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The real-space dynamic renormaliz Ition group method developed in previous pipers is Ipplied

to the kinetic Ising model defined on a squ'lre lattice. In particul;lr we extend the formalism to

the calcul ltion of space- Ind time-dependent equilibrium;iver'lged correl ltion functions. '4e
f'ind th &t convention &I methods for implementing the real-space renormalization group vi I cum-

ulant expansions in terms of the intercell coupling lead to correlation functions which decay

llgebraically in space «t large distances in the disordered phase in qualitative dis &greement with

the known exponenti Il decay. e indicate how one c ln develop new perturb;ltion theory ex-

pansion methods which le Id to the proper exponential dec'ly lt large distances and also le Id to

good quantitative results for other observ Ible qu Intities like the magnetiz ltion, susceptibility,

Ind single spin time Iutocorrel ltion function, As the result of I first-order calculation we ob-

tain excellent results for the st Itic critical exponents lnd a value of = =1.79 for the dyn;lmic crit-

ical exponent. The critical exponents obt'lined from the correlation functions c;llcul;lted using
I

this method satisfy the proper static Ind dynamic selling rel ltions.

I. INTRODUCTION

In this paper we discuss the extension of the real-
space dynamic renormalization group (RSDRG)
method introduced by us earlier' 4 to the central
problem of the calculation of time and space depen-
dent correlation functions. In particular, we will

study the statics and dynamics of a two-dimensional
kinetic Ising (KI) model defined on a square lattice.
These calculations, which were summarized else-
where, ' represent, to the best of our knowledge, the
first results, using the real-space r'enormalization-

group (RSRG) method, of dynamical properties other
than critical indices.

It has been understood from the very beginning of
its development that the RSRG method could be
used to calculate thermodynamic quantities over the
whole thermodynamic plane —not just near the criti-
cal point. Thus there exist accurate calculations for
the spontaneous magnetization' and the specific
heat for two-dimensional Ising models. There has,
however, to our knowledge, been essentially no prac-
tical development of a way of using these methods to
compute space and time dependent correlation func-
tions over the complete range of temperature and

spatial separations. In this paper we carry out a for-

mal analysis that allows us to relate a correlation
function defined for the original lattice model to a

correlation function defined for a coarse grained or
renormalized lattice. %e then restrict ourselves to a

rather straightforward approximate analysis of these
formal results. One can learn a great deal in this
simple analysis about the general structure of pertur-
bation theories as carried out in the context of the
RSRG. One finds, for example, that a straightfor-
ward cumulant expansion of the type developed by
Niemeijer and van Leeuwen leads to algebraically
decaying correlation functions for all temperatures in

the disordered phase! The development of expansion
techniques which lead to the correct exponential de-
cay of correlation functions at large distances led us
to a number or rather general insights concerning the
appropriate couplings to be used in treating uncou-
pled cells as a zeroth-order theory, and also into the
fundamental structure of the recursion relations.
These insights have led to a substantial improvement
in the quantitative accuracy of our theory.

The main practical results of this paper are: (I)
The derivation of a simple set of recursion relations
relating time and space dependent correlation func-
tions defined on lattices with different lattice spacing;
and (2) the solution of these recursion relations for
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various physical quantities like the magnetization, the
susceptibility, the single spin time autocorrelation
function, and finally time and space dependent corre-
lation functions. We can easily extract various critical
properties from these quantities. We obtain excellent
results for the static critical indices v = 1.011(=1 ex-
actly), P =0.122(=0.125 exactly), and the critical
coupling tanhK, = 0.4150(= W2 —I exactly). The
dynamic critical index z we obtain is 1.79 which is

within the range of known possible' and approximate
values. " The various critical indices are found to
agree with the known scaling laws. It seems equally

important to us, with an eye to eventual comparison
with experiments, that we are able to calculate vari-
ous physical quantities over a wide range of tempera-
tures, times, and distances. The calculated magneti-
zation and susceptibilities are in excellent agreement
(see Sec. VI, Figs. 4 and 5) with known results over
a wide range of temperatures. Most surprising is that
our simple theory reproduces the maximum in the
static structure factor at temperatures above the criti-
cal temperature pointed out by Fisher and Burford"
(see Sec. VI, Fig. 6).

We do not believe that this paper is the last word
on perturbation theory calculations within the
RSDRG. Indeed we know of more systematic ways
of proceeding. These very systemative procedures
are rather technically involved and to some degree
hide some rather important general features associat-
ed with a quantitative application of the RSDRG.
Consequently this more sophisticated analysis will be
presented elsewhere. In this paper we will follow a
more pragmatic and straightforward approach.

In Secs. II and III we describe the form of the KI
model that we have studied and briefly review the
RSDRG formalism. In Sec. IV we introduce the for-
mal structure necessary to relate correlation functions
on the original lattice and those defined on the coarse
grained lattice. We also look at these interrelation-
ships using a very simple approximation scheme.
Some of the insights gained in this section are then
used in Sec. V to develop a perturbation theory ex-
pansion for explicit implementation of the RSDRG
that we believe will lead to quantitative results at low
order. In Sec. VI we explicitly discuss the result of a
direct calculation of various physical quantities.

be given by

(2.1)

where H[a. ] is the Ising Hamiltonian (multiplied by
—P) and Z is the partition function. The Hamiltoni-
an can be written as

N 4

H [a l =—X X a,a;„
i 1 u ].

(2.2)

D
C~(r) = XP[(r]o)e rr, .

cr

(2.3)

The various properties of the operator D are dis-
cussed in Sec. II of Ref. 3. In this paper we consider
a one-spin flip operator of the form given by

(2.4)

where o. is an inverse spin flip time; A", sets
0', 0'

a; = a&' except at lattice site i, and W; [a.] is essential-
ly the spin-flip probability. The form of W;[a] is re-
stricted by stationarity and detailed balance conditions
[see Eqs. (2.16) and (2.19) of Ref. 3] and demands
of locality. In this paper we consider a W, [a.] of the
form

W;[a.] =e ' '
V, [a] (2.5)

where

E; [ a'] = E X rr;+g (2.6)

is the coupling of the spin at site i to its environment.
The factor V, [a.] in Eq. (2.5) is required to be in-

dependent of the spin at site i. We will also assume
that V, [a.] is a symmetric function under interchange

where K is the nearest-neighbor coupling constant
and the 5's are basis vectors connecting a spin at site
i with its four nearest neighbors (see Fig. I).

We assume that the dynamics of our system is

driven by a spin-flip operator (SFO) D such that the
time dependent spin-spin correlation function is given
by

II. RSDRG AND THE KINETIC ISING MODEL

A. Kinetic Ising model on a square lattice

Let us consider a system of W Ising spins set on a
two-dimensional square lattice. Let i label the lattice
sites and let o stand for a given spin configuration
a —= [a ~, aq, . . . , a;, . . . , a~ }. The equilibrium
probability distribution for this system is assumed to FIG. l. Basis vectors on the original rr lattice.
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of the four nearest neighbors about the spin at site i.
The spin configurations formed from the four nearest
neighbors of the spin at site i that are symmetric
under interchange are

nearest-neighbor couplings). In our detailed calcuia-
tions later in the paper we assume that we start with
the minimal coupling operator.

0'' = a+&

n %'
~i ~ ~i+5 ~i+8a a+1

(2.7a)

(2.7b)

III. REAL-SPACE DYNAMIC
RENORMALIZAQION GROUP

A. Basic formalism

nn +~i+a ~i+s.+2
'

a

T~i = ~ i+g ~i+8 ~i+5a-1 a a+1
a

(2.7c)

(2.7d)

C~i i +8 ~i +5 ~i +8 ~i +Sa -1 a a+1 a+2
(2.7e)

I, o-', a", a-"", o. , and 0- form a closed set under
multiplication. This means that any function of these
symmetric functions can be expressed as a linear
combination of this complete set. Then since V, [cr]
must be an even function under flipping of ail the
splns we have

V, [cr] = Vo(1+b)a;"+b2cr;""+b3cr ) (2.8)

+ 33O, Cr;~+340. (2.9)

~here the constants A; can be expressed in terms of
the b's and K. Note that any overall constant can be
included in c.

Under our first-order RSDRG analysis we wii. find
that we generate a coarse grained W; of the same
form as Eq. (2,9) above, but with

A2 =33=34=0

The "dynamic" parameters Vo, b1, b2, and b3 are
free up to the constraint that system is locally stable.
It is straightforward to expand the exponential factor
in Eq. (2.5) in terms of the set of functions defined
by Eq. (2.7). It is then a simple matter to multiply
this result times V, [o ] to show that IV; [o.] is gen-
erally of the form

IV;[o ] = I +A co;cr +Aper;"+32 cr;""

Let us briefly recall some of the fundamental
results for the RSDRG. The basic idea is to intro-
duce a coarse graining transformation T [p, l cr l which
projects a set of spins o. onto a new set of Ising spins
p, defined on a lattice with a lattice constant s times
larger than that for the original lattice. The equilibri-
um probability distribution describing the new set of
spins is related to the old distribution by

e8(p, ]
P[p] =-= — = XP[o ] T[p lcr]z (3.1)

(3.2)

In treating dynamic problems we want to have a pro-
cedure for determining the new spin-flip operator
governing the time evolution of the coarse grained
spins. In order to avoid very unpleasant non-
Markovian effects and in order to obtain a new spin-
flip operator of qualitatively the same type as we had
before renormalization we introduced the eigenvalue
condition'

D T [p I cr l = D„T[g I cr], (3.3)

which leads to 1 self-consistent determination of the
new spin-flip operator D„and the mapping function
T[pla]. Note that D„ is the ad]oint of D„. This
equation must be supplemented by the normalization
condition

where H [p, ] is the new Hamiltonian governing the
coarse grained spins. In order that the partition func-
tion be invariant under this transformation we re-
quire that the mapping function satisfy

An easy calculation reveals that the spin-flip probabil-
ity XP[cr]T[p, lcr]T[p, 'lcr]=& P[p, l (3.4)

IV;[o ] = I +Ay car,'+A2o," (2.10)

satisfies the stationarity condition if we choose

A1= ——tanh2K
1

2
(2.11)

and

This particular form for IV;[cr], which we call the
"minimal coupling" form, is very convenient since it
involves only next-nearest-neighbor couplings (note
that the general IV, [o ] involves third and next-

The implications and benefits of the eigenvalue equa-
tion formulation of this problem are discussed in de-
tail in Ref. 3.

In the problem we investigate here we want to in-
troduce block spin variables associated with cells par-
titioning the original system. We will use the simple
division shown in Fig. 2 where we put four spins in
each cell and locate a block spin (specified by an x in

Fig. 2) at the center of a cell. Let us assume that the
center of the ith ceil is labeled by a vector r; and
each spin in that cell by basis vectors b,
(a =1, 2, 3, 4) as shown in Fig. 2. Then each spin is
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X

uncoupled cells as our zeroth-order approximation.
Ignoring any coupling between cells we have a
zeroth-order probability distribution

X

Hpf cr]
Pp[o'] = e '/Zp

Hplel

where

Hp XH(p

(3.5)

(3.6)

(3.7)

tv~ %''~ 0 ~+0~i,a ~i,a+1 (3.8)

X

FIG. 2. Basis vectors connecting block spins (denoted by
x ) to o. spins (denoted by dots).

We allow for the possibility that the intercell coupling
for a system of uncoupled cells may be different than
that for the coupled system (Kp W E). The cell aver-
ages that will enter into our analysis are

1 —Yp'
r = XPp[a]alurriu+l = (a; a; +i)p= 1+6Yp+ Yp

(3.9)

(3.10)

labeled by the set (i,a). The nearest neighbors of
the spin (i,a ) in the same cell are given by (i,a +1)
and (i,a —1). The nearest-neighbor cells are labeled

by the set of basis vectors 5,' shown in Fig. 3. The
nearest neighbors of (i,a ) outside of cell i are given

by (i + 5,', a —1) and (i + 5,', ,a + 1) (see Fig. 3).
%e will use the abbreviated notation a.;, for a spin in

cell i at site b, .

B. Zeroth-order theory

We want to solve Eq. (3.3) approximately in a per-
turbation theory expansion where we treat the case of

( i, a+])

-4K
pwhere Yp = e

We assume that the appropriate "cell" SFO is of
the form

D, [ala'] = X(A"' .)D' [ala'l, (3.1 1)

(3.13)
The condition that Pp be invariant under time

translations, DPPp[o ] =0, is satisfied if

where A" sets o-= a' at all sites except those in the
0', 0'

ith cell, and

Dl [ala'] =—' XA"", ,a;,.a,.~)"[a], (3.12)
a

where

IV)" [o ] =1+J(o;,(o';,+)+o;, () + J2g,.,+, a.. .

X

(i,a-1) {i,a}

+sl

(i~a'„a+1 }

J, =—,(1+J2)
Mp

1+Do

where

up =—tanhEp

(3.14)

(3.15)

In this most naive decomposition of D into intercell
and intracell contributions one should directly identify

FIG. 3. Specification of nearest-neighbor block and a
spins vrith respect. to a cr spin at site (i,~ )-

a=op

O.OJl = O.~ 1

apJ2 = aA p,
EO= E

(3, 16a)

(3.16b)

(3.16c)

(3.16d)
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This identification implies simply cutting any bonds
in Eq. (2.9) connecting different cells. A main point
we intend to make in this paper is that this naive
identification of D is not sufficient for developing a
quantitative theory. It will be necessary to develop
more sophisticated methods for determining the
parameters o,p, J], and J2.

Note that in general II'(I" [o.] could contain the
additional couplings J3o.,o.,+2, J4o, +2(o,+(+ o., (),
and Jqcr, a.,+[a-,+2o-, ]. We will not consider this
more general form for II (I"l [o ] in this paper in

view of the form of Eq. (2.10).
The solution of the zeroth-order eigenvalue prob-

lem

D To[p I a] = D„To[p. I a] (3.17)

To[p, la) = ff T)'[plal . (3.18)

To find T(I'( it suffices to solve the eigenvalue equa-
tion

has been dicussed in Ref. 3. We easily find that Tp is
of the form

T'[p Ia] =8 . .., (r'W0

T"[p, la ] = —,'. a'=0, (3.25)

where a-' is the sum of the four spins in a cell. Un-
like the majority rule for the triangular lattice this is
not a possible T within the constraints of the
RSDRG because it does not satisfy the normalization
condition given by Eq. (3.24). If one fixed f = ——,

then the normalization condition (3.24) requires that

so that the normalization condition given by Eq. (3.4)
is satisfied.

The form for Tp[p, la] given by Eqs. (3.18),
(3.19), and (3.22) is identical to that used in a
number of RSRG calculations. %'e know from the
work of Kadanoff and Houghton, ' and Barber' that
a good "choice" for the parameter f'(near the critical
temperature) is,f ———, for the square lattice. In

]

particular, this choice for f' leads to good first-order
results for the thermal eigenvalues.

The choice f'= ——, for the square lattice is analo-

gous to the majority rule choice for triangular lattice.
Thus with f'= ——, and N = —, one has

1 3

D y(n)( ) ) y(n)( ) (3.1 9) N= 3

2[2(5+4r —s)]' ' (3.26)

and we then can choose

T)' [p, la]= —,'[I+p, ;y "(a)) . (3.20)

where (](;(" is the odd eigenfunction (I(;("' correspond-
ing to the smallest nonzero eigenvalue A. [ = A. . The
associated coarse grained SFO is given by

which ranges between 3/2v 10 at high temperatures
3

and —, at low temperatures.

We see in the case of the RSDRG that N and f are
fixed once we specify the parameters J] and J2
characterizing the cell SFO.

Do[pip')= —XA' p;p' (3.21)
C. First-order RSDRG calculation

We solve the eigenvalue problem Eq. (3.19) in the
Appendix and show that

As explained in Ref. 3 in carrying out higher-order
calculations, rather than solving Eqs. (3.3), (3.2),
and (3.4) directly, in practice it is easier to first solve
an auxiliary eigenvalue equation

(I;"'(o)=N((r'+f o. ') (3.22) D T [pl a] = D~T [pI(r] (3.27a)

where N and f'are functions of J] and J2 and given
by Eqs. (A15) and (A16). It is easy to show that in
this approximation we can evaluate the sum in Eq.
(3.4) to obtain XPp[o'] Tp[p l(r]T[p, 'Ia] =8 Pp[p'1 (3.27b)

where T [p, I o ] satisfied the normalization conditions

Pp[p, l = l

2/t/

where N' = N/4 gives the number of celis and

XPo [a' ] To [p, I (r ) To [p,
'

I (r ] = 8 Pp [p, ]

(3.23)

(3.24)

We then perform a rotation in p, space

(3.28)T [p, la] = XS [p, I p, '] T [p, 'la]
I

such that T(plo)does satisfy Eq. (3.4.). We must
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simultaneously rotate the eigenvalue D„:
I

(3.4). Quite generally, we can assume that S[p, ~p, ']
is symmetric. If we write

(3.29) D =D =~D (3.30)

After performing the rotation, we have then con-
structed the full solution to Eqs. (3.3), (3.2), and

where e is an ordering parameter we set equal to one
at the end of the calculation, then the first order in ~

contribution to D [p~p'] is given by

D '"[p
I
p'] po[p'] g po[o]To[p''lrr]D' To[p la ] (3.31)

~(1)
'PlPi Po[P ]

2 X XA ~(~)PlP;+ol +R2PiPI~P, +r)~P, +o~ ) 0[P ]
I i a

(3.32)

where

1).
"' = 2u ( W' + 2A )

W') + A 2 W2 ) —X

R )
= v(qA ) + qA 2)

p 2

R2= —WA2
2

(3.33)

(3.34)

(3.35)

with new parameters

A2 = +O(e')~R2n

(3.46)

(3,47)

v= (o,)[r"))o=N[1+2r+s+2f (r +s)], (3.36)

u' = 2u ( W + 2A ) W') + A 2 W2) = })

A, =b, cx

(3.48a)

(3.48b)

q = ( o.,h)[r,") ) o
= 2N [1+f ( s + 2r ) ]

q = (o, +)LL)[r,'")o=2N [r + f(r +2s)]
8'= ()ir'"h)[r," ) =2N[v+3fv ]

(3.37)

(3.38)

(3.39)

W) = ()lr())i)))[r,"'a, rr, +))o= 2N [v(1+2f ) +fv3]

We easily see however A2 & (A)') as required if the
Hamiltonian is given by Eq. (2.2).

What is happening here is that new static interac-
tions are being generated by the renormalization
group (RG). The symmetry of the problem dictates
that we must generalize our initial Hamiltonian to in-

clude a four-spin coupling:

(3.40)

&2= ()[r ~)[ra rra+-)rr)a)o2N [v3(1 + 2f ) + vf ]
H = Xp,;p, '(i)+ Xp;pr(i),K', . L'

l I

(3.49)

v3 ()]r ua o a+) o a+2) 0
([)

(3.41) The stationarity condition with this Hamiltonian gives
rise to

= N [2(r +s ) + f (2r +s + 1) ]

and

(3.42)

(3.43)

D [p I p'] -D [pip']

Notice then that

D[PII ']=D'[PIP, ']+~D"'[PIP,']

(3.44)

(3.45)

is of the minimai. coupling form given by Eq. (2.10)

)!)y(l) y&l)(~) y)))( . )

where ( ), indicates an average over Po[o.] and r
and s are defined by Eqs. (3.9) and (3.10).

A rather involved calculation leads to the result
that the rotation S [p~ p, '], evaluated to O(a), leads
to no change in D [p ~

p'] and we obtain

A )' =——, tanh2(lt' —L')

2 tanh2(E' —L ')
4 tanh4(lt'+ L')

which can be inverted to obtain
r

1 —2A'] t 1+432 —4A [K'=- ln —,+- ln
8 1+23 ]

2 1+43 ' +43 '

r r '!

1 —2A,
'

[ 1+4A,' —4A (L'= —-ln, +- ln
8 1+2A ) 1+4~ +4

We can then use the equation

Dop [p] D(1)p [p]

(3.50)

(3.51)

. (3.52)

(3.53)

(3.54)
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Pi[I]=PO[p] XX 2~ pipi+s,
I 0

where the renormalized coupling is given by

(3.55)

(3.56)

valid to O(e), to compute the first-order contribu-
tion to P [y, ] as

to the critical point, the correlation functions calculat-
ed show the usual critical divergences with exponents
that satisfy the proper static and dynamic scaling laws

and coincide with the exponents deduced directly
from the recursion relations

We are interested in calculating a general time
dependent function of the form

and

C„s(i)= XP[a]8(a)e A (a) (4.l)

L'=0(az) (3.57)

IV. CORRELATION FUNCTIONS AND THE RSDRG

A. General development

In this section we discuss how to compute dynamic
correlation functions within the context of the
RSDRG. It is this aspect of our formalism which we
believe is of particular interest. We are able to calcu-
late arbitrary space and time dependent correlation
functions over the entire temperature range. Close

If we insert Eqs. . (3.46) and (3.47) into Eqs. (3.52)
and (3.53) and expand to lowest order in a we regain
Eqs. (3.56) and (3.57).

In summary, to 0 (e), we have the recursion rela-
tions (3.48) and (3.56) and the renormalized D„ is of
the minimal coupling form. It is quite important to
realize that these recursion relations depend on the
intracell parameters no, J], and J2 which we must
now determine.

Here, A (a ) and 8 (a ) are arbitrary operators de-
pending on the o- spins. Alternatively we can look at
the Laplace transform

C (2) = XP[a]8(a)R (z )A (a )

where R (z) is the resolvent operator

(4.2)

A (p)P[p] = XP[a]T[p[a]A (a)

Notice that the average of A (p, ) in p, space equals
the average of A (a.) in a space, i.e.,

(4 4)

XA(p, )P[p]=XA(a)P[al . (4.5)

Next, we introduce the projection operator 6'in o.

space, defined by

R(z)=(z-iD ) (4.3)

We wish to express the correlation function (4.1) in

terms of correlation functions of the new spins p, .

For a given transformation T[p, ~a], we define the
"coarse grained variables" A (p. ) associated with
W(~) by

»(a)=XT[ula]P '[p]XP[ ]Ta[p, l ]Aa( )=aQT[p, ~ ]Aa(p, ) . (4.6)

It is easily seen that(Pis indeed a projection operator,
since(P'-(p, Notice that this requires enforcement of
the normalization condition given by Eq. (3.2). The
projection operator selects that part of a given vari-
able A (cr) which will be mapped onto the "coarse
grained" variable A (p, ). If the RG transformation is

so defined that it maps the slower degrees of freedom
in o space onto the new variables in p, space, the
projection operator will select the slow part of a given
variable in cr space. As an illustrative example take
for A (a) a single spin a;, and compute(PA (a) to

(4.S)

We now introduce also the complement of p in the
usual way

Q= 1 —(P
and rewrite the correlation function (3.1) as

, (4.9)

lowest order. It is easily seen that

(Pa; = vy "(a), (4.7)
where P "(a ) is the slowest eigenfunction in cell i,
and v- (P,'"(a)a;, )o. The associated coarse
grained variable in IM, space is simply

A(p, ) =vp, ;

C„(r)= gP[ a][( (P+&) 8( a)] e (rp+k)A (a)

P[a][6"8(a)]e {PA (a)+ XP[a.][~(o.)]e ~ (a) =C„' ( )s+rC„&(r) (4.IO)

The additional "cross terms" are readily seen to vanish. Now, the basic idea is to treat iteratively the long range
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(in space and time) part of C„tt(t) (i.e., Cqs) but to treat perturbatively the short-range part, C„tt(t) C„'tt(t) can
be written as

't

C„'s = XP [ o ] [68 ( o ) ]e ~ [gA ( a ) ]=X X XP [a ] T [p I ir ]8 (tz ) e T [p'I o, l A (ti, ') = XP [tt, ]8 (tz ) e t' A (ti, )
CT O' P

(4. 1 1)

where we have used the recursion relation

XP[o]T'[tAIcrle T'[p, 'Ial=e ". S,P[tii. ] . (4.12)

The important point is that C' is the same correlation
function as C, but for the coarse grained variables
and the coarse grained D„, while C represents a
correlation function for the short-range parts which

can be assumed to be amenable to perturbative treat-
ment. Equation (4.10) is then a recursion relation
for the correlation function. At each step C&~ is re-
expressed in terms of correlation functions of func-
tions of the new spin variable and C&q which is

evaluated explicitly within perturbation theory.
These calculations will be discussed in Sec. VI.

C,(t) =v'C;J(t')

+ S,;, X (1 —S„ i )v„'(a) v„(a')e '"',

(4.19)

where C t(t') is the spin-spin correlation function for
the p, spins evaluated at t' = Af and with dynamics
governed by the SFO D„' =D„/b. . Thus we have re-
scaled time so that D and D„' have the same time
scale a '. Note that Eq. (4.14) satisfies the equal
time condition for the same site correlation function

8. Spin-spin correlation function
C;. ..(t =0) = (a;,o, , ) =1

since

(4.20)

C,(t) = XP [a]So;,e Sa. (4.13)

with

%e now specialize to the case of interest, where
A (o) and 8(o) are spin variables. We want to
compute

X Iv„(a)I'=1 . (4.21)

This is due to the completeness of the cell eigenfunc-
tions.

Equation (4.19), or its Laplace transform

Stria= tri a( ir, ia.), (4.14) C (z) = (v'/6) C, (z')

To lowest order in perturbation theory, the projection
of a spin variable is given by Eq. (4.7), and the asso-
ciated coarse grained variable by Eq. (4.8). For the
short-ranged part we have

v„'(a) v„(a')
+SU (1 —S„,) z+i ~„ (4.22a)

g,o;, = (1 —6') o, , = tr;, —
vs[i,

"'(ir ) (4.15)
z'=z/5, (4.22b)

Expanding o-;, in the complete set of cell eigenfunc-
tions of the cell-dynamical operator we obtain

ger;, = X (1 —Si „)v„i[t "'( ir ) (4.16)

with

(4.17)

Note that only the odd-parity eigenfunctions contri-
bute to Eq. (4.16), and that vi = v. Using the ortho-
normality condition

{y(a)( ~)y {m)(~)} (4.18)

we obtain, combining Eqs. (4.10), (4.11), and (4.12)

are the basic equations of our approach. From them,
together with the recursion relation for K and o, , dis-
cussed in the next section, we can obtain arbitrary
static and dynamic correlation functions by iteration.
For computing static correlation functions, we simply
set t =0 in Eq. (4.19). Defining

(4.23)

we have from Eq. (3.19)

&,... = v'X, + S;J X (1 —Sa i) v„'(a )v„(a') . (4.24)
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'e can rewrite Eq, (4.24) by noting that

Xv„"(a)v„(a') = ((r, (r ) o

=5 I+r(5 i, +5 . r, ) +s5
1

(4.25)
where r and s are given by Eqs. (3.9) and (3.10).
These expressions for single-cell averages follow

directly from a probability distribution of the form
given by Eqs. (2.1) and (2.2). Replacing in Eq.
(4.24) we obtain

n-]
g "(K,) = ["(0)] 1

R 2)]ntr f/]nsi~0
(4.3 I)

T'o obtain exponential decay with distance we need
therefore:

ln general, v(K) will go a nonzero constant in the
high-temperature limit so that the first factor in Eq.
(4.30) depends algebraically on R:

K —KR = (K )*" (4.32)

so that the recursion relation at high temperatures
should be

+s5 r
—v'] (4.26) K„+,= aK„' (4.33)

and in particular, for the static susceptibility

X=—XX
1

i,a;j,a
I,j

r
a, a

we obtain the simple recursion relation

X = 4v'(X' —1) + I + 2r + s

(4.27)

(4.28)
—4K„

(5~ 5~ ). (4.34)

we can show that to obtain exponential decay for
(5o'p5o'R ) at low temperatures, we need

Recall that the usual cumulant expansions give K„+]
proportional to Kn at high temperatures so that a dif-
ferent expansion procedure has to be used to obtain
the correct limiting form [Eq. (4.33)].

In a similar way, by using the low-temperature ex-
pansion result

C. Correlation functions and

recursion relations
K, —RK = snKG (4.35)

(o'Oo'R) = v'(vol Ri, ) (4.29)

where s is the length rescaling parameter (s = 2 in

our case) . Taking R = s", we obtain after iterating

Eq. (4.29) n times a nearest-neighbor correlation
function

rn-1
(ooo'R) = II v'«) (~p~i).

i 0

(4.30)

Here, K; is the coupling after i iterations. The
nearest-neighbor correlation function (ppp, ~)„ is

evaluated with the coupling K„. At high tempera-
tures, we have the lowest-order contribution in a
high-temperature expansion

(pop i) n
= Kn

We now come to a very important point: the form
of the recursion relation K'(K) determines the as-

ymptotic behavior of the correlation functions. In
particular, the fact that away from the critical point
the correlation functions must decay exponentially

'

with distance places serious restrictions on the form
of the recursion relation for the parameter K.

To see how this comes about consider the correla-
tion function for two spins separated by a distance R
along the x or y axis. Let us first discuss the high-

temperature phase. We have from Eq. (4.24)

so that the limiting form at low temperatures should
be

Kn+] = sKn (4.36)

We conclude therefore that acceptable recursion rela-
tions must interpolate smoothly between the
behaviors (4.33) and (4.36).

V. SINGLE-CELL PROBLEM

An important step in our analysis is the choice of
the zeroth-order operator D, given D . In Refs. 3
and 4 we treated the interaction between cells in the
Hamiltonian as a perturbation. Since the Hamiltoni-
an, in that case, appears in an exponential within the
SFO, the SFO depends on the perturbation expan-
sion parameters at all orders. The decomposition Eq.
(3.30), which we use here, avoids these problems.

We pointed out in Sec. III that in order to develop
a quantitative theory the "bond cutting" determina-
tion [Eq. (3.16)] of the cell parameters ap, Kp, J2 is

inadequate. Our task in the present section is two-
fold: first we must find the eigenvalues and eigen-
functions of D, in terms 'of n0, J], and J2', and
second, we must choose or determine the parameters
n0, KG, J2 in terms of e and K. The first is done, for
the odd eigenfunctions, in the Appendix, in which we



MAZENKG, HIRSCH, NOLAN, AND VALLS

K'=aK' (K « I),
K'=2K (K»1) .

(5.1a)

(S.I b)

A standard cumulant approximation on a square
lattice satisfies Eq. (S.lb) but not Eq. (S.la), so, one
does not find the correct exponential decay in the
disordered phase. In our analysis K'(K) is given by
Eq. (3.56). That relation depends on np, as yet un-
specified. Our strategy in this paper shall be to find
another equation for K'(K), satisfying Eq. (5.1) and
then determine ap by using Eq. (3.56). We will ob-
tain the new relation from the correlation function
equations discussed in the last section. As the tern-
perature changes, the recursion relation must interpo-
late between the two known limits. A natural vari-
able to introduce is

make extensive use of the methods developed in Ref.
4.

The second question is more complicated. A de-
tailed discussion of a systematic way of determining
the cell parameters in perturbation theory will be
given elsewhere. " For the purpose of this paper,
which, as stated in the Introduction is to show how
the correlation functions are calculated, we will sim-
plify matters by choosing the cell parameters Ao, o/,

J2 [note that J~ follows from Eq. (3.14)], in the
manner described below. %e shall be guided by th=

principle that the cell parameters should be chosen in

such a way that the short-distance correlations are
well described. While doing so we must also consider
the recursion relation for E and its implications for
the asymptotic behavior of the correlation functions.
As we have seen in Eqs. (4.33) and (4.36) their
asymptotic behavior requires (for s = 2)

where I}[ = e 4" tanhE. The results of this analysis
give ao= -4, a] = -42, a2 = -396, a3 = -3750, and
the fixed point properties tanhE, =0.4150 and ex-
ponent v ' =yz =1.011. These compare quite well
with the exact results tanhK, =0.4142; v ' =1.
Thus, it is seen that the corrections, to $ = @ ln Eq.
(5.5) are small near the critical point. If one defines
f(u) ,

—= ($' —@')/@' (u —= tanhK ) one finds that

f (u) has a maximum of 0.195 for u = 0.10 and de-
creases rapidly away from its maximum: f (u)
~0.02 for u & 0.32. The relatively larger value of f
occurs away from any fixed points: one has

f (u) ) 0.1 only for 0.03 & u & 0.2, and

f (u, ) =0.004. Therefore these corrections have
only a small effect on the iteratively computed values
of the correlation functions. If we look at the effect
of the correction terms on the critical indices (the
method of analysis is presented in the next section)
we find, for example, ' P=0.1215, z =1.796 with the
full recursion relation (5.S) while 13 = 0.121 9,
z =1.791 for $'=$'. That is, the correction terms
given by f (u)@' near the transition [as reflected in

the dependence of P, z, and T, on f (u )] are of or-
der 0.3%. Therefore we will, for simplicity, use the
recursion relation @'=$' in our numerical work. We
believe, however, that the general form of Eq. (5.5)
and its range of validity merit further study.

Having done this, the condition that the recursion
relation Eq. (3.56) coincides with that obtained from
Eq. (5.5), as discussed above, determines the func-
tion up(K, Kp, J2). This procedure nicely decouples
statics and dynamics.

Next, we specify Ko and J~. The nearest-neighbor
recursion relation

$ —= ez" tanhK

Then, the recursion relation

2 (5.3)

e(I ) = —+—e'(I )
2 2

gives the behavior of II;0 at high temperatures

(5.6)

(5.7)

gives a proper interpolation. This gives us a large
hint on how to proceed. If we define e(n) as the
two-spin static correlation function for spins separat-
ed by n sites along the x or y directions, we have,
(for n ) I) from Sec. IV, e(2n) = vze'(n). The ratio

e(4) e'(2)
e(2) e'(2)

gives a relation between K and E'. In one dimension
this definition of K'(K) coincides with the result of a
decimation transformation. In our case, one cannot
explicitly solve for K'(K). We instead have. used the
high-temperature results for e(n) to determine the
coefficients {a; } in the expansion

@'=$ + Xa;h'+-
i~0

to lowest order in K [ r is defined in Eq. (3.9)]. A

similar analysis shows that Eq. (5.7) gives also the
low-temperature behavior of ECO. Consider next the
parameter J2. This is analogous to the parameter 5
of the second model in Ref. 4. In analogy with that
example, it is reasonable to require that Tp[p {a]
reduces to the majority rule at low temperatures.
This lmplles f = —3, Jp = 1 as K ~ Do, As A ~0,
we expect that J2 goes as Ko. %e have used the sirn-

ple interpolation formulas

Kp = 2K —(tanh'K )/Sq (5.8)

Jz = tanh'(2pKp) (5.9)

and determined p and q simultaneously by demanding
that e(l) calculated from Eq. (5.6) yields the exact
result e, (I ) = a 2/2 at T = T„and that np be as close
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to n as possible at T, . This gives p =0.434 and

q =0.38. The operator Do, and the recursion rela-
tions are then fully specified.

%'hile the above determinations are not free of cri-
ticisrn, we should point out once more that our objec-
tive here is the evaluation of the correlation func-
tions, for which purpose the standard cumulant ex-
pansion is wrong. Rather than choosing our zeroth-
order SFO by arbitrary bond cutting, it is clearly
better to choose its parameters from the short-range
recursion relations such as Eqs. (5.4) and (5.6) which
would clearly be botched up by bond cutting. %e do
not claim the details of our treatment to be defini-
tive, but only that they incorporate a number of
necessary physical principles which must go into the
calculation of the static and dynamic correlation func-
tions.

Results for these correlation functions are present-
ed in the next section.

VI. RESULTS AND DISCUSSION

The spin-spin correlation functions can now be cal-
culated by iteration of the first-order recursion rela-
tions given in Sec. IVB. %e use, at each iteration,
the cell operator parameters obtained according to the
prescriptions developed in Sec. V. That is: given the
initial value of K, we obtain Ko, OIO, and JI as func-
tions of K. The new coupling E'(K) follows from
the recursion relation Eq. (5.5) or Eq. (3.56). The

M=vM' (6.l)

Iteration of this recursion relation produces

(n —1)M(n) (6.2)

It is easy to see that v = 1 at T =0 and v = —, at
I

T oo. Since we always have K' & K at T ) T, and
K' & K at T & T, we immediately find that M =0 at
all T ) T, and M 1 as T 0. In detail, the curve
for M( T) in Fig. 4 is obtained. It is practically ident-
ical to the known exact result' at all temperatures.
Near T„ the exponent P is found to be P =0.122.
This result for M(T) gives a strong indication of the
soundness of our approximations. Further confirma-
tion may be found below.

In Fig. 5 we plot the magnetic susceptibility X, . ob-
tained by iterating Eq. (4.28). Oursesults are in ex-
cellent agreement with the most reliable series
results" ' at all temperatures above T„and are only

somewhat different below T, . The critical exponent

new local parameters o.o, Ko, JI', can then be ob--0
tained. The odd eigenvalues of D are calculated at
each step.

Let us consider first time-independent quantities.
Consider„ for example, the magnetization per spin,
for which the recursion relation is readily found to be
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FIG. 4. The spontaneous magnetization obtained in this

work. Iir =tanh(K). ] It is virtually identic~1 to the ex~et
result, see Ref. 16.

I'IG. 5. The magnetic susceptibility. Solid curve is the
present result: dashed curve, series expansion results (Refs.
12;&nd 17).
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y = 1.756 is within 0.4'/0 of the exact result 1.75.
It should be emphasized that the values of these ex-
ponents are no uit b 'lt in by our procedure for deter-
mining

'
ing the zeroth-order parameters.

Fi . 6)As a final static result, we present results (Fig.
for the correlation function C ~q, ( ) for several values
of [q [ in the temperature range around T, .T. The re-
cursion re a ionrelation for C(q) is given by the spatial
Fourier trans onsform of Eq. (4.26). We compare our

n that the1 ith those of Ref. 17. It can be seen a
that ourplots are extremely similar. %'e also note a

results are o ainebtained with considerably less computa-
tional effort than used in Ref. 17. %e obtain a rnax-
imum at q A 0 for T ) T„corresponding to devia-
tions from the Ornstein-Zernike theory. At = T„
we have extracted the exponent q given y

rt =-Inv (T, )lln2=0. 244 (6.3)

It is excellent concordance with the exact result
i

These static results illustrate the importance of
s [E . (5.1)j and of the propersatisfying the conditions ,'q.

choice of the static cell parameter Ko [see q.
It is well known that the standard cumulant expari-
sion in which p

= ansion 6 ' '
h K =K and Eq. (5.1) is not satisfied,

ie M(T). The fact that ourields very poor results foryie
d

'
due to the careful treatmentstatic results are goo is ue

fof the static parameters, and also,
'

a so in the cases 0 X

and C(q) to the retention of the inhomogeneous (6.4)

terms which are not important in the critical region
d namic con-but necessary elsewhere. Of course, yna

siderations, suc ash those leading to the eigenvalue
Eq; (3.3) do not come into play here. Indeed, i our
purpose was to s u yt d only static properties we would
write, instead o q.f E (5.5) an equivalent equation for
the parameter f (which, together with Ko fully deter-
mines v„r, an s and ) d then define the transformation
T[@, o. via qs. . . fer-E . (3.20) and (3.22) without any refer-
ence o at a dynamical operator. Equations

from the(4.26), and (4.28) are, thus, uncoupled from
dynamics, as they should be.

W now proceed to the dynamics. First, an
anal sis of the recursion relation for a Eq.
yields the dynamic exponent z = .79.
rather large spread of values for z quoted in the litera-
ture. " It is not clear why this uncertainty in t e

=1.75."
CCFi . 7 we exhibit our results for the "same site

correlation function C„(t = o;o; t . t ig e
peratures, t is unc ioh' f t' n decays quickly to zero with

time. s e eA th t mperature approaches T from above,
the decay becomes very slow, and, below „t e
asymptotic va ue is1

's M'. Not only is this the'expected
behavior at all temperatures, but near T, we have a
further check: C;;(ai) is sharply peaked at co=0 for

C;;(Oi=0) IK Kcl "

C;;(ai,K = K, ) —Oi " . (6.5)
200

From our calculated C;;(co) wwe extract n =1.54, and
=0.86. These results are in agreement with the

18scaling relations

n = v(z+2 —d —ri)

p, = —(z+2 —d —7))
1

z

(6.6)

(6.7)

C(q) slwhen we su sti u eb 't t the values. of z and q previous y

l00—

t.o—
l

K =0.5

50— C(t)

0.5:

0.96 t.00

T/T,

I.04 0 10

gt
15 20

=q ) vs tem-FIG. 6. Static correlation function C &q, ,qz qy

perature for various wave numbe s q„,r a, Solid lines: our
results. Dashed lines: from Re . 17.f. 17.

FIG. 7. Present results for the same-s'e-site correlation func-
tion io, a; t vs a;( )p t for several values of K. The dashed

M2horizontal lines correspond to values of M .
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K=045 l

lo 0 lO

FIG. 8. The temporal Fourier transform of the same-site
correlation function at various temperatures (v = n ' ).

found from the direct analysis of the recursion rela-
tions. This is an important consistency check. The
function C;;(ru) is plotted in Fig. 8 at several tem-
peratures.

Finally (Fig. 9) we present the full correlation
function, C(q, cu), for different values of q and dif-

ferent temperatures. In particular one can see in Fig.
9 the effect on C(q, ru) of lowering the temperature

from above to below T„at constant q, as well as the
effect of changing q at constant temperature. Results
can readily be obtained at any values of K, q, and co

by the use of the recursion Eq. (4.22) or its spatial
Fourier transform.

In the next four figures we consider the behavior
of C(q, ao) in the neighborhood of T, . In Fig. 10 we

have plotted C(q, a&=0) as a function of q, at
K =K,. and K =K,, +10 '. As before, we find a peak
at finite q for K A K,. At K = K, we have

C(q, 0) ~ q
"' (see solid line). This exponent

equals our calculated value of 2+z —q, in agreement
with scaling. In Fig. 1 l we display C(q, co=0) as a
function of )K —K, ( for several wave vectors.
Again, C(q =0, can= 0) ~ (K —K, ) " "'. In Fig. 12
we have C(q, co) vs ao at and near T, for several
values of q. The proper scaling behavior at q =0 and
T= T, is exhibited: C(0, co) c ao

"+' "' '. The value
of the exponent (slope of the solid lines in Fig. 12) is
1.98, in perfect concordance with the value obtained
from the exponents, In Figs. 10 to 12 q is in units of
I/a.

In the critical scaling region it is conventional'9 and
convenient to, write the dynamic structure factor in

the dynamic scaling form

C(q, o)) = f„(v)C(q) (6.8)
(o(q)

Ip—9

I

2

C (q tv)

I

1

O

lp7—

0

)O5

lp ~ (p 2
I

lP I )O0

Q.4 0.8 l.2

FIG. 9. The correlation function C(q, co) vs ao for the
values q„q, q&

-0 and K indicated.

q

FIG. 10. The correlation function C(q, ~) vs

q(q =q„,q&=0) for co=0 and several values of K. The
solid line is for K =K„au=0; the dashed line:
K —K, = —1.0 && 10, co=0; the dot-dashed line:
K —K =+1.0& 10, co=0.
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FIG. 13. The shape function f„'(v) vs v for x =~ (solid

line) and x =0 (dashed line).

IO
IP5 IO2IPIO4

IK —Kci

FIG. 11. The correlation function C(q, ra) vs IK —K, I

for co=0 and several values of q(q =q„,qz =0}. The two

solid lines are for q =0, co=0; the dot-dashed lines are for
q n/2', o) 0, and the dashed lines are for q -n/2,
cv 0.

where ar(q ) is the characteristic frequency, f„(v) is
the shape function, x =qg, and v =to/ta(q). We
have determined f„(v) in the limits x ~ (critical
regime) and x =0 (hydrodynamic regime). In the
case x ~ we have co, =Aq' and determine A by the
normalization condition, f (0) = 1. In the case x = 0
we have ta, = A ~K —K, ~* and determine A by the
condition (see Ref. 19)

f 1

J deaf (u) = J dvf, (P) (6.9)

IO8

IO—

Cl—IO6

Ip'-

We see from Fig. 13 that f„(v) is essentially
Lorentzian in both limits.

We conclude, therefore, that it is possible to use
real-space renormalization-group methods to calculate
the time dependent correlation functions of the kinet-
ic Ising model, and in particular, the correlation func-
tions and thermodynamics of the ordinary Ising
model. The key ingredients are the decomposition of
the initial variables (Sec. IV A) by means of projec-
tion operators which allows us to write the exact Eqs.
(4.10) and (4.11); a careful treatment of the effective
couplings in an isolated cell; and development of
methods for carrying out the RSRG that eliminate
unphysical memory effects and lead to the appropri-
ate spatial decay at large distances. Our results are in
excellent agreement with previously known results,
when these exist, and satisfy all expected scaling rela-
tions.

IO4
IO-5

I

IP4
I

IO 5 IO-2 ACKNOWLEDGMENTS

FIG. 12. The correlation function C(q, cv) vs ~ for
several values of q and K(q =q„,q~ =0). The solid line is

for q 0, K K~; the dot-dashed line is for q =m/2,
K K„.the dotted line: q =0, K —K, =1&&10;the
dashed line:. q =0, K —K, = -1 x 10

Two of us (G.M. and I.H.) would like to ac-
knowledge support given by the NSF Grant No.
DMR 77-12637. G.M. would like to thank the
Alfred P. Sloan Foundation Fellowship for their sup-
port. J.H. would like to thank the Victor J. Andrews



REAL-SPACE DYNAMIC RENORMALIZATION GROUP. III. 1445

Memorial Fellowship for their support. 'ork done
at Ames Laboratory operated for the U.S. Depart-
ment of Energy by Iowa State University under Con-
tract No. %-7405-Eng-82, was supported by the
Director for Energy Research, Office of Basic Energy
Sciences, Contract No. WPAS-KC-02-02-03. O.V.
would like to acknowledge support given by the
University of Minnesota Graduate School Research
Fund. )b) (q) = Xe'"o, (A33

quantity o.,"' is defined by a,' ' = o, ]o.,cr, +].
The above equations have a "hopping" structure.

If we think of the four spins as located on a circle it

is clear that we can diagonalize our operator through
Fourier transformation. That is, the eight odd eigen-
functions must be linear combinations of the eight
functions

APPENDIX
@ (q) X eisa )3) (A4)

In this Appendix we work out the eigenfunctions
and eigenvalues of the cell operator given by Eqs.
(3.11) and (3.13). The general procedure is essen-
tially the same as in the triangular case. For the
square lattice, we have 24=16 independent eigen-
functions, half of them even, half odd. %'e will solve
here for the odd ones. The even eigenfunctions can
be obtained in a similar way, but they are not needed
here.

Operating with D [o{cr'] on all odd-cell spin com-
binations we readily obtain

where the index )t) is:

q= —,n=0, 1, 2, 3
0

(As)

a(q) =ap{1+2J)cosqa) (A8a)

Equations (A 1) and (A2) yield

D [ala]@)(q)= —[a(q))t))(q)+b(q))b, (q)], (A6)

D'[ala]d3(q) =—[c(q)$)(q)+d(q)P3(q)], (A7)

where

D [a { cr]a, = —ap[)r, +J) (a,+) + o, ) ) +J2a,"'l

(A 1)

D [a { a]a, = —a))[3o,' '+ J) (2a~+) + 2a, )

+ aa+i + )ru-) )(3) (3)

b(q) =a,J, ,

c (q) = ap{4J) cosqa + J2)

d(q) =ap(3+2J) cosqa +2J2e 2'~')

%e now write the eigenfunctions in the form

){){q)= ~)t)1{q)+D43(q)

(ASb)

(ASc)

(A8d)

(A9)

+J,(2a.3)2+ a, ) l, (A2) The eigenvalue equation

D'[o
I a l )])( ir) = —)).){)()r ) (A 10)

where a sum over barred configurations is under-
stood and the cell index i has been omitted. The

is easily solved by the use of Eqs. (A6) and (A7).
The eight eigenvalues are

)).„(q) 2
(a(q) +d(q)+r) { [a (q)+d(q)]' —4[a(q)d(q) —b(q) (e)q] })~ ) r)=+ 1

and Band D are related by

b(q)&(q)
D q

)). —d (q)

Using also the normalization condition

(A 1 1)

(A12)

(A13)

we see that the eight odd eigenfunctions can be characterized by the label q, q and written as

){„(q)= N„(q) [d ) (q) + f„(q)d 3(q) ], (A14)

b(q)
)t„(q) -d(q) (A15)

N„(q) =
2 { [1+f~~ (q) ] [1+2r cosq + s cos2q ] + 2 f„(q)[s (1+cos2q ) + 2r cosq ] } ' 2 (A'16)
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with

(A17a)

(A17b)

We find in practice, as we would expect, that the slowest odd mode corresponds to the uniform (q =0) case,
with r) = —1. This is the function P (0) called P"' in the text, and the corresponding eigenvalue X (0) is called
A. in the text.
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