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Spin diffusion in NMR in solids

T. T. P. Cheung
AInes LaboratoIy, U. S. Departtnent of'FIteIgy, aItd Departl~tettt of CheittistI v,

iowa State Ujriversity, A»tes, loca 50011
{Received 21 July 1980)

The spin-flip diffusion equation for the local magnetization in solids is derived using Mori's

equation of motion with the emphasis on the types of approximations involved. The spin-flip

diffusion coefficient is expressed in terms of the local dipol ~r field. Comparison with other
theories is also given. The effect of spin diffusion on nuclear magnetic resonance in disordered
solids with a spatial distribution of resonance frequency 0)( r ) and longitudinal spin-relax ~tion

time Tt( r ) has been investigated in the limits of (a) rapid diffusion: Dt 2 )) ~hA ~, and (b)
slow diffusion: Dt « )A ( r ) ( and (AA i. D is the spin diffusion coefficient, A ( r ) = i ~( r—)

or T~( r ), ~hA ~ is the maximal variation in A. ( r ), and t is the average distance between cx-
trem t in A ( r ). In the rapid diffusion limit, the case of A ( r ) = T~( r ) and A ( r ) = —i ~( r )

can be studied under the same treatment b ~sed on cumul int expansion method or second-order
perturbation theory, Both yield the same results. The line shape is found to be a motionally
narrowed Lorentzian ~hose width is determined by the sp itial correl ~tion of ~( r ) „ in comp &ri-

son with the result in the limit of D ~, the longitudinal rel ~xation time of the sample as a

whole is lengthened. The difference is determined by the spatial correlation of I/T~(7). On

the other hand in the slow diffusion limit, the case of A {r ) = T~( r ) and A ( r ) =—icy( r )

have to be studied separately. Here selective summation of t perturbation expansion to &n in-

finite order is involved. The procedure by which such expansion is summed depends on wheth-

er A ( r ) is real [A (7) = T&( r ) '] or imaginary [A ( r ) = le)( r )]. The individual absorption

line is now broadened by spin diffusion. In both limits, analytic expressions of the line broaden-

ing and the lengthening of the relaxation time are given. The differences between these results
and those of D =0 and 0o yield information about the spatial distribution of A ( r ).

I. INTRODUCTION

Spin diffusion has played an important role in the
understanding of various nuclear-magrietic-resonance
(NMR) phenomena in disordered solids. Bloember-
gen' pointed out more than three decades ago that
the rather short longitudinal spin-relaxation time T~

in solids with paramagnetic impurites could be ex-
plained by the spatial diffusion of the longitudinal
spin magnetization Mz from distant spins to the
paramagnetic sites where rapid relaxations to the lat-

tice are possible. Such a spatial transport of magneti-
zation can be brought about by mutual spin flip via
the strong dipole-dipole interactions among nuclear
spins; no physical translations of spins are involved.
Similarly, the rapid spin-lattice relaxation in poly-
ethylene' at low temperature was explained in terms
of the diffusion of Mz from the rigid methylene pro-
tons to the mobile methyl protons at the chain ends.
Spin diffusion between different phases in polymer
systems' ' has also been observed recently.

On the other hand, nuclear spins may undergo
self-diffusion in which a spin jumps physically from
one site to another. If a spin experiences different
Larmor precessions at different sites, self-diffusion

will lead to the dephasing' of the spin precession
and consequently the decaying of the transverse mag-
netization M~.

In general, different sites in a disordered solid can
have different environments in which a spin can re-
lax with different T~ and/or precess with different
Larmor frequency ~. Spin diffusion induced by ei-
ther physical translation or mutual spin flip allows
spins to sample such differences. In a broad sense,
spin diffusion represents a motional averaging pro-
cess.

The traditional approach to the spin-diffusion prob-
lem is to set up a diffusion equation for M ( r, t ).
M (r, t)=DU'M (r, t) —A (r)M (r, t)

Then the differential equation is solved according to
a set of boundary conditions determined by the
properties of the system in question. Thus one needs
to know a priori the spatial variation of the scalar
field A ( r ), where
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(2)

On the other hand, in the limit of D 0, a spin at
site r„sees only A (r = r„) and nothing else. Now

p (t) must be represented by a distribution of ex-
ponential terms

p (t) =po((exp[ —A, (r)t])) (3a)

For a complicated A ( r ) even numerical calculations
are rather involved, let alone analytic solutions.

However, it is obvious that in the limit of D
where D is the spin-diffusion coefficient, each spin
has the opportunity to sample all the possible values
of A ( r ) within an experimental time scale. The
net effect is that each spin sees only ((A (r))), the
spatial average of A ( r ). The time evolution of the
average magnetization per unit volume, p (t), which
is the observed quantity, is then given by a single ex-
ponential decay,

p (t) =poexp[ —((A (r )) ) t]

II ~ SPIN-FLIP DIFFUSION EQUATION

3-z +LCD +3'

where HL is the lattice Hamiltonian and Hz is the
Zeeman energy due to the external static magnetic
field Ao

~z= gt".S;,

(4)

We are interested in the time evolution of the
longitudinal magnetization Mz(r„, t) at site r„and
time t in a lattice of spins. Since dipolar interactions
couple spins among each other, the evolution of
each spin depends on its neighbors. The treatment
of such a many-body problem can be handled con-
veniently by Mori's equation of motion. '

The total Hamiltonian for our system may be writ-
ten as

which is equivalent to

p (t) =po" dA 1(A ) exp( —A t) (3b)

which is much larger than the dipolar interactions
HD. We can decompose" 3.'D into the secular and
nonsecular components

where i(A ) is the normalized distribution of A, (r )
in the system and is independent of r.

In Eqs. (2), (3a), and (3b), we have used the sim-
plificationofM (r, t=0) =poforall r.

In this paper, we shall show that corrections to the
above limiting cases can be evaluated analytically.
Indeed, the effects of spin diffusion on NMR are
amenable to detailed analysis in two general cases:
(1) rapid diffusion where D/I'» lhA l, and (2)
slow diffusion where D/I'« lA (r) l and IAA

hA is the maximal variation in A (r ), i.e.,
5A = A

"'" —A '", and I is the average distance
between A

"'" and A '" in the system.
We shall first derive the spin-flip diffusion equa-

tion for the case of A ( r ) = T, (r ) ' in Sec. II.
Though similar equations have been derived by oth-
ers, ' "our derivation based on Mori's equation of
motion" is much simplier, thereby permitting us to
focus our attention on the kinds of approximations
involved. The spin-flip diffusion coefficient will be
expressed in terms of the local dipolar field. Com-
parison with other theories is also discussed. The
results for the rapid-diffusion and slow-diffusion
cases are presented, respectively, in Secs. III and IV.
In the former, since a spin has ample opportunity to
experience the different A (r ) at different sites, the
time evolution of p (t) must be determined as shall
be shown below, by the spatial correlation of A (r ).
In contrast, [V'A (r)]2and V'A (r) suffice for the
latter case, since the time evolutions of a spin at a
site rn depends mainly on the local variation of
A (r) at r„. Our treatment of the rapid diffusion is
based on cumulant expansion method and second-
order perturbation theory. In the slow-diffusion case,
selective summation of a perturbation expansion to
infinite order is involved.

2

XD X~D
t

p & ~ p Sn+Sm- + Sn-Sm+D=
2 ~ ~nm SnzSmz

(nm)

gQo=
2 X X„'-(S„,S- ++S„+S-,)

(nm)

Kp2= —X h,
2 S„+S+

(nm)

KD' = (SCD')",

(6)

and

Ão'= (KD2)'

where

X„' = (3cos'H„—1)t'y'/r 3

= —
—, sinH„cosH„e "h'y'/r„'

h.„~=—sin'H„~e " t y'/r'

For simplicity, the summation (nm) can be restricted
to nearest neighbors only. In Eq. (7), H„and @„
are the polar and azimuthal angles relating the vector
rn connecting the spins at site rn and r to the lab-
oratory frame defined by the external field Hp. y is
the gyromagnetic ratio of the spins and
r„' = Ir„—r

Mz(r„, t) measured with respect to its equilibrium
value Mz(r„, t ~) is given by the difference
between the thermal averages of S over the instan-
taneous ensemble at time t and the equilibrium en-
semble. Using Mori's equation of motion and the
linear response approximation, ' we obtain
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((U(t —r ) [3CD.S„,])[S,,3Co])
Mz ( 7„,t ) = —X l~ d r — Mz ( r, r )

al 0 (s.', )
(8)

where ( ) denotes the equilibrium thermal
averaging. U(t) in Eq. (8) is the well-known modi-
fied time evolution operator; it is sufficient to men-
tion that it involves the projection operator P defined
as

px = X (xs„,) (s„', ) -'s„,

(S„(t)s„g) may be written as

(S„s„~)= (S„as„&)g(((() ex pi p(u„t (10)

where now the time dependence of g&(()
[g(((r) =g (((() ] is primarily dictated by X(,. Substi-
tuting Eqs, (9) and (10) into the memory kernel
leads to

for an arbitrary operator X.
Denoting S„+, S„„and S„by S„a with p = l, 0,

and —1, respectively, a typical term of the memory
kernel in Eq. (8) is of the form

() „„(r)) ' .S„{i)S"{i)s a S 1 )

((U(() [3Co,S„,])[S,.3C(&])/(S-', )

= X ((U(r)!3C(&.s„,])[S,.3C()'1)j(s,„-'. )

= 8„$L'",'(r) —L„'„"'(() +5„$L"', (i)
(rn ) {'m )

with p+y =i, p'+y'=i', S„(()= U(()sa„and
(r) =—U(t)A. „' . The usual approximations for

evaluating such a term are to take the therm ~l

averaging over the lattice and spin, variables indepen-
dently and to apply the random-phase approximation

(s„'(t)s."(t)s ,('s ~ )-
= (S„(r)s„&)(S"(()S ')

x (g,g,g,g, +g,s,g,h, ) . (9)

Since the projection operator P has negligible effects
on the lattice variables except at the lowest temper ~-

tures, ) „(t) can be replaced by X„' (t) Also.

where

L„'"'(()= —,
' S(S+ l)()t„" (())t„" )g((t)cos((u„—(u )(

(12)

L„"'(()= —,S(S+ l) (X„' (()k„)g, (t)go(t)cos(u„t

(13)

L."'(()= —,S(s+ l ) ()t„' (r))t„')g,' (r)cos((u„+(u )(

(14)

The summation (m') is restricted to nearest neigh-
bors of the site r„only. Then from Eq. (8), one
finds

Mz( r„,t) = J dr X L„'"'(t —r') [Mz( r, r) —Mz( r„, r)] —
J dr $ L„"'(t—r) Mz( r„, r) dr

(m) (m)

Pf
d X L'"{( r)[Mz{r, )+Mz(7„, )]

(m)
(15)

Whenever the difference between Mz( r„,t ) and Mz( r, t ) at the nearest-neighboring sites r„and r is suffi-
ciently small, the last term on the right-hand side of Eq. (15) becomes

dr 2 X L„"'(t—r)Mz( r„, r)
{m)

In the continuum limit, Eq. (15) makes the transition to a differential equation

(16)

a' 1%1

Mz( rt) = Jl dr V,

' " L'"'( r, t —r) ~ OMz( r, r) —
Jl dr [L'''( r, ( —r)+2L' '( r, t —r)]Mz{ r, r), (l7)

with

(0((() ~L(0)( r t )
(m)

X L„"'(t) L"'( r, ()
{',m )
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and

X L (2&(r) ~ L(2)( r r )
{m)

ap
d r L ' '(r ) V'M (zr, t )

2 '4o

The spin-diffusion coefficient D and the relaxation
time T(( r ) in Eq. (1) for the case of spin-flip diffu-
sion are then given by

ap2

D= ~ L' '(T)dr
2 ~o

and

T (r) '= L"'(r, 7)dr+„f 2 'L"(r, r)d71 go Jp
(19)

The Markoffian approximation is usually justified
for the reason that the time evolution of go(t) and
g((r) in Eqs. (12)—(14) are governed byXo. In
solids, they decay in time of the order of Tq which is

much shorter than the decay time of Mz( r, r ) which
is of the order of T~. The very nature of the Mar-
koffian approximation limits the validity of the spin-.

flip diffusion equation to t )& T~. In addition, it has
been shown that Eq. (1) fails to satisfy certain ther-
modynamic sum rules. ' This is a consequence of
the Markoffian approximation. Neglecting the contri-
butions of T(( r ) to Eq. (I) for a moment, we can
see that the magnetization current J ( r, r ) defined by
the continuity equation

Mz( r, r) = —0 J (r, r) (20)

becomes

J (r, r) = D'VMz( r,r)— (21)

which means that the current responds instantane-

In Eq. (17), we have denoted the lattice constant by

ap and have also assumed that the environment
around each site is isotropic. For an anisotropic
solid we have to replace (aq /2)L'o'( r, t) by a dyad-

(o)
ic C (r) and the first term at the right-hand side of
Eq. (17) by

p(
C' ( r, t —r) '(7Mz(r, r) drJp

The final transition to the spin-diffusion equation
given by Eq. (1) involves the basic assumptions that
Mz ( r, r ) and O'Mz ( r, r ) decay in time much slower
than L'"( r, r ), i = 0, 1, 2 such that a Markoffian ap-
proximation'9 may be applied and that L' '( r, r) is

independent of r . Hence one may write

p( 2

dr 7 L' '(r, t —7) V Mz(r, r)
u p 2

a~ 9('
J dr L"'(r)V'M ( r, t)

2

The time derivative of J( r, r) may be written as

L'0'( r, 0)VMz( r, r')
Qt 2

ap~ f'('(o)-
Jp

L"'( r, r —r) Mz( r, r) dr

= —7, '[D'7Mz( r, t) + J ( r, t) j (23)

Thus the changes in J ( r, r ) depend not only on

Mz( r, t) but also on its instantaneous value. The
second equality in Eq. (23) follows from the approxi-
mation that there is a single relaxation time v, in
L'0'(r, r) such that we may write

a a~
L' '(7, 0)= r, ' L' '(r, 7)dr =Dr

2 Jp Tc

and

L"'( r, f —r) = r, 'L"'( r-, r r)—
Kadanoff and Martin have introduced Eq. (23)
phenomenologically and showed that the equation
of motion of Mz( r, t ) obtained by substituting Eq.
(23) into the continuity equation indeed satisfies the
thermodynamic sum rules violated by Eq. (I). The
existence of a finite lag (r, A 0) has been important
for the understanding of some low-temperature NMR
experiments. "

Usually when r„between any adjacent sites r„
and r is more or less constant throughout the sam-
ple, the assumption of a r independent D is justified.
However one should note that we have retained the
r dependence in T(( r ). A main source which may
lead to a r dependent T(( r ) and D is the existence
of nonuniform and localized lattice motions. Such
motions may affect X„' in Eqs. (12)—(14) by modu-
lating its angular variables, „(((a dn@„. These local-
ized modulations may be quite different at different
sites. What makes T(( r ) differ from D is that lattice
motions are rather restricted in solids and that D is
given by the time integral of Eq. (12) which involves
cos(ru„—cu )t, whereas the time integrals in T(( r ) '

involve cosmos„r and cos((0„+co ) r Since a nonz. ero
(co„—m ) is mainly due to a difference in chemical
shielding which is much smaller than the decay rate
(-Tq ' ) of g((r), unless there are large amplitude

ously to changes in the magnetization Mz( r, t ). Ac-

tually, there must be some lag in the response of
J (r't), to the changes in Mz(r, r) as indicated by

the time convolution in Eq. (17). Explicitly, by com-
bining Eqs. (20) and (17), we have

' ap~
J ( r, r) = — L' '( r, t —r)'(7Mz(r, r) d7.

0

(22)



1408 T. T. P. CHEUNG 23

and rapid motions (in comparison with T2 ) in

(t), the time integral in D is not affected. How-
ever it is quite a different situation for Tt ( r )
Here we have ~„&& T2 ', the time integrals in

T, ( r ) are highly sensitive to the spectral density" of
(t),i = 1, 2 at the frequencies of Qt„and

(Ot„+at ) = 2co„. In other words, even though lat-

tice motions are of small amplitude, so long as X,', (t)
has sufficient frequency components around ~„and
2ai„, T, ( r ) will be primarily determined by those
components. Since it is entirely possible for different
site to have different types of local motions, thus dif-
ferent spectral density for h. „' (t), we expect to have
Tt(7) ' depend on r.

We conclude this section with the evaluation of the
spin-flip diffusion coefficient given by Eq. (18). It
has been shown that gt(t) in Eq. (12) can be ade-
quately described by a Gaussian decay, "

g t ( t) = exp( —8't')

with 8 approximately' given by

a'= —,', S(S+ I) X () o.) 0.) .
(m}

Evaluating the integral in Eq. (18), with

(~„—«t ) =0, leads to
~ i/2

D =Ca,' X () „'.) „'.)S(S+I)
(m}

(24)

(26)

where the numerical constant C is v'm/240 = 0.11.
When the number of nearest neighbors, z, in the
summation (m) is large, we can replace (Xo h.„)by

its powder average and obtain

t 1/2 'l

D = Cao — Jzs (S + I )
4 h2y2

a 03

(27)

The result in Eq. (27) should be compared with those
of Mori and Kawasaki, ' and de Gennes" for a system
of spins coupled by Heisenberg exchange. The form-
er gives a C = 0.06 while the latter gives a C =0.05.
In making the comparison, we have replaced their ex-
change constant 4J by 44/Str'y'/ao3 For a numer. ical

estimate, let z =6, as in a cubic lattice, and 5 = —,.

Then

by restricting the summation X to the nearest

neighbors only. The result is

D = 0.221r2y~/ao

which is in agreement with the results" of Lowe and
Gade. The diffusion coefficient in Eq. (27) may also
be expressed in terms of the local dipolar field, " H&.

S(s+I) X( 0 o )

III. SOLUTION FOR RAPID DIFFUSION;
D/t'» [&A.[

In this section and the next, we consider solutions

to Eq. (1). Since both mutual spin flip and self-

diffusion lead to the same diffusion equation, though

the physical origins for the diffusion coefficient 8 are

different, we shall not make the distinction in the

subsequent discussion. Further we shall suppress the

subscript o. = Z, T in Eq. (l) whenever no confusion
arises.

In the rapid-diffusion limit, Eq. {1)can be evaluat-

ed in two ways: (a) by cumulant expansion method"
and (b) by second-order perturbation theory. " Both
essentially yield the same results.

A. Cumulant expansion method

Let V be the volume of our system and ( (/'( r ) ) )
be the spatial average of a function f ( r ), i.e. ,

((f(7)))—= V '
J dr f(r ) (29)

3 ( r ) may be rewritten as

A (r) =((A (r))) +8A (r ) (30)

x (expD'7't ) M( r, t ) (32)

The equation is formally integrated with the use of a

time ordered exponential' to
I tat t

M( r, t) = expo —
J SA ( r, 7 ) d7 M( r, t =0)

0

(33}

where the differential operator 5A ( r, t ) is defined as

8A ( r, t ) —= [exp( —D '7't ) ] SA ( r ) (expD '7't )

(34)

One should note that exp(DV't) is given by the

series expansion

expOV't = 1+DR't + —(0'7't )'+
2

where 8A ( r ) is the deviation of A {r ) from its aver-

age value. Note that ((hA ( r )) ) =0. When diffu-

sion dominates Eq. (1), it is convenient to introduce

a quantity M( r, t) by

M( r, t) —= exp[ —((A ( r )))t] expD'vt'fM( r, t)
(31)

Substituting Eq. (31) into Eq. (1) yields the equation
of motion of M( r, t)

BM(r, t) = —[exp( —DV t)]5 (Ar )2

Qt

D =err/60a PHD (28)
+—(DV't )"+

n!
(3S)
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and that V' acts on everything to its right.
The formal solution of M( r, t) is obtained by substituting Eq. (33) into Eq. (31) and using the fact that

M{r, t =0) =M(r, t =0). The observed p(t), the average magnetization per unit voiume, then becomes

p faf

p(t) = ((M( r t)))=.exp[ —((d ( r ))) tl (expDxptt exp, —J pd (r, ) d ttd(r r=p) .) . (36)

To proceed further, we assume for simplicity that M( r, t = 0) =po for all r and introduce a general boundary
condition that the volume of our system extends to infinity whi1e every intensive quantity remains finite as
r ~. One of the consequences of the general boundary condition is that

((V'f(7))) =o (37)

for an intensive quantity f( r ). To see that, one first applies Green's first identity to convert the volume integral
to a surface one,

((v'f( ))) = v ' &$ '7f( ) dK

which is of the order of i'rd', f( r )i(1/i r i) evaluated on the boundary surface. As r ~, it vanishes since
')7,f( r ) remains finite.

Expanding exp(D'v' t ) in Eq. (36) in terms of its power series, Eq. (3S), and applying Eq. (37), we obtain
t

fag
'I

P(t)=Peexet —((d(r)))rl (exPe — Pd(r, )d ) —=PeexP[ —((d(r)))t[P(r) (38)

thus defining q&(t). It is straightforward to expand p(t) in terms of cumulants,
[

faf

{[[)(t)= exp —„' ((SA ( r, t[)) ), dt[+ J ((SA ( r, t[)SA ( r, t2)) ), dr[dr&

W( tat
i n-1+ +(—I)" dt[ dt ((SA(r t ) SA(r, t ))) +4o 4o 4o n ~ n c

where (( )), denotes the cumulant average. The first term in the exponential vanishes because

((SA (r, f))),= ((SA ( r, t)) )= (((expD'7't))SA ( r ))) = ((SA (r))) =0

(39)

where Eq. (37) has been used to obtain the third quality. The second cumulant can be written as

(40)

((SA ( r, t, )SA ( r, t2)) ), dt, dr,

f+t

= Ji „((SA(r, t[)SA (r, t2))) dt[dt2 —Jt &
((SA (r, t, )))((SA (7,t2))) dt, dt2

((SA (7) [expD V'(t[ —t, ) ]SA ( r ) ) ) dt, dt,4o4o
pt

(t —r) ((SA ( r )(expD'vt'r)SA ( r )) ) dr
pt

(t —r)@(r)dr .
0

The last equality defines V(r)
We evaluate O(r) by first introducing the spatial

Fourier transform,

SA (r ) =(2m) ' dq SA (q) expiq r . (41)

Then qd(r) becomes

Using the inverse transform

SA (q) = Jl d r SA ( r ) exp( —i q r )

one sees that

V-[SA (q =O) = ((SA ( r )) ) =O .

(43)

q (r) =(2~)-'V-[ [fdq SA (q)SA (—q)

x exp(-Dq'r) (42)

Thus the q = 0 component cannot contribute to
PP(r) Moreover, if the. average distance between
maxima and minima of A ( r ) is I, then only com-
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The time integral in Eq. (40) may readily be calcu-
lated. However the further simplification of

(t —r)q'(r)dr=t q (r) drJo Jo (44)

may be achieved whenever the region t ( I'/D occu-

pies only a small part of the whole domain of t where

p(t) has significant values. This is always the case
for A ( r ) = i to—( r ) in the rapid-diffusion limit. But
for A ( r ) = T, ( r ) ', we need the more restricted
condition of Dl ' » T~ ( r ) ' and A(T~ ' ) for all r .

From Eq. (42)

qt( )d =(2 ) 'I' '

and from Eq. (42')
(4sa)

ponents with I q I I ' will contribute. In other
words, V(r) must decay in time faster then
exp( —Dl '7 ).

An alternative expression of 'p(r) may be given in

terms of the spatial correlation

( (SA ( r ) SA (7+ p ) ) ) . This is achieved by substi-
tuting Eq. (43) into Eq. (42),

4( )r=(2n) 'J/dq I dp ((SA(r)SA(r+p)))

&& exp( —i q p )exp( —Dq'r )

(42')

with SQz( r ) =ST~( r ) ' and 50r( r ) =Soo( r ).
Since I «0, Eq. (46a) indicates that pz(t) decays

with a longer T]

T, = [((T~ ( r ) ') ) —I'z]

than that in Eq. (2) with D
The manifestation of motional narrowing' ' shows

from Eq. (46b) that rapid diffusion leads to a
Lorentzian absorption line which sharply peaks at the
average frequency ((ot( r )) ) and has a half-width at
half height of I &. This contrasts with the motionless
(D = 0) spectrum given by the static distribution
l(to) in Eq. (3b). l(to) may take on any shape and
its width is roughly given by ((Sto{r )Sot( r ) ) ) 'i',
the square root of its second moment, which is much
larger than I &. An important point that should be
made is that the motional narrowed linewidth I ~ is

determined by the spatial correlation

( (Sto( r )Sto( r + p ) ) ), thus containing spatial infor-
mation about our system.

B. Second-order perturbation theory

The normalized eigenfunctions of the oper ttor
D V' are the plane waves V ' ' expi q r . In the
rapid-diffusion limit, it is appropriate to expand the
spatial part of M( r, t) ip terms of this complete
orthogonal set. To this end, we write

( 4 D), "d ((SA(r)SA(r+p))) M( r, t) = Y{t)W(7) (48)

(45b)

Both equations yield a 'P(r) dr of the order of

I» I {I» I
l'I».

Now, consider the higher-order cumulants in Eq.
(39). Since exp(D'V't )SA ( r ) must decay faster
than exp( —Dl 't ), the n th-order cumulant is roughly

of the order' of

t}aA I(ISA Il'ID)" '

thus in the rapid-diffusion limit of Dli
contributions from the n ) 2 terms can be neglected.
Retaining the expansion to the second order, we ob-

tain the principal results:

pz(t) =poexp[ —[((T~(r) ')) —I'z]t } (46a)

and

W(7) = & 't'QC„expiq r (49)

Y(t) = —A Y(t) (50)

and

where Y (t) and W( r ) 'are only functions of t and r,
respectively. Each component of the wave vector q
is any integer times 2m V ' '. A discrete q is used in-

stead of the continuous one because most perturba-
tion methods" are given in terms of eigenfunctions
with discrete eigenvalues; in doing so, our treatment
here will conform with standard methods. '

Substituting Eqs. (48) and (49) into Eq. (I) leads
to

and

PT{t) Poexp[t ((to(7)))t —I rt] (46b)
$ I [A —Dq' —((A ( r ) ) ) ]5
q

where I is defined as

((Sn.(7)Sn.(r +P)))
4rtD" IpI

50.(q)SII.(—q)
(2 )

—3P—1
~ dq Dq'

—I' 'SA (q - q') }C,=0, (S i)
q

where 5,, is the Kronecker symbol and 5A (q) is
q q

again given by Eq. (43). The set of equations
represented by Eq. (51) will have a nonvanishing
solution only if the secular determinant formed from
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the coefficients of the unknown C-, 's vanishes, i.e.,

~[A —Dq' —((A ( r )) ) ]5,—V 'SA (q —q')
~
=0
(52)

Since only SA (q)'s with q ~ I are significant, in

the limit of DI ' » ~AA ~, the off-diagonal terms
I

V 'SA (q —q ) may be treated as perturbations.
Hence according to the standard perturbation theory
the eigenfunction X-, of the operator Dvr' —A ( r ) is,

to the first order of V 'SA (q —q')

X-„=expi q ~ 7+ V
SA (q' —q) expi q r

i( D

In the limit of V ~, the summation X- may be re-

placed by V/(2rr)' dq. Then one has

((A ( ))) (2 )
—3V f d

SA (q)SA (—q)
Dq'

(60)
The combination of Eqs. (59) and (60) ieads to the
same results in Eq. (46a) and Eq. (46b) obtained
from the cumulant expansion method.

Two comments should be made here. First,
without SA (q —q'), M (t) with large q would have
decayed to zero rapidly at t —(Dq') '. Now, as indi-
cated by Eq. (55) that

=expiq r + X R, expiq' r
q q

q (wq)

thus defining R r; the eigenvalue A-, is, to the
q q I

second order

A =((A(r)})+Dq'
SA (q' —q)SA (q —q')

D (q' —q')

The solution to Eq. (1) becomes

M( r, t) = Xb-, X-, exp(-A-, t)

= Xexpiq r b-, exp( —A-t)

(53)

(54)

M-„(I) = b-, exp( A, t)—

+ X R b ~exp( A, t)—, (61)
q (&q)

SA (q —q')'s couple M-, (t) to other q' modes, in

particular to the q'=0 mode. Thus M-, (t) has a

slow component which decays with the rate of Ap,
where Ap stands for the real part of Ap. At larger t,
such component dominates others. In other words,
at sufficiently large t, M ~0(t) will approach zero
with the same rate as the siow M- 0(t) mode.

The second remark is that if one chooses to have
the initial condition. of M, o(0) =0, p (t) becomes

p(t) = X R-, ob-, [exp( —A-t) —exp( —Aot)] . (62)
q wp

R~ b exp( —A, t )

q (wq)

(55)
The coefficient b-, 's are determined by the initial

condition

Instead of decaying monotonically in time, p (t) first
grows from p(t =0) =0 as time increases and then
decays back to zero with a rate constant of Ap.

V 't2C-„=b~+ X R, b

q (wq)

Since M(r, t) can also be expanded as

M(r, t) = XM-(t) expiq r

the initial condition in Eq. (56) becomes

(56) C. Evaluations of I

The calculation of I is simplest when there are
only few t[ components in 80( r ). For example, a
sinusoidal 50 ( r )

50(r) =50 cosk r

yields

M-, (t=0)=b + $ R, b

q (wq)

(56') I' =4350/Dk2 (63)

Taking the spatial average over Eq. (SS), one finds

p (t) = bo exp( —Aot ) + X R, Ob-, exp( —A „t ), (58)
qwp

which reduces to

p(t) =poexp( —Aot) (59)

for a uniform M( r, t =0) =po. To obtain Eq. (59),
we have used the fact that

R „,—IAA II'/D «1
q Ap

In other cases, the decomposition of 80 ( r ) into its
Fourier components is not always that straightfor-
ward; very often, 50 ( r ) is not known a priori

Nevertheless, we are able to calculate I" explicitly for
two cases which are quite general in nature and may
have some practical applications.

In the first case, we assume a globular distribution
of 80( r ) as depicted in Fig. 1. Our system consists
of spheres with radius roughly Ig and 0( r ) = 0~ em-
bedded in the background where 0 ( r ) = Qq. The
average separation R between spheres is assumed to
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Eq. (47) of the following form

((5n( r )5n( r + p)) )

= ((50(r)50(r))) X P„(p)(—1)" . (66)
n p

P„(p ) is the probability that 5 0 ( r ) has changed
sign n times when we go from site r to site r + p.
Since the spatial distribution is completely random,
we can assume the Poisson distribution for P„(p )

P (p)= ~ expIpl -Ipl
Iz ! t,

(67)

Q(r)

where the correlation length t, represents the mean
distance between sites that have opposite sign in

50 ( r ). Now Eq. (66) becomes

FIG. 1. Spatial distribution of 0 ( r ) in the globular
model.

((5n(7)5n(7+ p))) = —,'(n, —n, )'

x exp( —21p I/&, ) (68)

r
- 2

I =Ci(ni —02) Ig Nv
D V

(65)

with the numerical constant C~ given by

C~ ——3 I dp dr pr exp[ —(2r +p +2r p)]ap ~p

be so large that R'/D is much longer than any NMR
experimental time scale. In other words, the spheres
are isolated and cannot communicate with one anoth-
er through spin diffusion within a NMR time scale.
Thus the center of any particular sphere may be con-
veniently chosen to be the origin of our coordinate
system, as shown in Fig. 1.

The variation of 0 ( r ) as a function of. r is

chosen to be a Gaussian

0(r ) = (0]—n2) exp( —
I r I'/Ig') + 02 . (64)

At I r I » lz, 0 ( r ) = 02 and at I r I
& lz,

0( r ) = 0~. The calculations of I' are rather sim-

ple. In the limit of Nv/ V « 1, one finds

Substituting this into Eq. (47), gives

r.= —,', (n, —0, )', (i,'/D) . (69)

((50(r)50(r+p)))
= (0( —02)2a ((1 —a)'P'( p )

—a(1 —a)[1 —P'(p)] I

+(0, —0,)'(1 —a) Ia'P" (p)
—a(1 —a)[1 —P"(p)]} .

(70)

For the general situation, in which the fraction of
sites with 0, is a [the fraction of sites with 02 is
thus (1 —a) ], 50 ( r ) again can only take on two
values of opposite sign which may differ in magni-
tude. Because of the inequality in the number of
sites with 0] and 02, it is convenient to introduce
two probability functions: P'( p ) and P" ( p ),
where the former represents the probability that
given 0( r ) = 0~, 0( r + p) equals 0, while the
latter represents the probability that given
0 (r) = 02, 0 ( r + p ) equals 02. The spatial corre-
lation function is then evaluated to be

N is the number of spheres in the sample and
U

3
8 lg' is roughly the volume of each sphere.

The second case we consider is that of a complete
randomness in the spatial distribution of 0 ( r ) in

which 0( r ) can take on only two values, i.e.,
0 ( r ) = 0 ~ or 02. . We shall first consider the situa-
tion where the number of sites with O~ is equal to
that of 02 and then extend to a general ratio later.

In the former, one may use the fact, that 50 ( r )
can only take on two values of opposite sign but of
equal magnitude, to obtain the spatial correlation in

and

(72)P"( p ) —= ( I —a ) + aP ( p )

The normalized probabilities P(p) and P ( p )
have the obvious properties of

P'(p- )=P (p- )=0

Since P'(p) =a and P"(p) =(1—a) as p ~, and
P'(0) = P"(0) = 1, one may write

P'(p) -=a+(I-a)P'(p)
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and

p'(o) = p" (o) = I .

and to rewrite Eq. (I) as

M( r, s) = [s+A ( r )] '+ [s+A (7)] 'DV'M( r, s)

Substituting Eqs. (71) and (72) into Eq. (70) yields

((80( r )80( r + p))) =a (I —a)(0, —0,)'

x [(I —a)P'(p)+aP"(p)]
(73)

Similar to Eq. (68), we may associate P'( p ) and
P"( p) with two correlation lengths, I,

' and I,", by

—= 6 ( r, s) +6 ( r, s)D'7'M( r, s) (78)

M(r, s) reduces to G(r, s) in the limit of D 0.
We have assumed that M( r, t =0) is the same for

all r and, without loss of generality, equals to unity.

In the slow-diffusion limit, D'7' can be treated as
a perturbation; its effects on M( r, s) may be ex-

pressed linearily in M ( r, s ). Namely, using the

linear approximation tha&

and

P'(p) =exp( —2{pl/I, ')

P"(p ) = exp( —2 I p I/I,")

VM( r, s) = —6 (r,s) [&A ( r )]M( r,s)
we obtain

DP' M(r, s) =D {2[@'A(r)] 6(r,s)
—[V'A (r )]6( r, s) }M(r,s)

((80 ( r )80 ( r + p ) ) )= X (80„)'exp
—2 pl

Substituting this into the first equality in Eq. (47)
leads to

(75)

r.=x(80„)' '"
N

(76)

which bears a close resemblance to the second equali-

ty in Eq. (47). However there is a basic difference
between them; the latter requires the complete
knowledge of the spatial dependence of A (7) to
determine I". ~whereas only the statistical distribution
in A ( r ) around any particular site is required for the
former.

IV. SOLUTIONS FOR SLOW DIFFUSION:
DI '« IA (r) I, la-A I

It is convenient to introduce M( r, s), the Laplace
transform of M( r, t)

M(r, s) =& e "M(r, t) dt (77)

The correlation length I,
' (I,") represents the mean

distance at which, if one starts from a site with 0 ~

(Qq), one will find a site with 02 (0~). It is a sim-

ple rnatter to show that

I,= a ( I —a ) ( 0 i
—02) '[( I —a ) I,

' + ai"']/4D

(74)

When a = —(hence I,'=I,"), Eq. (74) reduces to Eq.

(69).
In more general cases, one may always introduce

several correlation lengths and 80 ( r ), and obtains a

general expression

—= Dh(r, s)M(r, s) (80)

thus defining h ( r, s). Such linear approximations
hold for all s when A ( r) is real but are limited to s

with large real part, s, when A ( r ) is imaginary. We
shall return to this shortly. A special feature of Eq.
(80) is that h( r, t), the inverse Laplace transform of
h ( r, s), becomes a memory function in the equation
of motion of M( r, t). To see that, one substitutes

Eq. (80) into Eq. (78) and rearranges terms to obtain

M(r, s) = [s+A (r) Dh(7 s)] —'

The inverse transform is

M( r, t) = —A ( r )M( r, t)

(81)

+D h( rt —T)M, ( r, T) dT . (82)
a P

To proceed further, we must treat the cases of
A (r) = icu(r ) —and A (r ) = T~(r ) ' separately. As
have been mentioned earlier, when A ( r ) is ima-

ginary, the linear approximation is appropriate only
for s with large s. The reason is that for A ( r )

i cu( r ), 6—( r, s ) has poles only on the imag-

inary axis in the complex s plane. Spin diffusion
leads to the dephasing of the transverse magnetiza-

tion; the decay of Mr( r, t) at large t is reflected by

the shifts of these poles onto the left half s plane.
An important point is that Mr( r, t) with t ~ is

characterized by Mr( r, s) with s 0. Thus G( r, s)
is inadequate to describe Mr( r, s ) in the limit of
s 0. However, when s is much larger than the real

parts of the poles of Mr( r, s ), the difference
between 6 ( r, s ) and Mr( r, s ) becomes insignificant.
On the other hand, when A ( r ) = T, ( r ) ', the poles
of G ( r, s) are located on the real axis. Spin diffu-

sion may lead to slight shifts of these poles along the
real axis as well as introduce small imaginary parts.
But since T, ( r ) dominates the time evolution of
Mz( r, t) for all t, Mz(r, s) is adequately described

by 6 ( r; s ) for all s.
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A. Imaginary A ( r ): 3 ( r ) = —i ao( r )

We shall first examine the short-time behavior of
Mr( r, t) where the linear approximation is adequate.
Substituting Eq. (80) into Eq. (82) and using the fact
that at small t

In particular, when cu( r ) takes on the form

cu(r ) =(uo+K r

where coo and K are independent of r, Eq. (84') is

exact. Explicitly, one has
oaf

e I&a( r )rMr( r &) d& te lw( r —)AM ( r t )
p

Mr( r, t ) = exp[i cu( r )t —D {K{'t'/3] (84")

leads to

Mr ( r, t ) =i ru( r )Mr( r, t )

+ D {i ['7'co ( r ) ] t —[Pat ( r ) ]'t' }

x Mr( r, t) (83)

which is formally integrated to give

Mr( r, t) =exp i&a( r )t+i [V'(o(r—)]t'
2

——['7o)( r ) ]'t'
3

(84)

Thus the first-order corrections to the zeroth order
Ot( r )t are of the order of (tDI ')(Isrut) and

(tDI ')(Iseult)'. To extend Eq. (84) to longer t, one

may have to include higher-order corrections which

involve the operator (D'7')", where n «2. Howev-

er, an important point is that since Mr( r, t ) decays

at least with a time constant (( r ) ', where

]( r ) = {D ['7ru ( r ) ]'/3 }'I' (85)

if the higher-order corrections are significant only

whe,n t » f( r ) ', as would be the case when Ot( r )

is a weakly varying function of r such that

I}'7'(r)}» I"{'7"cv(r)I for n «2 (86)

then Mr( r, t) in Eq. (84) holds essentially for all t

Moreover, with the exception that r is at the local

extremum of Qt(r ), Eq. (84) reduces to

Mr( r, t ) = exp[i cu( r ) t —$'( r ) t'] (84')

and

pf 2

Jp (t —r)e '"' ' 'Mr(7, r) dr = —e '"'""M ( r, t )
2

Equation (84") has been derived by others using dif-

ferent methods, ' and has been used to describe the
effect of spin diffusion on the evolution of the
transverse magnetization when the external field
varies linearly across the sample. Our Eq. (84') may

be considered as the generalization to the case in

which K is a function of r.
Physically, Eq. (84') and the approximations it

represents can be understood as follows. When
D =0, Mr( r, t)'s at different sites differ only in their

phases but their amplitudes remain constant, i.e.,

I Mr( r, t ) I
= {Mr( r, t =0){=1

since there is no communcation between spins. A

nonvanishing D leads to the dephasing of Mt ( r, t ).
Consequently Mr( r, t ) decays with a rate of $( r ).
Since (( r ) may be site dependent, i.e. , a function of
r, Mr( r, t )'s at different sites now differ not only in

their phases but also in their amplitudes. The differ-
ences in amplitudes cause further actions from spin
diffusion which tends to average out such differ-
ences. Mathematically, the further actions from spin
diffusion are represented by the higher-order correc-
tion terms mentioned above. Thus the higher-order
corrections are important only when g( r ) varies rap-

idly as a function of r such that the differences in

the amplitudes of Mr( r, t)'s become significant at
times t ~ ( (r ). If the inequality in Eq. (86) holds,
the effects of the higher corrections would not be felt
until t » (( r ) ' at which Mr( r, t ) essentially de-

cays to zero, Hence in practical terms, Eq. (84') is

valid for all t.

It is illustrative to derive Eq. (84') from another
point of view. The formal solution for M( r, s) can
be obtained by iterating Eq. (78)

M(r, s) =G(r, )[s1 +VD' (Gr, ) s+DV' (G, r) s'x7(G7, )s+ . . +D"'7'G(7, s) . . '7'G(7, s)+

Using Eq. (86) and neglecting all V"ru( r ) but Vcu(r ) leads to

(87)

(88)

whose inverse transform is simply

e,„~-„),X
{D[i '7m( r )] t'/3 }" {i~(7)t—D['V~( r )] t'I'3

n 0 ll .
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B. Real A ( r ): A ( r ) T&( r )

In this case, the linear approximation is valid for all

s. Substituting Eq. (80) into Eq. (78) yields

M (r )= ' (89)
G ( r s ) s + G ( r s ) 'P2 —rss

where
r 2

Psr =2D V
Tr(7)

and

But

[Tr(rp) '+K(rp)'( r —rp)]

f

m n

T, ( r ) ' = X a ( r )
m 0

(92)

can become negative as r ~ or r —~ depending
on the direction of K( rp); thus we have artificially
created source points in our system which lead to
the growth of Mz ( r, t ) as t

A closer examination indicates that one cannot
represent Tr ( r ) ' in Eq. (I) by any finite expansion
in r,

sr = —Tr ( r ) '+P,

s2= T, (r) ' ——Pr(1 —i J3)/2

s3 Tr( r ) ' —Pr(1 +i J3)/2

and that

Mz(r, t) =
s exp[ —[T,(r) ' —Pr]t [

+ —,'exp[ —[Tr(r) '+Pr/2]t ]

x cos( J3Pr t/2)

(90)

(91a)

Equation (91a) is remarkably different from Eq.
(84'), though they agree to the lowest-order expan-
sion in D. If we had used the short-time approxima-
tion that leads to Eq. (83), we would have obtained

The denominator is a polynomial cubic in s; the poles
of Mz( r, s ) are given by the roots of the cubic equa-
tion. With the inequality similar to Eq. (86), rer is
expected to be much larger than Pq except at the lo-

cal extremum of Tr ( r ) '; thus one of the roots is

real while the other two are complex conjugate. For
P~ && P2 —0, one finds that the poles are located at

If n is odd, we always have Tr( r ) ' & 0 as r ~ or
r —~. For even n, we have Tr(r) ' +~
depending on the sign of a„. While a„)0 does not
lead to the source point contradiction, it implies that
at sufficiently large r, Mz( r, t ) always decays in-

finitely fast. Furthermore the sign of a„depends on
the location of the reference point r0', therefore the
expansion in Eq. (92) is not unique, nor is the solu-
tion.

The reason that V'[I/Tr ( r ) ] suffices for
Mz( r, t ), as indicated by Eq. (91a},may be under-
stood as follows. The iteration of Eq. (81) shows
that

Mz ( r, s ) = G ( r, s) X [D'72G ( r, s ) ]"
n 0

(93)

Now V' acts only on G ( r, s) to its immediate right.
Neglecting terms with '7'[I/Tr( r ) ] and performing
the inverse Laplace transform yields Eq. (91a). Thus
the infinite series in Eq. (87) is summed differentIy
for the case of 3 ( r ) = I/Tr ( r ) and A ( r )

i rp( r ) —In the la. tter, V' acts on everything
to its right. Namely, the nth term in the expansion
in Eq. (87) may be written as

D"P' G(r s) vr G(r s)

=D"[2[PA(r)] G(7,s) )"
Mz ( r, t ) = exp[ —t/T, ( r ) +Ptt'/6] (91b}

which is appropriate only for t « [P~rTr( r )] 'i'.
Indeed, as t ~, Eq. (91b) gives the nonphysical
result of Mz( r, t) ~. The reason is that, as dis-

cussed in the derivation of Eqs. (84') and (84"), Eq.
(91b) is appropriate only if one can expand Tr ( r ) '

as

T, (r) '=Tr(rp) '+K(rp) (r —rp)

where rp is some reference point and K( rp) is weak-

ly dependent on rp. It is e'xact when E ( r p) is a con-
stant. This implies that we may write Eq. (I) as

Mz ( r, t ) = D V'Mz ( r, t )

—[Tr(rp) '+K(rp) ( r —rp)]Mz(r, i)

3n!+D" [VA (7)]'" ' G( r, s)s" + D"[ ]3"n!
(94)

where the ellipsis represents terms with V"A ( r ),
where n ~ 2. The first two terms on the right-hand
side involve only '7A (r ). Retaining only the first
term and then summing the series, we obtain Eq.
(91a). On the other hand, summing only the second
term, one gets Eq. (84') instead. Therefore the na-

ture of A ( r ) dictates which terms in Eq. (94) should
be retained for the summation. In either case, when

I ( VA (7) ) » I" ['vr "3 (7) (

for n ~ 2, '7A ( r ) sufficies for M ( r, t ).
For the sake of completeness, we should discuss

the situation in which r is at local extremum of
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T, (7) where p~ =0. Here, the denominator in Eq.
(89) reduces to a polynomial quartic in s; the poles of
Mz( r, s ) are obtained by solving the quartic equa-
tion. Their locations on the complex s plane depend
on the sign of p', which can be either positive or neg-
ative depending on whether 7 ls Bt. a local minimum
or maximum on T~( r ) '. For P2 ) 0

., =-T,(-)-'- Ip, l, , =-T, (-)-'+ Ip, l,
and

Mz( r, t) =exp[ t/T, —( r )] coslp, lt

for P2 ( 0

where v = —, m. /g'. The approximation of
I'7col = lsd~

—at2I/w at the interface has been used to
obtain the second equality. As for the case for I in

Sec. III C, $ depends on the geometric parameters of'

the system. Indeed, from Eq. (98), one sees that ( is

lnvelsely ploportlonal to ( w/g )
Another interesting model is the spatially stochastic

distribution of two we11-separated resonances 0)] Bnd

cu2 whose relative abundance are a and (I —a },
respectively (cf. Sec. III C}. Here the decay of each
species of spins can be followed. For the spins with

co[ and ~2, the dec ly r ate constants, given by Eq.
(85) Bre, respectively.

s~ = —Tt(r) ' —Ip21 ~2= T~(7) + Ip2I

Mz( r, t) =. exp[ t/T~( r—) ] coshlP2lt
Bnd

Dz (I )
~l ~2

6

' 2' l/3

(99}

C. Evaluations of the decay rate of p (i)

t

Dz a—
6 Oo

2' 1/3

We first consider the case of 3 ( r ) = t ~( r—).
The effect of spin diffusion on the transverse mag-

netization can be best seen by following the decay of
the amplitude of a spin echo" as a function of the de-

lay time I between the initial preparation pulse and

the peak of the spin echo. This decay is described by

p,,(t) = ((exp (
—[((7)t ]' [) ) (95)

where the subscript se stands for spin echo. Since
the decay of each spin is characterized by (( r ), the

decay rate ( of p„(t) may be defined as the spatial

average
Bp„(t)

( ( )'=((('( r )) ) =—
r-0 (96)

3 V
(97)

where N is again the number of aggregates in the

sample. Now suppose that the aggregates are spheri-

cal in shape with a radius Ig && ~. Then 6 =4mtg'

and ( ()3 becomes

The second equality indicates how such a quantity

may be determined experimentally.
( f )' involves (([x7cu(7) ]')) which can be evaluated

for simple models. For instance, let us again consid-

er the globular model described in Sec. III C in which

aggregates (need not be spherical in shape) of spins

with &u(7) = rut are surrounded by spins with

ru( r ) = co2. For simplicity, we shall assume a con-

stant I'7'( r ) I at the interface of width w and area b

Since I'7co( r ) I is nonvanishing only at the interface,
we easily find that dt = ((M(r, s =0))), (101)p (t)

o p(] =0)

because a larger (smailer) area under p (t)/p(t =0)
reflects a slower (faster) decay of p (t) With this de-.
finition, one obtains from Eq. (89) that

( ( )
' =((T ( r ) [I+T, (7)'p', ])) (102)

ao Bnd z Bre, respectively, the lattice constant and the
number of nearest neighbors that each site has as de-
fined in Sec. II. The factor of (I —a) in Eq. (99)
represents the probability that a given site has
cu( r ) = at2, whereas the factor of a in Eq. (100)
represents the probability that a given site has
cv( r ) =(u).

Two remarks are in order. First, in contrast with

the motional narrowing in the limit of large D, each
resonance line is now broadened by spin diffusion in

the limit of small D. The half-widths at half height
are roughly (~ and (2. This agrees with the motional
broadening due to slow exch'ange between two fre-
quencies originally discussed by Anderson, " The

1

second remark is that for a ~ —, , the two resonance

lines are broadened differently: the larger component
of the two absorptions is narrower than the smaller
one.

It is more difficult to characterize the effects of
spin diffusion on the decay of p (t) for
A ( r ) = T] (7) ' in the sense that the definition of j
can be quite arbitrary, as may be seen from Eq.
(91a). We shall conveniently choose the definition, '"

( ( )'=D I%co[2(N22/v)(w/I )

= D ( u) (
—

022 ) 2 ( N u/ V ) ( wig ) (98)

where the p2 term has been neglected Bnd the fact
that T~(r) ' &) p~ has been used. The difference in

the decay time Ar between that of Eq. (102) and that
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with D =0 is

=2D ((T, ( r )"['7[I/T)( r )] ]') ) 0

V. DISCUSSION

Spin diffusion leads to communication among spins
at various sites in a solid. We have shown that such
communication may provide useful information
about the spatial inhomogeneity in the resonance fre-
quencies and relaxation times. The rate of the spin-
flip communication is directly proportional to the lo-

cal dipolar field.
Our approach to the problem of rapid diffusion

(D/ ')) ldA l) is similar to that in the stochastic
theory of resonance absorption introduced by Ander-
son" and Kubo. 29 The equation of motion in Eq. (I)
permits us to determine the time dependence of the
time correlation V(r ) explicitly, thereby reducing
W(t) to a spatial correlation function. On the other
hand, our formulation of the slow diffusion
[D& ' « la ( r ) I, ]ax l] closely resembles the field-
theoretic many-body theory. " Indeed, M(r, s) and

G( r,s) in Eq. (78) are, respectively, the anaiogs of
the many-body and single-particle Green's functions.
The different ways in the summation of the infinite
series in Eq. (87) [cf. Eq. (94)] for the case of
3 ( r ) = i &u( r ) —and 3 ( r ) = T~ ( r ) ' represent the
different renormalization procedures by which

G ( r, s ) is "dressed" to include the many-body ef-
fect.

In disordered solids like glassy polymers, it is quite
common to observe multicomponent decay in the
magnetization. The usual interpretation is that the
different relaxation times correspond to different spa-
tial phases in the sample. Magnetization-recovery ex-

periments ' indicated that these phases may corn-
municate with each other via spin diffusion. Howev-
er such experiments are confined to systems where
the differences in the relaxation times are large.
Their interpretations also vary according to the model
used.

Recent advances" in solid state NMR provide al-

ternative techniques by which one may alter the
spin-flip diffusion coefficient by modulating the dipo-
lar interactions. Thus the rate of the communication
between spins may be artificially controlled. Magic
angle spinning" can suppress spin-flip diffusion when
the spinning speed is comparable or larger than the
local dipoiar field. Since T~(r ) ' [or T~~(r ) ' in the
rotating frame] and the spin-flip diffusion coefficient
D are determined by different frequency components
of the spectral density of the dipolar interactions (see
Sec. II), magic angle spinning which suppresses the
spin-fiip diffusion may leave T~( r ) [or T, ( 7 ) ]
unaltered. Thus spin diffusion can be monitored by

studying the NMR relaxations as a function of the
spinning speed.

Multiple pulse techniques also suppress dipolar in-

teractions. They provide high resolution absorption
spectra in which the dipolar broadening is eliminated.
The effectiveness of the suppression of the dipolar
interactions depends on the cycle time used. Thus
multiple pulse techniques may provide alternative
ways by which the effects of spin diffusion can be
studied.
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