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Although theorists have so f;ir investig'ited first-order transitions much less than second-order

transitions, first-order tr insitions ire much richer in v iriety. Conceivable are i first-order tr in-

sition between i prototypic phase;ind i ferroic phase derived from it, between two ferroics
derived from the same prototypic, ind between 'i prototypic or one of its ferroics ind inother

prototypic or one of its ferroics. The present piper deals with first-order tr;insitions, each

between a prototypic and one of its ferroics. These first-order tr;insitions;ire still rich in variety.
For them the concept. se»se is introduced; they ire divided into second-sense transitions, third-

sense transitions, and so on. First-sense tr;insitions ire 'ilso defined; they are seen to be identi-

cal with second-order transitions. The thermodyn imics of sense is developed. Especi illy the

(third) ideal case, for which 'ill of Ck's with k ~ 5 ind none of Ck's with 2 ~ k ~ 4;ire cqu il to

zero (Ck is the 2kth degree coefficient in the free-energy function), is investigated systematic'il-

ly, as well as the first ind second ideal cises where all of Ck's with k ~ 3 or 4 ind none of Ck's

with 2 ~ k ~ 2 or 3;ire equ il to zero. In the third ide il c ise the first, second, and third sense»

;ire possible. For experiment illy discerning between the second-;ind third-sI nse transiti()n»,

sever;il theoretic illy deduced rel itions irc Usible. in ex imple of which i» th;it 4 ( Kp/KI. - ( 6 ol.

6 & Kp/KF C ~ iccording to the second- or third-sense tr;insition (Kp, KF 'lre the electric suscep-

tibilities of the prototypic and ferroic, respectively, «t the transition temper iture),

I. INTRODUCTION

When one phase (phase I) can be regarded as a

slight distortion in atomic configuration of another
phase (phase II), phase I is called a ferroic phase.
(This definition of ferroic is substantially equivalent
to the old one" which is in terms of change in orien-
tational state. Although feffoic is originally a unifica-
tion and generalization of ferromagnetic, ferroelectric,
and ferroelastic, the present paper is concerned only
with nonmagnetic substances. ) If phase II is not a

slight distortion of any phase, phase II is called the
prototypic phase of phase I, If phase II is a slight dis-
tortion of a third phase and this phase III is not a

slight distortion of any phase, we recognize both the
phases I and II as ferroic phases derived from phase
III, and phase III as the common prototypic phase
of phases I and II. Phase II is not recognized as pro-
totypic for phase I. No phase can be both prototypic
for one phase and ferroic for another phase. (The
nuance between prototypic phase and pIototype was ex-
plained in Ref. 3.)

A ferroic phase is often abbreviated to a ferroic,
and a prototypic phase to a prototypic, omitting
phase.

As is well known, phase transitions can be divided
into first-order transitions and second-order transi-
tions. So far, theorists have been interested much
less in first-order transitions than in second-order

transitions (as the textbook by Landau and Lifshitz
typifies). However, first-order transitions are much
richer in variety.

The transition between two different prototypics or
between a prototypic and a ferroic that is derived
from another prototypic or between two ferroics
derived from different prototypics cannot be second
order but must be first order.

Two ferroics derived from the same prototypic ire
said to be conformal, lineal, or collateral to each oth-
er, according as their space groups are identical, or
inter-related as proper sub- and supergroups, or oth-
erwise. ' ' The prototypic is lineal to any of its fer-
roics, since the space group of the former is a proper
supergroup of the space group of the latter. The
transition between two conformal, lineal, or collateral
phases is said to be a conformal, lineal„or collateral
transition, respectively. Every conformal or collater il

transition must be first order. A lineal transition can
be either first or second order. To detail further, two
lineal phases are said to be immediately or mediately
lineal, according as in the sequence of possible phases
there is no or at least one phase whose space group is
both a proper subgroup of the space group of one of
those two phases and a proper supergroup of the
space group of the other of those two phases. (When
the transition parameter system as well as the proto-
type are given, the sequence of possible phases is
determinate. ) The transition between two mediately
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or immediately lineal phases is said to be a mediately
or immediately lineal transition, respectively. Every
mediately lineal transition must be first order. An
immediately lineal transition can be either first or
second order.

As examples, let us consider transitions in BaTi03,
a substance familiar to many physicists. The hexag-
onal and the cubic phase are different prototypics. .

The tetragonal, the orthorhombic, and the rhom-
bohedral phase are all ferroics derived from the cubic
phase. The transition between the cubic and tetrago-
nal phases is an immediately lineal transition. &The

tetragonal-to-orthorhombic transition and the
orthorhombic-to-rhombohedral transition are both
collateral transitions. In particular the tetragonal-to-
orthorhombic transition is not lineal; the symmetry
of the orthorhombic phase seems to be, but is not
rigorously, a proper subgroup of the symmetry of the
tetragonal phase; the fact should be noted that the
diad axis of the orthorhombic phase in any oriate (or
orientational state) is not parallel to the tetrad axis of
the tetragonal phase in any oriate. If the cubic-to-
orthorhombic transition is imagined, it is an immedi-
ately lineal transition. The sequence of possible fer-
roics derived from the cubic phase contains also two

phases that belong to point group m with the mono-
clinic unique axis along a cubic principal axis or a cu-,

bic face diagonal, respectively. If the transition from
the cubic phase to either monoclinic phase is imag-
ined, it is a mediately lineal transition. (Since the
cubic-to-orthorhombic transition is immediately
lineal, it, generally speaking, can be second order.
But it is found not to pass a certain checkpoint for
second-order transition; hence as a theoretical con-
clusion it must be first order. The cubic-to-tetragonal
transition is found to pass the same checkpoint; ac-
cording to actual observation, '0 it is first order. )

In the subsequent sections we will make a more
detailed investigation of immediately lineal transi-
tions, especially from prototypics to ferroics. As has
been stated, these transitions can be either first or
second order. Of them the first-order ones are still
rich in variety. We will introduce the concept sense.
Then these first-order transitions are divided into
second-sense transitions, third-sense transitions, and
so on. (One may rename nth-sense transitions to
transitions of the nth sense. ) The higher in sense,
the more drastic. First-sense transitions are
smoothest„ they are identified with second-order
transitions. (No one will confuse the concept sense
with the concept rank which was introduced in Refs.
5 and 6.)

II. GENERAL FOUNDATIONS: FIRST IDEAL CASE,
SECOND IDEAL CASE

Let a prototype and a transition parameter system
be given. For the sake of simplicity the transition

parameter system is assumed to comprise only one
parameter (denoted by Q) belonging to a one-
dimensional nonidentity representation of the space
group of the prototype. (The assumption of one-
dimensional representation is not absolutely neces-
sary; it is only for the sake of simplicity. ) In the case
of one-dimensional representation, all possible fer-
roics are conformal with one another and immediate-
ly lineal to the prototypic. We will consider one of
them.

The free-energy function per unit volume 4 is as-
sumed to be expandable into a power series in Q.
Obviously,

XC Q2k

kNO

(2.1)

where C~'s are mere coefficients, Every phase needs
to satisfy the equation

ae 0
1)Q,

and the inequality

(2.2)

Q2g)

QQ2
(2.3)

(Subscript s means "spontaneous. ") For the ferroic,
since Q, & O„Eq. (2.2) becomes

X (k + 1)Cg+[Qs =0
0

Inequality (2.3) becomes

(2.4)

X ( k + I ) ( 2k + I ) Cg+ ( Q,
'" & 0

Ic 0

which can be rewritten to

(2.5)

X [ —,
'

(k + I ) (k + 2 ) j C„+,Qg'" & 0
0

by taking account of Eq. (2.4) and the fact that
Q2 & 0

Equation (2.4), in general, has many different
solutions

(2.6)

Q,
' =,f( (C),C2, C3 ~ ~ ~ )

Q,'= f2(C(, C2, C3 ~ ~ ~ )

(2.7a)

(2.7b)

where each of the right-hand sides is a single-valued
smooth real function of coefficients Cq's. Since the
left-hand sides are positive, these functions need also
to be positive. In the ferroic under consideration,
one of Eqs. (2.7) holds. Let the equation

Q, = f;(C),C2, C3 ~ )

hold. We refer to this. f;(C~, C2, . . . ) as the venule
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function of the ferroic under consideration. (Anoth-
er ferroic conformal with the ferroic under considera-
tion may have the same or another venule function. )
We define sense. The venule function

f, (C, , C, , . . . ) is said to be nth sense (or to be of
the n th sense), when firstly

f;(Ci, . . . , C„,C„+i, 0. 0, . . . )

(Ck's with k ~ n +2 are all zero) is finite for general
nonzero values of C~, . . . , C„,C„+~ and secondly

lim C„+~f~(C~, . . . , C„,C„+(,0, 0, . . . )
Cn+1-0

is not identically zero independently of C~, . . . , C„.
The second item, of course, implies

lim
~ f, (C~, . . . , C„,C„+,, 0, 0, : ) ~

=~
C„+(~0

of C3. Equation (2.9) has only one solution

Qs'=f i(Ci.C3) = —C)/2C3 (2.10)

Since Q,
' and C3 are positive, C~ needs to be nega-

tive. How high sense is the venule function
f , (C, , C', )? We find

lim C3f((C),C3) = ——C(
C ~0

2
2

which is not identically zero. Therefore f~(C~, C3) is

first sense. How high order is the transition'? We
see f~(O, C3) =0. Hence the transition is second or-
der. This exemplifies that in general a first-sense
transition is second order. (Although the argument
in this paragraph is not especially new, it may serve
for the understanding of sense. )

In the second ideal case where Ck's with k ~4 are
all constantly zero and any other Ck is not, Eqs. (2.1)
and (2.4) reduce to

The ferroic having the nth sense venule function is

also said to be nth sense. Moreover, the transition
from the prototypic to the n th sense ferroic is said to
be n th sense.

For simplicity it is assumed that all Ck's except C0
and C~ are temperature independent and that C~ is a

monotone increasing function of temperature. If the
transition is second order, then at the transition tem-

perature the Q, of the ferroic becomes zero and

hence, according to Eq. (2.4), C~ must become zero;
in other words the transition temperature is deter-
mined as the temperature that makes C~ =0 (when

C~ as a function of temperature is given a priori ).
One necessary and sufficient condition for the transi-
tion to be second order is that the venule function of
the ferroic is zero at C& = 0 independently of the oth-
er Ck's, i.e.,

f;(O, C3, C3. . . , ) =0

the proof is easy.
We will below consider, in succession, three ideal

cases where Ck's with k ~ 3 or 4 or 5 are all con-
stantly zero and any other Ck is not. Conventionally,

many physicists have often replaced real cases ap-

proximately by the first or second of those ideal
cases.

In the first ideal case where Ck's with k ~ 3 are all

constantly zero and any other C„ is not, Eqs. (2.1)
and (2.4) reduce to

@=CP+CiQ'+C, Q4 (C3 &0)

Ci + 2C3Q~ = 0

(2.8)

(2.9)

respectively. In order that 4 is positive for great
values of

~ Q ~, it is necessary to assume that the coef-
ficient in the highest degree term, i.e., C2 is positive,
Inequality (2.6) reduces to C3 & 0; thus, in the first
ideal case, inequality (2.6) also requires the positivity

4= Cp+ C(Q'+ C3Q + C3Q (C3 & 0), (2.11)

C ( + 2C3Q,'+ 3C3Q,4 =0 (2.»)
respectively. C~ needs to be positive. Inequality
(2.6) becomes

C, +3C,Q,'&0 . (2.13)

We assume

1 —3C)C3/C3' & 0

Then Eq. (2.12) has two solutions

(2.14)

C2) 0 and C) (0 (2.17)

In order that inequalities (2.13), (2.14) hold and ex-
pression (2.16) is positive, it is necessary and suffi-
cient that

C3 ( 0 and C) ( C3 /3C3 (2, 18)

the latter of which is the same as inequality (2.14).
How high sense are the two venule functions? We
find

lim C3f3(Cj C3 C3) C3
C 0

3

which is not identically zero. Therefore

Q,'= f)(CI,C2, C3)

= —C3/3C3+ (C,/3C3)(I —3C, C,/C ) i

(2.15)

Q, =,/3(C), C3, C3)

= —C3/3C3 —(C3/3C3) ( I —3C, C3/C j ) 'i'

(2.16)

We follow the convention that ( )'i' is not negative.
In order that inequalities (2.13), (2.14) hold and ex-
pression (2.15) is positive, it is necessary and suffi-
cient that
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f2(C|,C2. C3) is second sense. Expression (2.15) can
be rewritten as

C(/[ —C2 —C2(1 —3C|C3/C2 ) ] (2.19)

When C3 is close to zero, expression (2.15) is equal
to the power series in C3

—C)/2C2 —(3C|'/8C2 ) C, + 0 (C3' ) . (2.20)

Using expression (2.19) or (2.20), we find

tropical example, the theory of ferroelectricity by De-
vonshire"). However, there is no natural reason for
C3 to be always positive. If C3 & 0, the eighth (or a
higher) degree term has an essential effect and its
neglect is not permitted.

The third idea) case will be investigated below.
(The reader is assumed to be, to some extent, famil-
iar with the mathematics of cubic equations. ) Equa-
tions (2.1), (2.4) become

ff (C/, C2, 0) = —C(/2C2 (2.21)
4 =Cp+C]Q +C2Q +C3Q +C4Q (C4 & 0)

which is finite for general nonzero values of Cl, C2.
Moreover, using Eq. (2.21), we find C 1 + 2C2Q, '+ 3C3Q 4+ 4C4Q,6 = 0

(3.1)

(3.2).

lim C2 f ~ (C~, C2, 0) = —
2

C/
C2~0

respectively. C4 needs to be positive. Note that Eq.
(3.2) can be rewritten as

which is not identically zero. Therefore
fl(C|,C2, C3) is first sense. Comparing Eq. (2.21)
with Eq. (2.10), we see

fl(C(, C2, 0) = fi(Ci, C2) (2.22)

Thus f~(Ci, C2, C3) is an extension of fi(C~, C2).
On the other hand, f2(C, , C2, C3) is not any exten-
sion of f~(C~, C2). How high order are the first- and
the second-sense transition~ We see

—2q —3@x +x3 = 0

by putting

X = Q,'+ C3/4C4

p = (C3/4C4)'(I —8C2C4/3C3 )

tt ( C3/4C4) ( I —4CpC4/C3' + 8C( C4 /C3 )

(3.3)

(3.4)

fl(O, C2, C3) =0

f2(O, C2, C3) = —2C2/3C3 & 0

Hence the first-sense transition is second order while
the second-sense transition is first order.

If the solutions to Eq. (2.12) were expressed as

C2 & 3C3 /8C4 (3.5)

(In this case it follows that p' —q' & 0. ) Case p is
where p ) 0 and p —q ( 0, i.e.,

Three cases, viz. , case n, case P, and case y are dis-
tinguished. Case y is where p & 0, i.e.,

Q'=fi(Ci C»C3)

= —C2/3C3+ (I/3C3)(C2 —3C(C3)', (2 23) and

C2 & 3C3 /8C4 (3.6)

Q,'= f2(C), C2, C3)

= —C2/3C3 —( I/3C3)(Cp —3C|C3)'i (2.24)

( I —8C,C4/3C, ' )' & ( I —4C, C4/C, ' + 8C, C4 /C,' )

(3.7)

instead of expressions (2.15), (2.16), then the sense
of f1 (C, , C2, C3) would not be uniquely determined;
even the order of the transition to the ferroic with

f~(C|,C2, C3) would not be uniquely determined.
Expression (2.23) turns to expression (2.15) or
(2.16) depending on whether C, & or & 0.

III. THIRD IDEAL CASE

A. Basic main part of theory

The third ideal case where Ck's with k ~5 are all
constantly zero and any other Ck is not has never
been systematically investigated by any theorist. For
first-order transitions it has conventionally been as-
sumed that C3 is positive and the terms of degree
higher than sixth have no essential effect (see, as a

the latter inequality is equivalent to the inequality

3C|C3 32C2C4 12C|C4 12C|C4

C 9C C2C3 C C
(3.8)

since the left-hand side minus the right-hand side of
inequality (3.7) is equal to the left-hand side of ine-
quality (3.8) multiplied by

16C22C4'/3C34

Case e is where p —q' & 0, i.e.,

(I —8C2C4/3C3 ) & (I —4C2C4/C3 +8C)C4/C3 )

(3.9)
or

3C|C3 32C2C4 12C ) C4 12C|C41— + &0
9C3 C2C3 C2 C3

(3.10)
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(In this case the inequality p ) 0 follows naturally. )
If in inequality (3.10) we put C4= 0, we get the same
as inequality (2.14); thus inequality (3.10) is an ex-
tension of inequality (2.14). On the other hand, ine-

quality (3.8) is not. In cases n and P, we define A+
and 3

Q,
' =f„(C,), C2, C3, C4)

r 1/2
C3 C3 8C2C4

4C4 2C4 3 C32

0,'+ 2ll 7Tcos—
3

In case n, Eq. (3.2) is found to have the three
solutions

A~= (C3 /8C4 ) [4C2C4/C3 —1+ (1 —8C2C4/3C3 )' '1

(3.1 1)
where

(n =0, 1, 2), (3.20)

= (C,'/8C' ) [4C,C /C —I —(1 —8C2C4/3C3 ) ]

(3.12)

Obviously, A+ ) or&A according as C3 ) or(0. Of
A+, A, we denote the greater by max(A+, A ) and
the lesser by min(A+, A ). Then inequality (3.7) can
be rewritten as

—m(n &a

8C2C4
cosa = 1 ——

3C,'
4C2C4 8C1C4+

C2 C3

sina = (4C2C4/J3C3 ) (1 —8C2C4/3C3' ) '~'

(3.21)

(3.22)

C~ ) max(A+, A ) or & min(A+, A ), (3.13)

and inequality (3.9) as
3C[C3 32C2C4 12C1C4x +

C2 9C3 C2C3

12C'C'
C2C2

min(A+, A ) & C~ & max(A+, A ) (3.14) (3.23)

In case y, Eq. (3.2) is found to have the only solu-
tion

Q,'= f ~(C, , C2, C3, C4)
r 1/2

C3 C3 8C2C4 1—1 sinh —,y
4C4 2C4 3C32

(3.15)

where

sinhy = 8C2C4

3 C32

-3/2 '

4C2C4 8C, C4'1— +
C2 C3

where
(3.17)

8C2C4o. coshP = 1—
3C'

i

4C2C4 8C, C4'1— +
C2 C3

(3.18)

and o'=+1 or —1. Since coshp and
(1 —8C2C4/3C3 ) are positive, the value of o is
determined by only the sign of the expression

(3.16)

In case P, Eq. (3.2) is found to have the only solu-

tion

Q' =.f (C i.C2, C3, C4)
1 1/2

C3 C3 8C2C4 11— a cosh-p
4C4 2C4 3( 3

According to Eq. (3.23) and inequality (3.21), n is of
the same sign as C2. If in Eq. (3.20) we put n = 3,
we see f 3 =,f0, thus symbol f 0 may be replaced by
f'a

The temperatures with which we are concerned are
restricted to those not much lower than the tempera-
ture making C1=0. On unlimited cooling, the fer-
roic succeeding the prototypic directly might not con-
tinue most stable but get changed to another ferroic
(of a different sense) at a certain temperature. In the
present paper we do not deal with such ferroic-to-
ferroic transitions.

For a while we consider case n. How high sense
are the three venule functions~ The bringing of C4
close to zero does not break inequality (3.10), even if
C1=0. When C4 is close to zero, we find, from Eq.
(3.23) and inequality (3.21),

a = (4CgC4l~3C3 )(I —3C(C3/C2 )' '+0 (C4')

(3.24)

By use of Eq. (3.24), Eq. (3.20) can be rewritten as

/„(C), C2, C3 C4), '

C3 2 2C2(1+2 cos , n 7r)+-
4C4 3C3

r
~ 1/2

2C 2 3C[C3+
3/, 1 ——, sin

3
)777+0(C4)

3 C3

1 —4C2C4/C3' + 8C)C4'/C3 (3.19) (3.2S}

We have +1 if positive, and —1 if negative. Though
the sign of p is not determined, it is no matter; we
agree that P ~0.

From Eq. (3.25) we find

lim C4 fo (Ci, C~, C3, C4) = ——C. 3C-0 ' ' ' ' 4
(3.26)
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which is not identically zero, and

1/2
C2 C2 3C)C3

,f1 (C1,C2, C3, 0) = —
3

+
3C3 3C3 C22 lim C4,fp (O. C2, C3, C4) = —3C3/4

C4~0
(3.37)

On the other hand, Eqs. (3.26), (3.27), (3.28), if we

put C] = 0, become

(3.27)

r ' 1/2
C2 C2 3C]C3

f2 «1,C2, C3, 0) =-,
C —,C

(3.28)

f1 (O, C2, C3, 0) =0

f2 (0,C2, C3, 0) = —2C2/3 C3

Comparing Eqs. (3.34), (3.35), (3.36) with Eqs.
(3.37), (3.38), (3.39), we conclude that

(3.38)

(3.39)

which are both finite for general nonzero values of
C1, C2, C3. Therefore, fp (C1, . . . , C4) [or
f3 (C1, . . . , C4) ] is concluded to be third sense,
whilef1 (C1, . . , . , C4) and, f2 (C1. . . . , C4) must
be lower sense. Comparing Eqs. (3.27), (3.28) with

Eqs. (2.15), (2.16), we see

f1 (C1,C2, C3, 0) = f1(C1,C2, C3)

f2 (C1,C2, C3, 0) = f2(C1,C2, C3)

f11 (o, 2, C3, 4) =g2(C2, C3, C4)

fP(O, C2 C3iC4) gp(C2 C34C4),

f2 (0 C2 C3 C4) g1(C2 C3 C4)

(3.40)

(3.41)

(3.42)

3C3 3C3 32C2C4

Substituting Eqs. (3.30), (3.31), (3.32) into the
right-hand sides of Eqs. (3.40), (3.41), (3.42), we
obtain

Thus f1 (C1, . . . , C4) is an extension of
f1(C1,C2, C3), and f2'(C1, . . . , C4), of
f2(C1,C2, C3). Since in Sec. 11 it has been proved
that, f1(C1,C2, C3) is first sense and, f2(C1,C2, C3)
second sense, it is now evident that f1 (C1, . . . , C4)
is first sense and f2 (C1, . . . , C4) second sense.

How high order is each of the first-, second-, and
third-sense transitions? When C1=0, Eq. (3.2)
becomes

f1 (O, C2, C3, C4) =0

3C3 3C3 32C2C4 '

f2 (O, C2, C3, C4) = — + 1—
8C4 8C4 9C3

(3.43)

(3.44)

(3.45)

Qg (2C2 + 3C3Q, + 4C4Q, ) = 0

which is found to have the three solutions

Q.'=gp(C2 C3 C4) =o
~

Q,'= g1(C2, C3, C4)

0.29)

(3.30)

1 —32C2C4/9C3 ) 0 (3.33)

whose left-hand side is the same as the content of
( )' 2 in expressions (3.31), (3.32). The set of
g„(C2,C3, C4) (n =0, 1, 2) should be identical with

the set of f„(O,C2, C3, C4) (n =0, 1, 2). Which ele-
ment is identical with which element? From Eqs.
(3.30), (3.31), (3.32) we find

= —3C3/8C4+ (3C3/8C4) (1 —32C2C4/9C3 ) ' '

(3.31)

Q,
' =g2(C, , C3, C4)

= —3C3/8C4 —(3C3/8C4) (1 —32C2C4/9C3 ) ' '

(3.32)
Note that when C1=0, inequality (3.10) becomes

C1+ C2g,'+ C3Q4+ C4Q6-0 (3.46)

must be satisfied. Of course, Eq. (3.2) also must be
satisfied. Subtracting Eq. (3.46) from Eq. (3.2) and
dividing the resultant equation by Q,', we get the
equation

Thus it turns out that the first-sense transition is
second order while the second- and third-sense tran-
sitions are first order. Equations (3.43), (3.44),
(3.45) can also be deduced from Eqs. (3.20)—(3.23),
but this method is less simple than that described
above.

What is the equation determining the first-,
second-, or third-sense transition temperature'? At
this temperature, what is the expression for the Q, of
the ferroic? We obviously have C1=0 and Q, =0 for
the first-sense transition. For the second- or third-
sense transition, since it is first order, the Q, of the
ferroic is nonzero even at the transition temperature.
From this fact and Eq. (3.1), it follows that at the
transition temperature the equation

gP(C2, C3, 0) =0

g1(C2, C3, 0) = —2C2/3C3

lim C4g2(C, , C3, C4) = —3C3/4
C ~0

4

(3.34)

(3.35)

(3.36)

C2+ 2C3Q,'+ 3C4Q, = 0

We assume

1 —3C2C4/C3 ) 0

(3.47)

(3.48)
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x ( I —3C2C4/C3 )' (3.50)

Obviously,

g4( C2p C3 0) C2/2C3

lim C4g3(C2, C3, C4) =. —2C3/3
C ~0

4

Hence the Q,
' given in Eq. (3.49) pertains to the

second-sense transition, and that in Eq. (3.50) to the
third-sense transition. Substituting Eq. (3.49) or
(3.50) into Eq. (3.46), we obtain

'3 2'
2C3 9C2C4 3C2C4Ci+

27C2 2C2 C2
\

=0

(3.51)

Then Eq. (3.47) is found to have the two solutions

Q,'(second) =g4(C2, C3 C4)

C3/3C4 + (C3/3C4)

x ( I —3C,C4/C32 ) '~2, (3.49)

Q, (third) =g3(C2, C3 C4)

= —C3/3C4 —( C3/3C4)

$2+
BQ2

= 8(C,Q,'+3C3Q, +6C4Q,6) . (3.54)
, S

At the first-sense transition temperature, since

Q, =0, we have (B2d2/BQ2), =0. At the second- or
third-sense transition temperature, by substituting
Eq. (3.49) or (3,50) into Eq. (3.54), we get

$2(p

BQ2

16C33

9C42

2

3C2C4
C'

If inequality (3.33) holds then inequality (3.48)
holds; but the converse is not true. For the second-
or third-sense transition, inequality (3.48) is abso-
lutely necessary, but inequality (3.33) is not. For
f2 (C), . . . , C4) or fo (C~, . . . , C4), the domain of
C~ need not contain point C~ =0. Equation (3.45)
or (3.43) is not absolutely necessary. Even if ine-

quality (3.33) does not hold, inequality (3.48) en-
sures the holding of inequality (3.10) at the transition
temperature.

In the present ideal case, the (B2d/2BQ2), of the
ferroic is calculated as

which is the equation determining the transition tem-
perature; of the double sign +, let the upper or lower

part be taken according to the second- or third-sense
transition.

At the first-sense transition temperature, since
C~ =0, inequality (3.10) becomes inequality (3.33).
At the second- or third-sense transition temperature,
since C~ satisfies Eq. (3.51), the left-hand side of
inequality (3.10) becomes

22C3 3C2C4

243C2 C4 C3

i/2
3C2C4 3C2C4
2C' C'

4

{3.ss)

We consider again the first-sense transition tempera-
ture. At this„although Q, and (B24/BQ2), are zero„

BCi BCi Bg2

are nonzero. Differentiating Eq. (3.2) with respect to

Ci, we get
105C2C4 72C2 C4x 1 — +

22C' 11C3
Bg.' I

BCi 2C2
(3.56)

4 1/2
36C2C4 3C2C4

11C2 C'
4 2

(3.52)
Differentiating Eq. (3.54) with respect to C~ and us-

ing Eq. (3.56), we get

(I —3C2C4/C3 )' '= L (3.53)

then the content of the large brackets in expression
(3.52) can be rewritten as

—,', ( I + L )2[2+ ( I + 4L ) 2)

Therefore inequality (3.48) ensures the holding of
inequality (3.10).

Remember that we have assumed inequality (3.48).
Let us put

8 8'4
BC) Bg',

= —4 {3.s7)

C2&0 . (3.58)

For the second-sense transition to be actualized, it is

On cooling, which transition is actualized, the first-
or second- or third-sense transition? For the first-
sense transition to be actualized, it is necessary that
the right-hand sides of Eqs. (3.56), (3.57) are both
negative. The set of these two inequalities is, obvi-
ously, equivalent to the single inequality
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necessary that the right-hand side of Eq. (3.49) is real
and positive, or in other words, inequality (3.48) holds
and the right-hand side of Eq. (3.49) is positive. It
is, moreover, necessary that the right-hand side of
Eq. (3.55) with the upper part of the double sign + is
positive. The set of these three inequalities is found
to be equivalent to the set of two inequalities

and if
then the transition
to be actualized is

TABLE I. The conditions determining whether the first-,
second-, or third-sense transition should be actualized, in

the third ideal case where Ck's with k ~ 5 are all constantly
zero and any other Ck is not.

C2&0, C3&0 . (3.59)

For the third-sense transition to be actualized, it is
necessary that inequality (3.48) holds, the right-hand
side of Eq. (3.50) is positive, and the right-hand side
of Eq. (3.55) with the lower part of the double sign is

positive. The set of these three inequalities is found
to be equivalent to the set of two inequalities

C, &0

C, &0

C2&0
C, &0

C2 & C3/4C4
C2 & C32/4C4

First sense
Second sense

First sense
Third sense

1 —3C2C4/C3' & 0, C3 & 0 (3.60)

0 & C2 & C3 /3C4 (3.6 1)

(We assume that C, is not exactly equal to 0 nor to
C3'/3C4. ) As is already known, the equations deter-
mining the first- and third-sense transition tempera-
tures are, respectively, C~ =0 and Eq. (3.51) with the
lower part of the double sign. Therefore the first- or
third-sense transition is actualized according to

1 —9C2C4/2C, +(1—3C2C4/C3 ) & or & 0

(3.62)
This inequality is found to be equivalent to the ine-
quality"

C2 & or & C3'/4C4 (3.63)

the former of which is the same as inequality (3.48). .

The set of inequalities (3.59) is not compatible with
inequality (3.58) nor with the set of inequalities
(3.60). On the other hand, inequality (3.58) and the
set of inequalities (3.60) are compatible.

It is convenient to first make a broad classification
according to the sign of C3 and second a subdivision
according to the value of C2. When C3 & 0, the first-
or second-sense transition is actualized according as
C2 & or & 0; this is obvious. When C3 & 0, the
first- or third-sense transiti'on is actualized according
to whether C2 is greater or less than a certain value,
which we will clarify. It is immediately found that if
C2 & C3 /3C4 the first-sense transition is actualized,
and if C2 & 0 the third-sense transition. Now Iet C2
be intermediate„ i.e., let

Hence it turns out that if the second-sense transition
is actualized, the transition temperature is higher
than the temperature making C~ =0. When C3 & 0
and Cq & C3'/4C4, we find

1 —9C2'C4/2C3 + (1 —3C2C4/C3 ) ' & 0 (3.65)

even if C2 is not inside interval (3.61) but negative.
Therefore. it turns out that if the third-sense transi-
tion is actualized, the transition temperature is higher
than the temperature making C~ =0.

Although it has been stated earlier that for the
second- or third-sense transition inequality (3.33) is
not absolutely necessary, it is seen that inequality
(3.33) holds naturally when C3 & 0 and C, & 0 or
when C3 & 0 and Cz & C3 /4C4. Since inequality
(3.33) holds, the domain of C~ for f2 (C, , . . . , C4)
or fo (C~, . . . , C4) contains point C~ =0, and Eq.
(3.45) or (3.43) holds. The additional condition that
the second- or third-sense transition be actualized is
important.

As has been stated, at the first-sense transition
temperature we have Q, =0, C~ =0, and
(8'4/BQ'), =0. At the second- or third-sense tran-
sition temperature, the expressions for Q„C~, and
(8'4/BQ'), are given in Eqs. (3.49) or (3.50),
(3.51), and (3.55), respectively; in particular,
(8'4/BQ'), & 0. We are now interested in the tem-
perature that makes (0'4/t)Q ), =0 for the second-
or third-sense transition. At this temperature, what
are the expressions for Q, and C~? After intermedi-
ate calculations we find

Thus, if

C3 /4C4 & C, & C,'/3C4,

the first-sense transition is actualized, and if 0 & C2
& C3'/4C4, the third-sense transition. Table I sum-
marizes the conclusions.

When C3 & 0 and C2 & 0, we find'

Q,'( third ) =—

C~(second) =A+, C~(third) =A

i/2

Q,'(second) = — + 1—C3 C3 8C2C4

4C4 4C4 3C32

1(2
C3 C3 8C2C4

4C4 4C4 3C'

(3.66)

(3.67)

(3.68)

1 —9C2C4/2C3' —( I —3C2C4/C3 )3l& & 0 (3 64) ~here A+ and A are the same as defined in Eqs.



1300 KEITSIRO AIZU 23

(3.11) and (3.12). The inequality

1 —8C)C4/3Cj & 0 (3.69)

Cl &A+ or Cl &A' (3.70)

is requisite, and the right-hand sides of Eqs. (3.66),
(3.67) need to be positive. When Cq & 0 and Cq & 0,
inequality (3.69) surely holds and the right-hand
side of Eq. (3.66) is surely positive. When Cq & 0
and Cq & Cq /4C4, inequality (3.69) surely holds and

the right-hand side of Eq. (3.67) is surely positive.
The domain of Cl for the second- or third-sense
venule function is

will make the neighborhood clearer. When C3 & 0
[and inequality (3.74) holds], we find A+ & A & 0;
hence the neighborhood is A & C~ ~ 0 [remember
inequality (3.13)]. When Cq & 0, we find 0 & A

& A+', hence the neighborhood is C] ~ 0 with no
definitely determined lower end. In the present
case the first-sense venule function is not
,/ P(C~, '. . . , C4) but, f~(C~, . . . , C4); the latter is

thought to be the continuation of the former as C2
increases (of course, nor with temperature). When
Cq & 0 and A & C~ ~0 [and inequality (3.74)
holds], we find a = —1. When Cq & 0 and C~ ~0,
we also have o. = —1. Whether C3 ) or & 0, we find

respectively. When C3) 0 and C2 & 0, we find

&0&A+ . (3.71)

0, A+ Cg /32Cg

as C& 9Cj /32C4 (3,75)

When Cq & 0 and Cq & C& /4C4, we find

A+&0&A (3.72)
(

Precisely speaking, inequality (3.72) should be re-

placed by A+ ~ 0 & A, because if C2 = 0 then
A+=0. But we assume C2 WO. As has been stat-
ed, the temperatures with which we are concerned
are restricted to those not much lower than the tem-
perature making C[=0. Let the domain of C] for
the second- or third-sense venule function be re-
stricted to the interval

A & Cl & A+ or A+ & C] & A (3.73)

we find A+ & 0 & A; hence the neighborhood is

A+ & C] ~0.
If Cq & 9Cq /32C4, the condition for case a is not

satisfied. Especially if

9C,'/32C4 & C, & 3C,'/8C4, (3.74)

inequality (3.6) holds and inequality (3.8) holds in a
certain neighborhood of point C] =0. Let the
domain of C] be restricted to this neighborhood.
Then the set of conditions for case P is satisfied. We

which contains point Cl =0 because of inequalities
(3.71) or (3.72). Inequality (3.73) is the s'arne as
inequality (3.14) so that the condition for case u is

satisfied.
The domain of Cl for the first-sense venule func-

tion is C~ ~ 0. When C~ =0, inequality (3.10) be-
comes inequality (3.33), or equivalently, Cq & 9C3 /

32C4. If this inequality holds, inequality (3.10) holds
not only at point C] = 0 but in a certain neighbor-
hood of it. Let the domain of C[ be restricted to this
neighborhood. Then the condition for case o, is satis-
fied. We will make the neighborhood clearer. When
C) & 0 and 0 & Cq & 9C~'/32C4, we find A & 0
& A+', hence the neighborhood is A & C] ~0. When

C3&0 and

C,'/4C4 & C, & 9C,'/32C4

From this it follows that, as Cq 9Cj/32C~, the in-
terval A & C] ~0 tends to contract into point
C~ =0. (The interval A & C~ ~0 appears also in

case n. ) Since Eq. (3.44) holds and f&(C~, . . . , C~)
is the continuation of fP (C~, . . . , C4),
fa(O, Cg C3 C4) should be zero. We will confirm
this. The equation

4(cosh
~
P)' —3 cosh —,P —coshP = 0 (3.76)

cosh —,P = —, (1 —8C,C4/3C, ' )

and

1/2
8C2C4cosh-P = 1—
3C

3 32C2C4x ——+—
4 4 9C32

Because of inequality (3.74), the first solution is real
and the two others are imaginary. Thus the first
solution is the true value of cosh —,P. Putting this

value into Eq. (3.17), we obtain

fa(O, Cp, C), C4) =0 (3.78)

It can also be deduced from Eqs. (3.20), (3.17)
that 8fp /BC~. and 8 fa/BC~ at C, = 0 are isomor-
phous functions of Cq (with different domains of C&)

Bff I Bfa I

BC] 2C2 BC] 2C2
(3.79)

holds whatever value P takes on. When C~ =0, Eq.
(3.18) becomes

coshP = ( I —8C, C~/3Cq ) ' '(4CqC, /C~ —I )

(3.77)

By the right-hand side of this equation we replace
coshP in Eq. (3.76). It is not difficult to solve the
resultant equation cubic with respect to cosh —P.

3

The solutions are
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&—C3/4C4+ (C3/2Cg) (1 —8C2C4/3C ) 'i

cosh
3 pp=01

We find

C3 C3 3C2
A+ as C2 — —0

I6C42
' 16C4' SC4

(3.80)

Thus the interval (A,A+) or (A+,A ) tends to one
point C3 /16C4' ( &0).

If C2 & 3C3 /8C4, we are in case y. Whether
C3 & or &0, the domain of C1 is C1 ~ 0 with no
lower end. .f "(Ci, . . . , C&) is thought to be the
continuation of,fs(C|, . . . , C4) as C2 increases. We
can prove

f "(O,C2, C3, C4) =0 (3.81)

in the same manner as that for Eq. (3.78). As
C2 3C3'/8C4+0, we find (irrespective of whether
Ci= or A C3'/16C42)

(sinh —,y)/(sinhy)' 3 2

The right-hand side —1/2C2 is the same as the right-
hand side of Eq. (3.56) which was deduced by a dif-
ferent method.

If Cl is negative and close to zero, positivity of f&

is found from Eqs. (3.78), (3.79). Even if Cl is not
very close to zero, positivity of fa is proved as fol-
lows. Let pp stand for the p when Cl =0 or the p
satisfying Eq. (3.77). We assume Cl & 0. If C» 0,
then coshP & coshPp, P & Pp, 3 P &

3 Pp, and hence1 1

cosh —p & cosh
3 pp. If C3 & 0, then coshp & coshpp,

1 1

P (Pp, —, P & —, Pp, and hence cosh —, P ( cosh —, Pp.
1 1 1 1

Therefore, whether C3 & or & 0, we see

C3/4C4 + ( C3/2C4) ( 1 —8C2C4/3C3 ) ' ' cosh —,p

B. For experimental discernment

How can the first-, second-, and third-sense transi-
tions be experimentally discerned from one another?
Since the first-sense transition is second order and
the others are all first order, it is easy to discern the
first-sense transition from the others. If the ferroic
phase is ferroelectric or ferroelastic, the second- and
third-sense transitions are easy to discern from each
other by observing the temperature dependence of
electric susceptibility or elastic compliance near the
transition point. Theoretically, what differences
should the second- and third-sense transitions |'.xhib-
it?

We assume that Q can be identified with a com-

ponent of electric polarization P. Since the second-
or third-sense-transition is first order, we have two

electric susceptibilities, that of the prototypic and that
of the ferroic, at each temperature near the transition

point; they are denoted by KP and KF. At the transi-
tion point we find

Kp

4C3 9C2C4 3C2C4

27C42 2C C

(3.83)
using Eq. (3.51), and

1 6C3 3C2C4

9C4 C3

1/2
'

3C2C4 3C2C4
+ ' 2C2 C

j

(3.84)

directly from Eq. (3.55); of the double sign +, let the

upper or lower part be taken according to the second-
or third-sense transition. Equations (3.83), (3.84)
can be rewritten as

I/Kp = (2C3 /27C4 ) (1 + 2L ) ( I + L )', (3.85)

.f "(C|,C2, C3, C4) I/KF = (8C3 /9C4 )(+L ) (1+L ) (3.86)

' 1(3
C3 C3 4C2C4 8C1C4

4C4 2C4 C3 C3
1

sinh —3y
(sinhy) 'i'

—C3/4C4+ (C3/4C4) ( I —16Ci C42/C3 ) 'i

(3.82)

As C2 3C3'/8C4 —0, we find in the same manner
that, f (C|,C2, C3,C4) tends to the same limit
(3.82). Thus, fa and. f ' conjoin with each other at
Cq = 3C3 /8C4. It is obvious that, whether C3 & or
& 0, expression (3.82) is positive when Cl & 0 and
zero when C1=0. The positivity of f ~ when

C, & 3C32/8C4 and Ci & 0 can be proved in the same
manner as that for the positivity of f&.

Kp/KF = 6/( 1 + 1/2 L ) (3.87)

For the second-sense transition, 1 & L & ~ and so

4 & 6/(1+1/2L ) & 6

thus

4 ( Kp/KF ( 6 (3.88)

For the third-sense transition, —, & L & ~ and so

6 & 6/( I —1/2L ) &

thus

6 ( Kp/KF ( pp (3.89)

for the meaning of L, see Eq. (3.53). Dividing Eq.
(3.86) by Eq. (3.85), we obtain
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note that Kp ~, KF —C4/Cq (& ~) as
L —, +0, i.e., as Cq Cj/4C& —0. Relations

(3.88), (3.89) are usable for experimentally discern-

ing between the second- and third-sense transitions;
the two intervals inside which Kp/K); should be do
not overlap each other.

Let T, stand for the transition temperature, T() the
temperature at which 1/Kp becomes zero, and T) the
temperature at which 1/KF becomes zero. We as-

sume that C] depends linearly on temperature T.
Then the following can be proved: For the second-
sense transition

—'
, & (T) — T)))/( T—T))) & J2,

and for the third-sense transition

(3.90)

J2 & (T) To) j(T To) ( ~ (3.91)

The proofs are given in the Appendix. It is easy to
rewrite inequalities (3.90), (3.91) to

42+1 & (T, —TD)/(T) T, ) (3—
0 & ( T Tp)/( T) T ) & J2+ 1

(3.92)

(3,93)

or
( T, —T)))/( T, —TD)

( T, —T)))/( T) —T, )

some other criteria are conceivable, but we omit their

description.
By the way it is easily found that in the second

ideal case we have, for the second-sense transition„

Kp/KF = 4

(T) —Tp)/(T, —T()) = —',

( T, —TD)/( T) —T, ) =3

(3.94)

(3.9S)

(3.96)

instead of inequalities (3 ~ 88), (3,90), (3.92); the in-

tervals (4,6), ( —, , v 2), ( 42+ 1, 3) contract into the

points 4, —,3 which are the extremities of these in-

tervals opposite to the boundaries between these in-

tervals and the intervals for the third-sense transi-
tion.

Let us consider BaTiOq. As has been mentioned in
Sec. I, the cubic phase is prototypic, the tetragonal
phase is one of its ferroics, and the transition be-
tween them (at about 120'C) is a first-order immedi-
ately lineal transition. The transition parameters be-

respectively. Relations (3.90)—(3.93) are usable for
experimentally discerning between the second- and
third-sense transitions; the two intervals inside which

the ratio of T] —T[) to T, —Tp or of T, —Tp to
T[ —T, should be do not overlap each other.

In addition to the two above-mentioned criteria

K p/KF

and

long to the three-dimensional zero-wave-number
representation T[„and hence can be identified with

the three components of electric polarization
Pz Py P Th is transition para meter system theoreti-
cally generates„ from the»~3In prototypic, altogether
six ferroics nonconformal with one another (see the
right column, p. 2, Ref. 13). In the tetragonal phase,
one of P„„P»,P„ is nonzero and the two others are
zero. Possible are altogether six oriates (or orienta-
tional states) which are distinguished according to
which of P», Py„P„ is nonzero and according to.
whether the nonzero component is positive or nega-
tive. Let us restrict our consideration to the cubic-
to-tetragonal transition and those two oriates of the
tetragonal phase in which P» = P» =0, P» &0, and
assume that in the free-energy function 4 the vari-
ables P„and Py «re constantly zero. Then 4 is a
function of only one parameter P, . This function as
a power series in P, is easily found to be of the same
form as expression (2.1). Thus the present general
theory is applicable to the cubic-to-tetragonal transi-
tion of BaTiOq. Is this transition second or higher
sense? We assume that BaTiOq has C4) 0, and ap-

ply relations (3.88), (3.89). According to the mea-
surement by Merz, '

Kp/KF is evaluated as

f[(c,, c,, c, , . . . )

= (1/2C) ) b —[3Cg/(2C, )']b'

+ [2(3Cg)'/(2C))' —4Cg (/2 Cp)'] 'b

5(3C))' 5(3Cg) (4Cg)
(2Cp)' (2Cp)

5C)
(2C, )'

b

+O(b') . (3.97)

This expansion was useful in previous theories by

Aizu (Ref. 9) ~nd others (though there only the
concept of order existed and the -concept of sense,
especially, sense higher than second did not), and will

also be useful in the future.

Kp/~F = 10000/1500= 6.7

Therefore the transition seems to be third sense.
However, the value 6.7 is not distinctly greater than
the boundary value 6; its accuracy is not very high.
In view of these, the possibility of second-senseness
is not perfectly rejected. The author will in future
search the literature for transitions with great values
of Kp/KF or ( T) —T)))/( T, —T))).

Finally we add a consideration of the first-sense
venule function in the nonideal case where no Ck is

constantly zero. This function f](C[,cq, c3 ~ ~ ~ ),
as in the ideal cases, has the characteristics that the
domain of C] is C] «0 and that f'] =0 at C[=0.
f ] (C[,c~t C~, . ~ . ) is expected to be expansible into
a power series in b = —C] with a wide region of con-
vergence. From Eq. (2.4) we find
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APPENDIX

The proofs of inequalities (3.90), (3.91) are
presented here. C~ can be expressed as

Ci = A(T —Tp) (A I)

(I —7~J)'~'= M

Then Eqs. (A2), (A3) can be rewritten as

(A4)

A(Ti —To) =(Cg/16C4 )(I+M)'(I+2M), (A5)

A(T, —To) = (C3 /27C4 )(I + L) (I +2L ) . (A6)

Division of Eq. (AS) by Eq. (A6) gives

Ti —To 27(l + M)'(I + 2M)
T, —Tp 16(1+L)'(I+2L) (A7)

The right-hand side can be regarded as a function of
J. Differentiation with respect to J gives

d Ti —To 27(1+M)(1+8L +9M)
dJ T Tp 16(1+L) (I+2L)

For the second-sense transition we have J ( 0,

with a positive constant A. The C~'s in Eqs. (3.68)
are the same as A(T~ —Tp), while the C~ in Eq.
(3.51) is the same as A(T, —Tp). Thus

8C2 C~ 3C2

(A2)

3 3/2
2Cg 9C2C4 3C2C4

A(T, -T,)= -I+ I-
27C' 2C' C'

(A3)
Let us put

C2C4/Cj' =J
(I —3J)'i =L

L &M& l, andso 1 —L (0, 1+2L &0,
I —M (0. Thus the right-hand side of Eq. (A8) is

of the same sign as its factor 1+8L —9M. We find

I + 8L —9M = —24J [ I/( I + L ) —I /( i + M ) ] ( 0

Hence expression (A8) is negative. In orther words
expression (A7) is a monotone decreasing function
of J. As J —~, we find I/L 0, M/L 242/3,
and so

( Ti —To)/( T, —To) v 2

As J '0, we find L I, M I, (1 —M)/
(I —L) —,, and so8

After all, inequality (3.90) is concluded.
For the third-sense transition we have J & —,

L & —,, M & 3 ' '. Hence the right-hand side of Eq.
(A8) is of the same sign as its factor I —8L +9M.
We put I —8L +9M = P( J) (a function of J). Q(J)
is, obviously, continuous in the interval ( —~,—). It
is easily found that the equation P(J ) = 0 has no
solution. Hence P(J) has a definite sign. Obviously,
P(0) =2) 0. Thus P(J) must be positive in the in-

1

terval (—~, 4 ). This statement amounts to the

statement that expression (A8) must be positive in

the interval (—~,—), and further, to the statement1

that expression (A7) must be a monotone increasing
function of J. As J —~, we find I/L 0,
M/L 242/3, and so

( ,T- T)o/( ,T- T)o- J& .

As J —,we find L —,, M 3 ' ', and so

( Ti —To)/( T, —To)

After all, inequality (3.91) is concluded.
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