0 & 8& ~ & n, are degenerate.

If n W 1, Eqs. (3.17a) and (3.17b) can be combined
as

(cosHA cosHS ) (Jp + Jp cosHg cosHS

KpsinH& sinHS) =0 . (3.18)

Q.5

0
Q 0.5

In-1I

Together with Eq. (3.16), we obtain two solutions.

FIG. 3. Order parameters for the ground state of Eq.
(2.1). Left scale is for the solid curves and the right scale is
for the dashed cruves. See the text for details.
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(S„*)p —(Ss)p, curve C for (S„")p+ (S$)p, curve D
for cosH&, and curve E for cosH&. The transition
between the SS and the M phases is then of the
second order. %e would like to point out that in
Hartree-Fock approximation the order parameter
(Sa) p

—(Sg ) p is assumed to be zero.

with

M=
2

tanhpJpM
) (3.28)

and a temperature-independent effective field
8 = (ip+ Kp) (S*)p. The continuous transition to the
NO phase occurs at the temperature T(SS) given by

B. Finite temperature phase diagram T (SS)= (I1 —I )Jp/ka In
2 —n

(3.29)

For finite temperature, we have to solve Eqs.
(3.10a)—(3.13) for all the four CO, NO, SS, and M
phases to find out the stable one with minimum free
energy. The mathematical manipulation is straight
forward, so we will only present the final results. For
the NO phase, the free energy per site is

Fp/W = ——ln [ 2ep cosh P [8 ——, ( n —I )Kp] }
1 l

Finally, we will use the Landau expansion to
determine the boundaries between the M phase and
the SS phase, and between the M phase and the CO
phase. The boundary between the M and the SS
phases is determined by

Jp [4M'+ (S")o(/3 Jp 4PJpM —2) ]

=K,[4M'+ ( (S"),'+ 2 (S*),')

with

,
'

(n ——I )'Kp,

8 = In + —(n —1)Kp
I n

2p 2 —n

(3.2 I)

(3.22)

x (Pip —4PJpM' —2)] . (3.30)

The boundary between the M and the CO phases is
obtained from solving the two coupled equations

In [ (n' —ri')/[(2 —n )' —ri'] ]

If we define the order parameter 7)= (S~)p —(Sa)p,
then for the CO phase we have

Fp/N =— ln [ eaacoshP [8——(n —g —I ) Kp] ]
I g )

2 2

2
ln [ e~a coshP [8 ——( n + r) —I ) Kp] )2

= 2Jp[(n —I )'+ (Kp /Jp —I ) r)'] ' '/k„T, (3.31)

nI[(n + ri)(2 —n +g) /(n —g)(2 —n —ri)]

= 2Kpg/ks T . (3.32)

In Fig. 4 we show the phase diagrams for (a)
Kp/Jp = I (or W =0), (b) Kp/Jp = 1.1 (then II' ) 0),

with

——[(n —I )' —rt']Kp (3.23)
0.5

rl = —tanhp[8 ——(n —
71

—I )Kpl
1 )

2 2

——, tanhp [8 ——, ( n + rt —I ) Kp]
) )

n —I = —tanhP[8 ——(n —ri l)Kp]1 )

2 2

(3.24)

0.5-

(a}

+ —, tanhP[8 ——, (n g+—1)Kp] . (3.25)

The phase transition between the NO and the CO
phases is continuous and takes place at the tempera-
ture T(CO) given by

O (b)

T(CO) = I7 (2 I7 )Kp/2k' (3.26)

At the limit ~UI ~, T(CO) agrees with the result
obtained earlier. "

For the SS phase with 8~ = Ha, we have
(Sg)p= (Ss)p (S )p and (Sg)p= (Sa)p= (S )p. If
we define M' = (S")p+ (S*)p, then the free energy
can be expressed as

0.5

0
0 0.5

Irt- Ii

Fp/N = ——ln(eaa coshP JpM ) —JpM'

+(Jp+Kp)(S*)o . (3.27)

FIG. 4. Phase diagram for the Hamiltonian (2.1): (a)
K0/J0=1, (b) K0/J0=1. 1, and (c) KD/J0=2. See the text
for details.
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IV, COLLECTIVE EXCITATIONS

In this section, we will investigate the elementary
excitations, namely, the pseudospin ~aves in the
MFA states. In the superconducting phase such ele-
mentary excitations represent a collective motion of
the electron pairs with zero spin, or in other words, a
transfer of electron pairs to a neighboring site
without unpairing. On the other hand, the elementa-
ry excitations in the charge-ordered phase are of the
type of electron density wave. For simplicity and yet
without losing generality, in our numerical calculation
we will restrict ourselves to the one-dimensional case.

We will use the Green's-function approach formu-
lated in terms of the standard basis operators. ' "
The standard basis operators are defined as

L', = fi a) (i a'f (4.1)

where i labels the position of the site and ~i a) are
the states derived from the MFA given by Eqs.
(3.7a) and (3.7b). The ensemble average
D' = (L' ) measures the probability that the state

and (c) Ko/Jo = 2. For W =0, the SS, the CO, and
the M states are degenerate at ri = 1. For 8' )0 all

four phases appear and the transitions among them
are second order. 'The four critical lines meet at a
multicritical point (MP) corresponding to a tetracriti-
cal point in the 8-T phase diagram of an anisotropic
antiferromagnet. " ' ' With increasing 8', the MP
point moves along the boundary between the SS and
NO phases given by (a). This is due to the fact that
in MFA the transition between the SS and NO
phases is independent of N. The position X as a
function of tt and Ko/Jp is shown in Fig. 2 as the
dashed curve. As the temperature rises, there is only
one transition SS NO for the region below the
dashed curve, but two transitions M CO NO for
the region above the solid curve, while three transi-
tions SS M CO NO for the region between the
dashed and the solid curves.

Finally, we would like to emphasize the important
difference in the thermodynamic behavior between
the ordinary nearest-neighbor anisotropic antifer-
romagnet in an external field and our pseudospin
model where the effective field is induced by the
canonical transformation. For the former, there are
only three phases, namely, the paramagnetic (P), the
antiferromagnetic (AF), and the spin-flopped (SF)
phases. While the transitions AF P and SF P are
second order, the transition AF ~SF is first or-
der. 5' 53 For our pseudospin Hamiltonian, due to the
constraint Eq. (3,11) on the magnetization, the first-
order boundary for AF SF splits into two second-
order boundaries together with the emergence of the
intermediate (M) phase and the tetracritical point.

~i a) is occupied and satisfies the normalization con-
dition P, D' =1, where p is the number of states.

Any operator A can be expressed in terms of L' as

A = X (ia(A ~ia')L' = X A', L' (4.2)

X (S,*) (L', ) =tt —1
I

(4.4)

where

h' =8[2(S') + l jaa aa' (4.5)

M'J, =J(t[(S,+),(St ),+(S, ),(SJ+),]
—2Kt (S;),(SJ ) (4.6)

Within the RPA, the equation of motion for the
double-time retarded Green's function56

G" (t, t )=((L', (t);L', (t')))
= —iO(t —t') ([L' (t), L (t')1) (4.7)aa '

pp

has been derived55 as

(E —E'. +E', )6", , (),E)a aa pp

+O' X M'", (7. )G"~, ( g,E)aa a ave, vppp
kp, v

D', Sgs 8, , (4.8)

where O' = D' —D' andaa a

E' =h' + XM'J
pp (0)Dtp

PJ
(4.9)

The energies of the elementary excitations are tem-
perature dependent via the occupation probability D'.

In the RPA-MFA, we replace the D' by its MFA
value. Such approximation is equivalent to the high-
density expansion method in the zeroth order. ""
The RPA-MFA spectrum properly reduces to the
noninteracting spin-wave energy at low temperatures
and provides a qualitative estimation of the tempera-
ture dependence of the spectrum in the whole range
of temperatures.

In our case where two penetrating sublattices are
assumed, the superscripts in Eqs. (4.7)—(4.9) can be
treated as the sublattice index A and 8. For the su-

. perconducting and the nonordered phases, such sub-
lattice indices can be omitted.

The pseudospin Hamiltonain Eq. (3.1) and the mag-
netization condition Eq. (3.2) can then be written as

Ms ~
L' LJ, , (43)

iaa iJaa PP
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A. Mixed phase

Using Eqs. (3.7a) and (3.7b) with ]la) = ]+)» and ]
—)„, we can easily calculate M'~a„„(X) and then obtain from

Eq. (4.8) two equations
r

E —2kB

0

- a)+

a)+
E+2bB —a&

a& E —2hg 0

E+2hg

1
D+

2n 5 5p
t

~

—5 r5p+

(4.10)

with (PP') = (+—) and (—+), respectively. In the
above equation we have

CI g + =(+)J7+ 2 J7 cosHg cosHsj I . I

——,K-„sinH„sinHa ) D'+ (4.11)

where i = A, B and J-„and K-„are, respectively, the
Fourier transforms of J& and K&. 5& and hB are
given by Eq. (3.9), whereas H„and Hs by Eqs.
(3.12a) and (3.12b). The relationship between the
occupation probability and the ensemble average of
the pseudospin can be readily obtained as

(S~)o = ,
' D'+ sinH, —

(S,') 0 = D'+ cosH, —I
(4.12)

~here i =A, B. We should remind the reader that

(S; )0 must satisfy the condition (Sg ) 0 + ($$}p

= n —I, namely, Eq. (3.11).
From Eqs. (3.7a) —(3.8b) we see that at zero tem-

perature the MFA ground state corresponds to
D~+ =a+ =1 and D" =DB =0. As shown by Eq.
(3.18) that

netization vectors can freely rotate in the XY plane.
+

The two branches of the spectrum E-„are sho~n in

Fig. 5 as the dotted curves for n = l. l and
Ko/Jo= 1.1. From the energies of various phases
given in the last section, it is easy to obtain

K /Jo= [1+(n —I )']/[I (n ——1)']

to determine the boundary between the M and the SS
phases. Dn this boundary we have
cos8& = cosHB = n —l and so 5& = d B = —J0. There-

+
fore, the excitation spectrum E-„becomes doubly de-

generate and gapless with the dispersion relation

(4.15)

The spectrum E-„ is plotted in Fig. 5 as curve Q for

Ko/Jp = 1.I and a = 1.218.
For finite temperatures, the general temperature-

JO + JO cosHA cos~B +0 sin~A sln~B

is the solution for the mixed phase, we conclude
from Eq. (4.11) that a&+ =0 and a& = —J-„. With

this information, the solutions of Eq. (4.10) are ob-
tained as

1.5

+ [ (As —5„)'+ 4hg hs —J& ] '~', (4,13)

where the h„and ha given by Eq. (3.9) can be
rewritten as 0.5

5& = —,JosinH&/sinHa

ka =
2 Jo slnHs/slnHg

(4.14)

with the restriction that sin8& ~ 0 and sinHB A 0.
The lower branch of the excitation spectrum E=„ is

proportional to A. for small A. . It is then gapless and
corresponds to the Goldstone mode. The existence
of this gapless branch is due to the fact that the mag-

0
0

FKJ. 5. Dispersion curves for the elementary excitations
from various MFA states. See the text for details.
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dependent solutions of Eq. (4.10) are obtained as

i ~ a i+ i + i- i ——4~7
(4.16)

where

f ~
=4(h2 —ha~) +4a&+a&+ (5„+5„)2

-«~~ ~~- (~4 —~s)'+ (a~-&~+ -&~+&~- )'

(4.17)
The. temperature dependence of the spectrum is due

to the temperature dependence of the D'& in Eq.
(4.12). With little effort one can check that the
lower branch is gapless, in agreement with the gap-
less branch in the ground state. One can also check
that at the SS-M phase boundary the upper branch
becomes soft.

Since we have (8„,8s) = (0, ir) or (n', 0) for the
charge-ordered phase, Eq. (4.10) is simplified to

E —28 —ECOD~+ 6",', (7.,E)
E —28+KpD4 G», ()i,E)

0
(4.18)

The excitation spectrum can then be solved as

E-„=28 —Kp(n —1)+

+ {Kp2rt'+ [(n —1)'—rt']J& ]'~' . (4.19)

The effective field 8 and the charge-ordering parame-
ter q are determined by the two coupled equations
(3.24) and (3.25). At zero temperature and with
n =1 Eq. (4.19) reduces to the correct form with
double degeneracy E =ED —J&. The spectrum for
K,/J, =1.5 and n =1 is shown in Fig. 5 as the
dashed curve. - For the case of Kp/Jp 1and =n =1,
the spectrum is indistinguishable from the curve Q.

Since q 0 as the boundary between the charge-
ordered and the nonordered phases is approached, on
this boundary we can see with the help of Eqs.
(3.24) —(3.26) that Eq. (4.19) becomes

E= =n(1 —'n) Kpl —n" +(n —1)J- .(4.20)
2 n

[

At the muiticritical point, from Eqs. (3.26) and
(3.29) we derive from the relation T(CO) = T(SS)
that

n (1 — n)K—p ln = (n —1)Jp
1 n
2 2 —n

Equation (4.20) then turns out to be

E-„=(n —1)(Jp+-J-„)

Consequently, the gap of the lower branch of the ex-
citation spectrum gradually diminishes as the mul-
ticritical point is approached along the charge-ordered
and the nonordered phase boundary.

C. Singlet-superconducting phase

Since in this phase 8& = Hq, the indices which label
the sublattices can be omitted. The equation of mo-
tion (4.8) yields the following two equations

E —JpD+ + (J-„+J-„cos'8 —K-„sin'8) M

M(J-, +K-„)sin'8

—M(J-„+K-„)sin28 G (7.,E )

E+ JpD+ —(J-„+J-„cos'8 —K ~ sin'8)M G, ()i,E)

(4.22)

with (PP') = (+—) or (—+). M is determined by Eq.
(3.28) and cos8= (n —1)/2M. We can then easily
obtain the excitation spectrum as

E ~ =2M[(Jp —J~ cos'8+K-„sin'8)(Jp —J-„)]'~'

(4.23)

Therefore, the, elementary excitation is a gapless
Goldstone mode. For Kp/Jp = 2 tile spectra are
shown in Fig. 5 as solid curves for n = 1.8 and 2. E-„={n-1{(Jp-J-„-). (4.24)

l

For n = n, = 1.577, the spectrum is indistinguishable
'from the curve Q. We would like to point out that
our conclusion concerning the gapless spectrum
agrees with the exact results of the one-dimensional
Hubbard model with AII, '59 which is a special case
of our treatment with Kp/Jp= l.

At the temperature T(SS), using the information
of 8=0 and Eqs. (3.28) and (3.29), Eq. (4.23) is
simplified to
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We see then approaching the singlet-superconducting
and the nonordered phase boundary, the dispersion
relation changes from the quadratic character to the
linear character, This is due to the dynamical
enhancement of symmetry at the phase boundary.

D. Nonordered phase

In this case the equation of motion (4.8) has the
simple solution

(4.25)

where

E-„=' —ln —(n —1)J-„1 n

p 2 —n
(4.26)

The spectrum has a gap which vanishes on the
singlet-superconducting and the nonordered phase
boundary, as well as at the multicritical point.

E. Summary

Since for Ko/Jo & 1 there are four phases and four
phase boundaries meeting at a multicritical point, the
elementary excitations from states corresponding to
various parts of the phase diagram are somewhat
complicated. In Fig. 5 we have shown only a few
spectra to illustrate the main features. To close up
this section, it is helpful to summarize the general
features of these excitation spectra.

Let us use Fig. 4(b) as our reference phase di-

agram. We will first consider the case of finite tem-
peratures. In the CO phase and on the CO-NO
boundary, the excitation spectrum consists of two
branches both of which have gaps. Approaching the
CO-M phase boundary, the gap of the lower branch
decreases continuously and disappears at the CO-M
phase boundary. The situation of two branches, one
with a gap and the other gapless, persists throughout
the M phase. Towards the M-SS phase boundary,
the upper branch with a gap gets soft. For the SS
phase as well as for the SS-NO boundary, the spec-
trum has only one branch and is gapless. There is

also only one branch in the NO phase, but the spec-
trum has a gap. At the MP point one branch of the
spectrum has a gap while the other is gapless,

For zero temperature, the spectrum in the SS
phase is gapless. At the boundary between the SS
and the M phases, two gapless branches appear but
are degenerate. Going into the M phase one branch
remains gapless while the other has a gap. At the

boundary between the M and the CO phases, i.e, , at
n = 1, the two branches become degenerate again. If
Kp/Jo = 1, the degenerate spectrum is gapless. If
Ko/Jo & 1, the degenerate spectrum has a gap.

V. DISCUSSION

The canonical transformation Eq. (2.5) with Q=0
has been used by several authors to derive the
equivalent Hamiltonian Eq. (2.8) with intra-atomic
repulsion from the Hamiltonian Eq. (2.1) with intra-
atomic attraction. However, such transformation
does not simplify the problem unless n = l. We have
made use of the absence of magnetic ordering in the
Hamiltonian Eq. (2.1), and this property expressed as
Eq. (2.3) introduces the additional information Eq.
(2.11) that the quasiparticle density n is just 1. This
we believe is one major contribution to the investiga-
tion of the extended Hubbard model with AII.

To derive the antiferromagnetic Heisenberg-type
Hamiltonian from the Hubbard Hamiltonian at the
strong U limit has also been commonly used by many
authors. Our effective pseudospin Hamiltonian Eq.
(2.17) is more general including the anistropic term
and the effective random external magnetic field.
Yet the more important factor, which in our opinion
is the second major contribution of the present work,
is the constraint Eq. (2.18) on the magnetization. As
we have discussed at the end of Sec. III, the new
features in our phase diagram as compared to the
phase diagram of the ordinary anisotropic antifer-
roagnet are entirely due to this constraint.

The elementary excitations from the MA states ex-
hibit interesting but rather complex behavior.
Although we have derived the analytical for the exci-
tation energy, the dispersion relation will be too com-
plicated to be visualized without numerical examples.
Figure 5 is the result of a one-dimensional calculation
for simp/icity. However, its characteristic features are
also preserved for higher dimensionalities.

It is interesting to investigate the thermodynamic
properties of (2.1) for regimes of weak and inter-
mediate couplings, as well as for the case of random
site energy F.;. This will be reported in the near future.
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