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We show that Anderson’s theorem concerning s-wave elenst@c scattering is inapplicable to cer-
tain types of inhomogeneous superconductors. The example of a proximity-effect sandwich con-
sisting of a thin normal (N) metal in perfect contact with a thick superconducting (S) metal is
considered in detail. The proper treatment of s-wave elastic scattering in the N metal is
developed. Previously inexplicable experimental results on tunneling into NS sandwiches are
found to be understandable in terms of the theory presented.

I. INTRODUCTION

In accounting for the effects of elastic s-wave
scattering on the density of states observed by tun-
neling into the N side of a thin NS sandwich, the
Anderson theorem!' is often assumed to be valid.
This theorem states that elastic’s-wave scattering in a
bulk superconductor has no effect on the supercon-
ducting pair potential. The theorem may be general-
ized to the mathematical statement that as long as
the Hamiltonian of the system possesses time-
reversal invariance, the introduction of a perturbation
which does not break that invariance will not affect
the pair potential.> This generalization applies only to
a bulk system, i.e., a system which possesses transla-
tional symmetry in the absence of the perturbations
in question (i.e., elastic scattering centers).

However, the NS sandwich (shown in Fig. 1) is not
a bulk system. Nonetheless, previous work on NS
sandwiches® has implicitly relied on the Anderson
theorem in treating elastic scattering, presumably be-
cause the Hamiltonian of the entire system is time-
reversal invariant. However, the criterion of transla-
tional symmetry (homogeneity) in the absence of the
perturbation is clearly not satisfied by the NS

sandwich.
In this paper we shall derive some consequences of

the inapplicability of the Anderson theorem to elastic
s-wave scattering in thin NS sandwiches. This
represents an extension of our work in Ref. 4, where
we dealt with clean systems. In the latter, we showed
that assuming a thin N metal in perfect contact with
an S metal, and assuming self-energies which are spa-
tially local but equal to their average value in the ap-
propriate (N or §) region we could solve the Bogo-
lyubov equations exactly to find the Green’s function
for the NS double layer. Using this Green’s func-
tion, we obtained equations for the local self-energies
arising from the electron-phonon interaction. These
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had the form [cf. Egs. (6.5) and (6.6) of Ref. 4]:
qw(E,x)=L”dE(/'(E’,x)KAE,E',x) , (1.1
Z”"(E,x)E=E—J;de'N(E’,x)K_(E,E',x) C(1.2)

where ¢?" is the *“pairing self-energy” and Z#" is the
‘‘renormalization function.”” The local electron-
phonon interaction kernels are denoted by

K +(E,E’ x) [cf. Eq. (6.2), Ref. 4]. The local normal-
ized density of states is N (E’,x). This function is
just the local density of states at x normalized by its
normal state value. By analogy, we have defined
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FIG. 1. Tunneling density of states for R =0.02, A,’i,"
=0,Z,’(,"= 1. The solid line for the curve which is smallest in
value from 10 to 16 mV is for d// =0. The dashed line:
d/1=0.25. Dash-dotted line: d//=1. Second solid line:
d/l=5.
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f(E',x) as the local ‘“‘pair density of states.”” The
significance of this function will be made apparent
below. In a bulk superconductor, one has

" (E,x)=¢(E) , ' (1.3)
ZP(E,x)=Z(E) , (1.4)
ACE)=¢(E)/Z(E) , (1.5)
’ — E’
N(E,x)————————[E,_A(E,)zll/Z , (1.6)
7 x) = —AE) (1.7)

[E'—A(E")*]?

As a function of x, K +(E,E',x) varies as the
electron-phonon interaction, hence it is quite local.
To an excellent approximation, this function is spa-
tially constant for x in N, and is also spatially con-
stant for x in S, with a sharp change (over a lattice
distance or so) at the NS interface.

In order to clarify the nature of the pair density,
f(E’,x), we consider the BCS approximation, where

K_(EE' x)=0, (1.8)
K (EE'x)=\"(x)O(E.—E') , (1.9)

where ©(x) is the unit step function and E. is a cut-
off energy for the local BCS interaction energy A*(x).
In this limit one finds

E
SHEX) =20 [ (B ) =N OF ()
(1.10)

where F(x) is the order parameter at x. Since the
latter varies over distances of the order of a coher-
ence length in a metal, we observe that the pair den-
sity has the same scale of spatial variation. If the re-
gion of interest is much thinner than a coherence
length, then f(E’,x) is essentially constant in this re-
gion. It is therefore appropriate to consider the spa-
tial average of the self-energy over the thin N region.
Returning to Egs. (1.1) and (1.2) we average over
the N region to find

(¢PM(Ex)) y =o' (E)

=J;mdE'(f(E’,x))NK,,(E,E’)N ,
(.11

(ZP(E,x))vE = ZBE)E
=E—f0°° dE' (N (E'x))wK _(EE' )y
(1.12)

where K +(E,E') y are the values taken by the in-
teraction kernels in the N region. These expressions
yield the contribution of inelastic electron-phonon
scattering to the self-energy in the N region. Elastic
s-wave scattering can be treated in the same fashion.

One merely sets
Ki(E,E')N=i;—ﬁS(E—E’) , (1.13)
T

where 7 is the elastic scattering lifetime.
Including elastic scattering, the total spatial average
self-energy in the N region is

¢N(E)=¢,‘$"(E)+%(f(E,x))N , (1.14)

Zy(E)E = ZB(E)E +%(N(E,x)),v . (L19)

We note at this point that these expressions will apply
to any region N which is thin compared to a coher-
ence length. These results may be extended to en-
compass situations such as long thin rods of N ma-
terial embedded in S metal, or small particles of N
metal embedded in § metal. Such extensions merely
involve recognizing that the pair density will vary
with two (or three) coordinates, so that the spatial
average occurs over more coordinates. Thus, Egs.
(1.14) and (1.15) may be used to establish the influ-
ence of elastic scattering for a variety of inhomogene-
ous systems, not just for the NS double layer.

Let us first determine under what conditions the
Anderson theorem can hold. The theorem requires

AN(E) =¢(E)/ZJ(E) . (1.16)
By definition

The latter definition coupled with Eqgs. (1.14) and

(1.15) implies that if Eq. (1.16) is true, then

An(E)
E

(fEX))y= (N(Ex))y . (1.18)
Thus, the validity of the Anderson theorem in inho-
mogeneous systems of the type mentioned above re-
quires a simple relationship between the average pair
density and the average normalized quasiparticle den-
sity of states. We will show that such a simple rela-
tionship does not exist in the case of a thin NS
sandwich. It is reasonable to suppose that the other
inhomogeneous systems mentioned will also not
satisfy Eq. (1.18).

The inapplicability of the Anderson theorem has
two primary consequences for a thin NS sandwich:

(1) The superconducting pair potential is ‘“‘homog-
enized”’ to some extent over the NS layers. By this
we mean that for very thin, ““dirty’’ N layers Ay (E)
approaches Ag(E).

(2) The effective path length for quasiparticle in-
terference arising from Andreev reflection (which
gives rise to Tomasch® and Rowell-McMillan® oscilla-
tions in the tunneling density of states) appears to in-
crease.
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These two effects are related. Andreev reflection
involves scattering of quasiparticles from the step in
the pair potential, Ag — Ay, at the NS boundary. As
Ay approaches Ag, this step height decreases, affect-
ing the interference phenomena arising from An-
dreev reflection in the indicated fashion.

The second consequence appears to have a more
intuitive basis. Successive elastic scatterings of quasi-
particles from randomly-located imperfections cause
the average path traversed to be greater than that
which is traversed in a clean layer. Some effects aris-
ing from the effective increase in path length for in-
terference have possibly been observed by Bermon
and So’ in their experiments on thin Cu-Pb
sandwiches.

The homogenization of the pair potential occurs in
virtue of the fact that in a very thin, “‘dirty’’ materi-
al, the elastic scattering contribution to the self-
energy dominates the electron-phonon interaction
contribution. From Egs. (1.14) and (1.15) one finds

o F(Ex)) s
27

Ay= . (1.19)
N Zoh 4 IE (N(Ex))n
M 2r E
For large /7 this is
(f(Ex))Nn
AN~E<N(E,X))N (1.20)

The ratio of the pair density to the quasiparticle den-
sity may be interpreted as the fraction of quasiparti-
cles of energy E paired in the N metal. Both f(E,x)
and N (E,x) are related to quasiparticle wave func-
tions, and so are continuous at the NS boundary. Be-
cause the dimensions of the N region are small com-
pared to a coherence length, (f(E,x))y is essentially
equal to its value at the NS boundary. This value, by
continuity, is equal to the value of the pair density in
the S material just on the other side of the boundary.
As demonstrated in Ref. 4 for the thin NS sandwich,
the quasiparticle density of states in N continuously
approaches the value it has just inside the boundary
of the S metal. For an S region of size large com-
pared to a coherence distance the averages in Eq.
(1.20) take on their bulk values [Egs. (1.6) and (1.7)
with A=Ag], to a good approximation. Hence Ay is
approximately equal to Ag, by Eq. (1.20). That is, in
this limit, the fraction of paired quasiparticles at ener-
gy E in the N metal is approximately equal to the
fraction of paired quasiparticles at energy E in the S
metal.

In Sec. II, we shall present a more detailed deriva-
tion of the.contribution of s-wave elastic scattering to
the N metal self-energy. In Sec. IlI, some simple
limits will be investigated in order to make contact
with known results. In Sec. IV, we present the
results of calculations of the effects of elastic scatter-

ing on the observed tunneling density of states. We
consider specular tunneling® only. The density of
states which we will use is just that which was
derived in Ref. 4, Eq. (4.5), since this expression was
obtained without making assumptions on the energy
dependence of ¢(E) or Z (E) for either N or S met-
al. In the final section, we discuss the effects of elas-
tic scattering on the tunneling density of states for
low energies.

II. SELF-ENERGY IN THE N METAL

The self-energy functions obtained in Ref. 4 do not
include the effects of elastic scattering from impuri-
ties. We shall invoke the effects of elastic scattering
in a way which is analogous to the treatment of such
effects in a bulk system.’

As discussed in Ref. 4, for thin N metals it is ap-
propriate to replace the local matrix self-energy by its
average over the thickness of the N region. In such
an average, quantities which oscillate like e £2¥F~ are
negligible. Thus, we may employ Eq. (3.12) of Ref.
4 for the retarded Green'’s functions in the N metal

A
£ (E)+ =X xy(Ex)

Q, a, (2.1

G(x,x,E) =—2—
1" ks

A
m N E
=—|—X,(E) + —X,(E, , (2.2
G(X,XE)|2 h_szx QN X]( ) QN Xz( X) ( )
where
: N : N
x,(E) = iF (E) cos(AkNd) +sin(AkNd) Q3

iF (E) sin(AkNd) — cos(AkNd)

icos[AkM(x +d)1G (E)
= , (24
Xa(E.x) iF (E) sin¢AkNd) — cos(AkNd) 24

with
Qrs=(E2= A}, (2.5)
F,(E)=—(E2(;—A/A()Sj'v—)~ : (2.6)
G(E)=£(—(A)~Z—;i—“ , | Q.7
Aku% (2.8)

The quantity kgx is equal to krcos® where
cos® = (1 —k?/k})"? so that @ is the angle between
k and the normal to the NS interface. The renormali-
zation function Zy(E) occurring in Eq. (2.8) is the
function averaged over the thickness of the N layer.
Since the large parentheses in Egs. (2.1) and (2.2)
are equal to —iN (E,X) and —if (E,X), respectively
[cf. Egs. (1.1) and (1.2) and Egs. (6.5) and (6.6) of
Ref. 4], we obtain [from Egs. (1.13)—(1.15)]:
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13 1 Xl(E) AN 0 d
— 7ph( ) _ N ax 2.9
Zy(E)=Z{(E) 5 J; d(cos®) o, + oy -4 X (Ex)| (2.9)
i ! Q 0 4
__ADh _ N X
AN (E) =AR(E) —_——22,‘,’,"(E)r j:) d(cos@)—-—E o X, (E,x) » (2.10)

where A2 =2t/ ZEh.

III. SIMPLE LIMITING CASES

It is useful to consider limits of Egs. (2.9) and
(2.10) which correspond to known results. First we
consider the limit in which Ag=Ap. In this case we
have a homogeneous superconductor. One readily
verifies that F(E) =1 and G (E) =0 so that

X((E)=—i, 3.1
X2(E,x)=0 , 3.2)
and hence
— 7oh R 1
Zy(E)=Z{(E) + oy (3.3)
AN(E)=AR(E) . (3.4)

This is the expected result for.a bulk superconductor
with elastic s-wave scattering.

Now consider the limit as the thickness of the N
metal (d) tends to zero. Since

}i_rpOXl(E)=—iF(E) R 3.5)
}i_rpOXZ(E,x)=—iG(E) , (3.6)
we find that Egs. (2.9) and (2.10) become
— 7ph .L’i__l_
Zy(E)=ZRE) + 5= 3.7
_ AP ik [As(E)“AN(E)]
AN(E)=AF(E) + 22 E)r a;

(3.8)

The second equation is readily solved for Ay (E)

AZE) +iTn(E)As/ Qs
Ay (E) = T+ 7Ty (E)/ Qs , (3.9)

where we define
k

D (3.10)

FN(E) =

The solution for Ay in this limit bears a striking
resemblance to the result for Ay in the McMillan
tunneling model'® of the proximity effect. The

McMillan model was designed to treat NS double
layers which are separated by a tunnel barrier. The N
and S metals are assumed to be of comparable thick-
ness, each being thinner than a coherence length.
This is remarkable, because we have obtained Eq.
(3.9) for a strongly-coupled double layer system,
where the S layer is semi-infinite, and the N layer is
of negligible thickness.

In the McMillan tunneling model, 'y (E) is equal
to

T?4dsNg(0)
Zy(E)Ph

’

where T is the tunneling matrix element between the
N and S metals, 4 is the NS interface area, ds is the
thickness of the S metal, and Ng(0) is the normal
electron density of states in S at the Fermi level. In
contrast, our expression for I'y [Eq. (3.10)] is given
by the lifetime of a normal electron in the N metal
due to elastic scattering. The correspondence between
our result and that of McMillan is due to the fact that
both T'y’s arise from lifetime effects in the N metal.
In McMillan’s model, I'y is inversely proportional to
the average time which a quasiparticle spends in the
N metal. Other remarks on the solution in this limit
are presented in Ref. 11.

The next limit which we can easily investigate is
that in which the imaginary part of Ak™d/cos® is
large. For convenience, we define R =2d/kvr so
that, using Eq. (2.8)

AkVd =RZyQ y/cos® . 3.11D
Assuming that
cos(AkNd) = —isin(AkNd) (3.12)
X((E)=-—i , (3.13)
we find
dx cos® E(As—Ay)
Xy (Ex) =~
g ) = R O FT A AT 0.0y
' (3.14)

In this limit, Egs. (2.9) and (2.10) therefore become
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zZ ZP"+_i_ﬁ_____.1 1 f An(As—An) (3.15)
NTEN Ty RZNQy (E = AgAy+QsQp) | '
Fo Ag—Ax)Q
Av=Af l (45— &n) By (3.16)

T 4ZF(E)t RZyQy E'— AgAy + 050y

It is convenient to remove a potentially divergent factor from Eq. (3.15) by constructing the equation for
RZyQy. The latter is a more physically significant quantity, because it determines the interference phenomena

discussed in Ref. 4. Thus

1d d 1 Ay(As—Ay)
RZyQy=RZEQy+i]5 |- |5 (3.17)
NN RN N T T T | RZy @y (E2= A5hp) + Q5 0y
where we define the mean-free path due to elastic scattering, / =vg7. Similarly, Eq. (3.16) may be written
Ag—AN)Q
Ay=as-4 L (As = Aw) By (3.18)

T 2 RZNQNRZE ET— Ay + Qs Oy

Equation (3.17) is a simple quadratic equation for RZyQy in terms of E,d/l, Ay, and RZZ'Q . Its solution is

» 2 12
RanN=§[sz"nN+f% +5 RZ,’(,"QN+i—‘; +2|=4f (3.19)
where
Ay(Ag—A
4=— n(8s = Ay) (3.20)
E‘—AsAn+QsQy
Finally, Egs. (2.9) and (2.10) also simplify in the limit £ >> Ag, Ay, where to order E/Ag:
X\((E)=-i, (3.21)
0 dx (As—=Ay) sin(AKVd) iak N (
dx =—i j , 3.22)
g X EX) E IV
Using AKVd = RZy Q) y/cos®, we find
RZyQy=RZEQN+id/l , (3.23)
AR+l (E)Ag
WETTTre (3.24)
where
d 1 ! sin(RZy Q y/cos®) iRZyQn
I(E)=|— d () .
[ I ]lRZﬁ"Elj; (cos) R Zy 2n/c050) | cos0 (3.25)

Note that the interference factor, or phase difference,
RZxy Qy, is just that which would be expected from
the usual theory for elastic scattering. However, the
equation for Ay is decidedly different from the usual
assumption Ay = A%, based (incorrectly). on Ander-
son’s theorem. Indeed, the magnitude of / (E) is
governed by the prefactor

d 1

| RE 2IE
so that deviations of Ay from A,’(," are pronounced

(3.26)

when the ‘‘energy-dependent coherence length,”’
kvr/2E, is greater than the mean-free path due to
elastic scattering. In the limit wherein the above ra-
tio is large and RZZ'E is small, Ay (E) is approxi-
mately equal to Ag(E), so that the superconducting
properties of the thin NS double layer have effective-
ly been ‘“homogenized’’ by elastic scattering. The
fact that this homogenization effect may be present at
the phonon energies of the S metal has implications
for tunneling experiments. We shall discuss these in
detail in Sec. IV.
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IV. TUNNELING DENSITY OF STATES
AT PHONON ENERGIES

In Sec. III we discussed the solutions for Ay and
Zy in the limit £ >> Ag, Ay. In the limit of large d//
with small RZZ'E, one finds that Eq. (3.24) reduces
to
Ay (E) zAs(m[ 1 .

. ph,.
i4RZ)E

4.1)

— L <A
—arzyE |~ AP

Thus, as RZZ'E approaches zero, Ay (E) approaches
Ag(E), and we obtain the ‘‘homogenization’ re-
ferred to in the Introduction. In addition, in this lim-
it the tunneling density of states [Eq. (4.3) below]
becomes

E
Nr(E) =Re|——""——+
T [Ez_AN(E)ZII/Zl
2 i ph
2 e

Thus in the limit of large d// and RZZ'E << 1, we
observe that the tunneling density of states ap-

proaches that which is expected for McMillan-Rglwell
i p
(4d) interference oscillations (which go as o NN E),

but with a path length which is FOUR TIMES the ex-
pected path length of 4d. This illustrates the interfer-
ence path lengthening mentioned in the Introduction.
The factor of 4 should be regarded as a ‘‘saturation”

Ny(E) =Im
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FIG. 2. Tunneling density of states for A% =0,Z2" =1, il-
lustrating saturation effect. Solid line: R =0.01 and d// =5.
Dashed line: R =0.04 and d//=0.

value. To determine in detail the effect of elastic
scattering on the tunneling density of states, we
choose to consider an NS sandwich where S =Pb,
and use the Ag(E) obtained in Ref. 12.

From Egs. (4.2) and (4.5) of Ref. 4, we have the
tunneling density of states at 0 K for specular tunnel-
ing (we will not consider the ‘‘random tunneling”’
case):

(E/QnN)iF (E) cos(AKMd) +sin(AKVd) ] +i(Ay/Qy) G (E)

[iF (E) sin(AKNd) —cos(AKNd) ]

Zy(E) and Ay (E) were found by solving Egs. (2.21)
and (2.22) by numerical iteration at each energy for
given Ag(E),R,d/1,Z', and A"

In Fig. 1 we plot results for R =0.02 and
d/1=0, 0.25, 1, and 5. Qualitatively, one may com-
pare this to Fig. 6 of Ref. 4, which shows the effect
of increasing thickness (R) on the tunneling density
of states.  The comparison indicates that, roughly
speaking, increasing the amount of elastic scattering
(increasing d/1) has an effect which is similar to in-
creasing thickness. As discussed in the Introduction,
behavior of this sort was observed in the experiments
of Berman and So.’

In Fig. 2 we illustrate the phenomenon of ‘‘satura-
tion,”” wherein the tunneling density of states ap-
proaches Eq. (4.2) for large d//, RZ'E approaching
zero. We see that the curves for R =0.01, d//=5
and for R =0.04, d// =0, are quite close to one
another, as expected.

Thus, it appears that elastic scattering (from stack-

(4.3)

—

ing faults, vacancies, dislocations, for example) can
account for the previously unexplained results of Ref.
7. The inclusion of such scattering is certainly justi-
fied in this case because the films of Ref. 7 were
quench-condensed, and subsequently annealed at 77
K. It is certain that many imperfections (though, ap-
parently, few impurities) in the N metal remain even
after the annealing process.

V. LOW ENERGIES

We bégin our consideration of the low-energy re-

gime with equations for the limit d// >> RZ;‘\’,"AN.
The solution for RZy Q y in this limit is

To obtain Ay, we must solve Eq. (3.18). After some
straightforward algebraic manipulation, we obtain a
cubic polynomial in Ay: ‘
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[1—4(RZEE)? — 4iRZY Q1A% + [4(RZEE) QAR + Ag) +4iRZE QAR — Ag1A}

+ [4iRZE QO GE2— E2— 4(RZEE) LAY + 285 A N Ay + [4(RZEE) A (AR + E2As — 4iRZE Qs E2AR =0

This equation was solved numerically. The real and
imaginary parts of the nonextraneous root Ay of Eq.
(5.2) are displayed in Fig. 3 for Z%=1.2,
As=1.4,A%'=0.3 with R values of 1, 0.5, 0.25, and
0.1. Note the disappearance of the cusp in ReAy at
As. This is a symptom of the transition to a regime
in which Ay approaches Ag, i.e., the passage to the
‘““homogenized limit.”> The limit as R — 0 is just
Ay =Ag, as mentioned in Sec. III. Thus, it is natural
that as R decreases below R =0.25, we observe a
““flattening’’ of ImAy about the zero line in Fig. 3.
In Fig. 4 we plot the density of states [Eq. (4.3)]
obtained by solving Egs. (2.9) and (2.10) for RZyQ y
and Ay, with d/1 =3, AZ'=03, Z&2=12, A;=14,
and R =1, 0.5, 0.25, and 0.1. The values obtained
for RZyQy and Ay were very close to those obtained
above for the limit of large d//. This illustrates that
d/! need not be unphysically large in order for the
somewhat simpler Egs. (5.1) and (5.2) to be approxi-
mately valid at low energies.

0.0 0.4 08 1.2 1.6 2.0 24
ENERGY (mV)

FIG. 3. The real and imaginary parts of solutions to Eq.
(5.2), with AZ"=0.3, ZZF=12, and Ag=14. In the top fig-
ure, the lowest solid line is for R =1. The corresponding
curve in the bottom figure is that which passes through 0.4
near £ =1.4 mV. The second solid lines in each plot are for
R =0.1. The dashed line: R =0.5. The dash-dotted line:

R =0.25.

(5.2)

The behavior illustrated in Fig. 4 is qualitatively
like that observed by Freake in Ref. 13. In Fig. 2 of
that reference, the tunneling density of states is plot-
ted for Mg-oxide-Cu-Pb specimens with Pb thickness
of 7000 A and Cu thicknesses ranging from 250 to
1200 A. The similarity between these experimental
results and Fig. 4 is striking. One quantitative
disagreement is present, however. The dip in the ex-
perimental conductance appears to occur at succes-
sively lower values of energy, whereas the dip in the
theoretical plot always occurs near Ag=1.4. This is
easily explained, however, because, as we have
remarked,'* the value of Ag at the NS interface is
depressed below its bulk value to a value of (approxi-
mately) A% (1 —aR A8) for small R values. For
larger R values (wR A8"* > 0.1) this expression is no

RGY (mV)

Z
m

FIG. 4. The tunneling density of states [Eq. (4.3)] at low
energies, AR=0.3, Z8 =12, Ag=14, and d/I =3. Solid
line which is nonzero at £=0.4 mV is for R =1. Dashed
line: R =0.5. Dash-dotted line: R =0.25. Second solid
line: R =0.1.
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longer accurate, but it is clear that the depression of
Ag at the NS interface increases. Since it is the value
of Ag at the NS interface which comes into the densi-
ty of states, for the larger R values we should use
smaller Ag values. This should correct the quantita-
tive disagreement mentioned above.

V1. CONCLUSION

The proper treatment of elastic scattering in an NS
sandwich appears to explain (at least qualitatively)
some previously inexplicable experimental results
from tunneling in NS double layers. Since the author
himself has invoked effective mean-free paths in the
N metal layer to carry out analyses of proximity ef-
fect tunneling data on NS sandwiches,!® some discus-
sion of the relevance of the theory of this paper to
that analysis is in order.

In Ref. 15, the effective mean-free path was in-
cluded merely as an imaginary constant, id//, in the

phase difference RZy Qy. In the thinner films, it
was assumed that this mean-free path was due to dif-
fuse scattering at interfaces, not to elastic scattering
within the N metal layer. If this assumption is
correct, it is questionable that the above work is
directly applicable to such scattering. Because diffuse
scattering is an effect which is localized at a boundary
plane, it may not be susceptible to the same treat-
ment as elastic scattering from imperfections located
at random within the N metal. Because the treatment
of diffuse scattering is phenomenological, however, a
definitive statement on the difference between the
effects of diffuse scattering and bulk elastic scattering
must await future work.

If, however, the scattering which is apparent in the
data of Ref. 15 is predominantly bulk elastic scatter-
ing, then the above results are of direct consequence.
The reanalysis of the data, assuming that all the
scattering may be treated as if it were bulk elastic
scattering, is currently proceeding.
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