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Order-disorder transitions in stage-2 graphite intercalation compounds
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Ordering phenomena in stage-2 graphite intercalation compounds are studied. Stacking faults
in the graphite matrix provide a realization of McCoy-Wu one-dimensional randomness. We
predict a smeared first-order transition to a phase characterized by long-range order parallel to,
and glasslike structural disorder in the direction perpendicular to the graphite planes.

I. INTRODUCTION

The structure and physical properties of graphite
intercalation compounds are the subject of numerous
current experimental investigations.'~'® These com-
pounds consist of metallic layers sandwiched in
between parallel carbon layers in graphite. Usually,
two neighboring metal layers are separated by » gra-
phite layers, forming a regular ‘‘stage-»’" stacking se-
quence. At high enough temperature the metal ions
are disordered (liquidlike) within layers. As the
temperature is lowered the ions may undergo a tran-
sition to some ordered structure. In stage-1 com-
pounds, such as CgCs, CgRb, C¢Li, C¢Yb, and C4Eu
(Refs. 1—5) a variety of ordered phases have been
identified. The transitions to these structures have
been recently analyzed on theoretical grounds.'"!2

In the low-temperature phases of stage-one com-
pounds the metal-ion system exhibits genuine three-
dimensional long-range order. This seems not to be
the case for stage-2 alkali intercalation compounds
such as C4Cs, Co4Rb, and C,4K.>~!0 Diffraction ex-
periments performed on C,4Cs (Refs. 5 and 6) show
peaks characteristic of short-range order between and
within planes. (At very low temperatures a com-
mensurate 2 X 2 phase, which we are not going to dis-
cuss, coexists with this disordered phase.) In CxRb
and CyK, structures with in-plane long-range order
and disorder between planes have been report-
ed.””!% 13 The main purpose of this paper is to pro-
vide an explanation for the occurrence of such struc-
tures. We will argue that the difference between
stage-one and stage-two compounds is due to stack-
ing faults in the latter.

The graphite hexagonal layers can appear in one of
of three different relative positions, 4, B, or C. The
stacking in pure graphite is ABAB - - - . Stage-one
compounds are stacked in.a regular AMAMA - - -
configuration where M denotes a metal-ion layer. An
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‘‘ideal’ stage-two compound may have the structure
AMABMBCMCAMA - - - "> However, in the physi-
cal intercalation process, stacking faults may easily be
created, resulting for example, in the sequence
AMABMBAMACMC - - - (Fig. 1). These faults give
rise to a finite width of the graphite Bragg peaks’™'?
along the ¢ axis. The experiments show that such
faults appear on a microscopic scale at about one out
of five layers.

In the absence of faults, the metal system may un-
dergo a transition to a phase with three-dimensional
long-range order. Transitions to such structures can
be analyzed along the same lines as for the stage-one
compounds. The occurrence of stacking faults im-
poses a very particular kind of randomness in the
physical system. To our knowledge these compounds
are the first physical realizations of one-dimensional
randomness of the type introduced for the Ising
model by McCoy and Wu,'* and discussed in a gen-
eral context by Lubensky.'> The system is transla-
tionally invariant (nonrandom) in directions along
the graphite planes, but translational invariance in the
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FIG. 1. Stacking sequences in stage-2 intercalation com-

pounds (a) without and (b) with stacking faults.
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¢ direction is lost.

We consider the effects such randomness can have
on the structure of the ordered phases, and the na-
ture of the phase transitions to them. We find that
the ordered phase is characterized by a well-defined
wave vector in the plane, but that there is no long-
range order in the c direction. We also believe that
the transition in Cy4K and CyRb is a smeared first-
order transition, of the type discussed by Imry and
Wortis.'® We do not believe that these transitions are
realizations of two-dimensional melting. Rather, the
structure can be viewed as regular ordered within
planes and ‘‘glasslike’’ between planes.

II. ORDERING IN THE PRESENCE OF
STACKING FAULTS

Although the presence of stacking faults has been
demonstrated experimentally we shall consider first,
for completeness, the order-disorder transition in hy-
pothetical ‘‘pure’ systems without stacking faults.
As in most theoretical studies, the effect of defects
will be analyzed as a perturbation around some pure
system limit.

A. Systems without stacking faults

By analyzing diffraction patterns, Parry er al.'’ and
Zabel et al’ have suggested an ordered structure of
the form 4 a4 ByB CyC for C3Rb and C,4K. This
is consistent also with recent results by Hastings
et al® and by Suzuki et al.' In this notation «, 8,
and y denote three symmetric positions of hexagonal
metal layers incommensurate with, and rotated with
respect to the graphite layers. This structure is
characterized by a wave vector kK which lies in the ab
(graphite) plane. The order parameter describing a
transition to this structure has twelve components
corresponding to the twelve vectors in the star of K.
Since the appropriate Landau Hamiltonian (see Ref.
11) contains third-order invariants, mean-field theory
will predict the transition to be first order. (Note,
however, that in the closely related n =6 systems
2H-TaSe; and 2H-NbSe, there seems to be a second-
order transition'? despite the existence of third-order
terms.'®)

In general, for any such structure where the unit
cell is not doubled in the ¢ direction a first-order
transition is expected. On the other hand, if the
transition does involve breaking a translational sym-
metry in the c¢ direction, third-order terms will not
occur and the transition may be continuous.!"!? We
now proceed to consider the effect of stacking faults
on the nature of the ordered phase described above.

B. Ordered phase in a system
with stacking faults

In this section we study how the structure and
properties of an ordered metal-ion system will be af-
fected by stacking faults. The graphite matrix gives
rise to a spatially varying field acting on the metal
ions. This field is periodic within graphite planes, but
there is no translational symmetry in the ¢ direction
because of the randomness introduced by the stack-
ing faults. Rather than treating the relatively compli-
cated metal-ion system we consider a simpler, but
closely related model. In this model the metal ions
are subjected to a one-dimensionally modulated
periodic field. We believe that the conclusions drawn
for the simple model are valid for the real intercalant
system. Generalization is possible to the realistic sit-
uation where the ions are moving to a realistic two-
dimensionally modulated field imposed by the hexag-
onal graphite layers.'®

To define our model, consider first a single metal-
ion layer (Fig. 2). Such a system is conveniently
described in terms of a phase ¢ (x,y) giving the posi-
tion of the metal lattice in the x direction relative to
the periodic field!®

2
H= ﬂ—8] —vcos(p—A) . 2.1

dx

Here, the first term represents the elastic energy of
the metal lattice which favors an incommensurate
phase, ¢ =8x. The second term represents the
periodic potential which favors the commensurate
phase ¢ =A. Turning now to the three-dimensional
(3D) system we shall denote the phase in the ith
layer by ¢,;(x,y). The full Hamiltonian takes the
form

2
H=73 {%—8] —vcosle;(x) —A;]
—?%uij[tbi(x)—(bj(x)]z] » (2.2)
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FIG. 2. Metal-ion lattice in periodic potentials. The po-
tentials at different z coordinates, /, are shifted by the
amount A; to represent stacking faults.
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where the last term is the coupling between layers,
which favors a regular 3D metal crystal. Stacking
faults will be represented by some random distribu-
tion such as A; = Ag; where, for example, P (¢;)
=pd(e;) +(1—p)d(e;—1). Consider first the con-
dition for mechanical equilibrium which yields the
Euler-Lagrange equations

42
¢' — +vsin(¢; — A,)+2u,-,-(¢,~¢j)=0 . (2.3)
J

Consider first the effects of randomness on the
commensurate structure. We look for commensu-
rate solutions of the form ¢,(x) =¢;:

vsin(e;—A) + Ju,(c;—¢;) =0 . 2.4)
j

These are N equations (for N layers) with N un-
knowns, and in general we expect a solution. To il-
lustrate such a solution one can replace the cosine
potential by a periodic parabolic one'® (Fig. 3),
vl —A)% =7 < ¢, — A, < . This leads to the
equations

vic—A)+ X u(ci—¢)=0 . (2.5)
j

The solution?® to this system of linear equation is
given by

= [ expligh) 5q) (2.6)
2 w(q)
where
Alg) =L S exp(—igna, .7
N
and
w(q)=v+2u,-j{1—-exp[——iq(i—j)” . Q9
j

The diffraction pattern corresponding to this struc-
ture is given by

S(E]'=G'1,qz)=lzzexp(i(;xc,+iq,l)l2 , (2.9
G, I
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FIG. 3. Sinusoidal and truncated parabolic potential pro-
files.

where G'l are the reciprocal-lattice vectors parallel to
the planes of the periodic potential. Since the ¢,’s are
random, the diffraction pattern will have no sharp
peaks in the g, direction. Obviously one does get
peaks which are sharp in the g,,q, directions. The
physical picture that emerges is that the layers of the
ordered metal crystal more or less follow the carbon
stacking faults.

We now turn to the case where the metal system is
incommensurate with the carbon system. We again
consider the simplified situation with truncated para-
bolic potentials, and nearest-neighbor coupling
between planes. In the absence of the locking term
(v=0) the incommensurate solution is given by

b =dx . (2.10)

Treating the locking term to first order in v and look-
ing for solutions of the form

b =20dx + vy .11
one finds

0 =3 f G (xx )V (x) 2.12)
where

1q \ d
G (x,x") =f__‘ﬂ‘ﬁi_ explig,(x —x")

w’(q1.9,)
+ig,(1—m)] , (2.13)
02(q1,q,) =qi +2u (1l —cosq,) , . (2.14)
and
fm(x)=sin(dx—4,,) . 2.15

We have assumed nearest-neighbor coupling, u, only.
Generally, the solutions have the form

(X)) =8x +v Y apmsin(dx —4A,) + 0 (v?) . (2.16)

Again, there will be sharp peaks in the ¢y,q, plane at
positions

(ge,q,) =n% +G, , Q.17

e., at any position which can be written as a sum of
a reciprocal-lattice vector of the incommensurate
crystal plus a reciprocal vector of the periodic poten-
tial. Because of the randomness of the coefficients
a,, the peaks are not sharp in the z direction.?! We
expect that when the model is generalized to graphite
these conclusions will still be correct.
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C. Nature of the order-disorder transition

While until now we have studied the ordered phase
far from the transition, we now turn to consider the
nature of the transition itself. Starting with an ideal
system without stacking faults the transition can be
described by the appropriate Landau-Ginzburg-
Wilson (LGW) Hamiltonian (see Ref. 11). Our first
task is to identify the way in which the randomness
induced by the stacking faults enters into the Hamil-
tonian.

The effects of randomness on phase transitions
have been studied by Brooks-Harris*? and Luben-
sky."® The situation we are studying corresponds to
having a local transition temperature 7,(z) which
varies in a random way in the z direction, but is in-
dependent of the position within planes. Such ran-
domness was found to be strongly relevant. There-
fore, one would expect the critical behavior to be dif-
ferent from that of the pure (ideal) system. McCoy
and Wu'4 did an exact calculation with such random-
ness for the 2D-Ising model and they found a smeared
transition. Therefore there is reason to believe that
in 3D one would also get a smeared transition. If the
ideal system undergoes a first-order transition, one
can repeat the arguments of Imry and Wortis'® for
the one-dimensional disorder and find that the first-
order transition will indeed be smeared. The problem
that we are considering falls into the category corre-
sponding to their Fig. 3(b). Probably there will be
inhomogeneities on a scale larger than the perpendic-
ular correlation length in the system. .

To demonstrate the connection of the ordering in
the presence of stacking faults to the random systems
mentioned above consider the following LGW Hamil-
tonian:

2
"

ax | T i)

H=3ryp_+

—[vexpGia /) +c.c.l+u, (Yy_; +c.c.)
ij

(2.18)

Here, y; is a complex order parameter describing a

commensurate, mass density wave on layer /.

p(F)=y+,exp*iq-T, Ef=—i%)? . (2.19)
Inserting ¢, (T) =4 expli¢;(T)] and expanding the
interaction term in (¢, — ¢;), thus ignoring amplitude
fluctuations, one immediately obtains a Hamiltonian
like the one discussed in Sec. II B. A, is the random
variable which favors different phase shifts in dif-
ferent layers. Thus in this particular model random-
ness enters the Hamiltonian through a high-order
term. However, in the vicinity of the phase transi-
tion fluctuations are important giving rise to effective
renormalized coefficients. Through this procedure
randomness will be transferred from the higher-order
terms to the second-order term. At this point, our
previous discussion based on Refs. 15 and 22 can be
directly taken over.

III. CONCLUSION

In this paper we have considered possible ordering
in stage-2 graphite intercalation compounds such as
C,4Rb and C4K. We have argued that stacking faults
in the graphite matrix have important effects both on
the nature of the ordered state and on the phase
transition. To be specific, a three-dimensional or-
dered state with long-range order parallel to graphite
layers, but no translational symmetry perpendicular
to them may exist. Such a state is consistent with
available experimental observations of diffraction
peaks that are sharp in the xy plane but have a finite
width in the z direction. We predict the transition to
be a smeared first-order transition.
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